
ARTS User Guide

by

Stefan Bühler1, Patrick Eriksson2, Wolfram Haas, Nikolay Koulev1, Thomas
Kuhn1, Oliver Lemke1

October 8, 2020
ARTS Version 1.0.222

This is a working document. The implementation approaches and the algorithms are
preliminary and can be subject to changes. In addition, not all features described in
this document are implemented in ARTS.

We welcome gladly comments and reports on errors in the document. Send then
an e-mail to: patrick@rss.chalmers.se or sbuehler@uni-bremen.de.

1Institute of Environmental Physics, University of Bremen, Germany
2Department of Radio and Space Science, Chalmers University of Technology, Sweden



Copyright (C) 2000,2001
Stefan Buehler <sbuehler@uni-bremen.de>
Patrick Eriksson <patrick@rss.chalmers.se>

The ARTS program is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2, or (at your option) any later version.

This program is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more
details.

You should have received a copy of the GNU General Public
License along with the program; if not, write to the Free
Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.



Contents

1 The ARTS concept 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The scope of ARTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Enter: ARTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Generic Workspace Methods . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Practical hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theoretical formalism 7
2.1 The forward model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 The sensor transfer matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Weighting functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Transformation between vector spaces . . . . . . . . . . . . . . . . 9

I Algorithm Descriptions 11

3 Gas Absorption 13
3.1 Line Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Line Shape Functions . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 Partition Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.3 Line Catalogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.4 Species specific data . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.5 ARTS Workspace Variables and Methods . . . . . . . . . . . . . . 32

3.2 Continuum Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.1 Water Vapor Continuum Models . . . . . . . . . . . . . . . . . . . 38

The MPM93 Continuum Parameterization . . . . . . . . . . . . . . 38
3.2.2 Oxygen Continuum Absorption . . . . . . . . . . . . . . . . . . . 39
3.2.3 Nitrogen Continuum Absorption . . . . . . . . . . . . . . . . . . . 40
3.2.4 Carbon dioxide Continuum Absorption . . . . . . . . . . . . . . . 41
3.2.5 ARTS Workspace Variables and Methods . . . . . . . . . . . . . . 41

ARTS Example Control File for the Continuum Tags . . . . . . . . 50
3.3 Complete Absorption Models . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 Complete Water Vapor Models . . . . . . . . . . . . . . . . . . . . 53
MPM87 Water Vapor Absorption Model . . . . . . . . . . . . . . . 53
MPM89 Water Vapor Absorption Model . . . . . . . . . . . . . . . 55



II CONTENTS

MPM93 Water Vapor Absorption Model . . . . . . . . . . . . . . . 57
CP98 Water Vapor Absorption Model . . . . . . . . . . . . . . . . 59
PWR98 Water Vapor Absorption Model . . . . . . . . . . . . . . . 61

3.3.2 Complete Oxygen Models . . . . . . . . . . . . . . . . . . . . . . 62
PWR93 Oxygen Absorption Model . . . . . . . . . . . . . . . . . 63
MPM93 Oxygen Absorption Model . . . . . . . . . . . . . . . . . 65

3.3.3 ARTS Workspace Variables and Methods . . . . . . . . . . . . . . 67
ARTS Example Control File for the Full Model Tags . . . . . . . . 76

4 Cloud Absorption 79
4.1 Liquid water and ice particle absorption . . . . . . . . . . . . . . . . . . . 79
4.2 Variability and Uncertainty in Cloud Absorption . . . . . . . . . . . . . . . 80
4.3 Water Vapor Saturation Adjustment in the Cloud . . . . . . . . . . . . . . 82
4.4 ARTS Workspace Variables and Methods . . . . . . . . . . . . . . . . . . 83

ARTS Example Control File for the Full Model Tags . . . . . . . . 89

5 Basic radiative transfer 93
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2 Practical considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3 Practical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.1 Absorption and transmission . . . . . . . . . . . . . . . . . . . . . 95
5.3.2 The source function . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3.3 Solving the radiative transfer equation . . . . . . . . . . . . . . . . 96
5.3.4 Considering ground reflection . . . . . . . . . . . . . . . . . . . . 96

5.4 Optical thicknesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.5 Cooling rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.6 Control file examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Line of sight, 1D 101
6.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 Outlook towards 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3 The step length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.4 Geometrical calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.4.1 General expressions . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.4.2 Limb sounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.4.3 Upward looking . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.4.4 Downward looking . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.5 With refraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.5.1 General theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.5.2 Practical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.5.3 Limb sounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.6 Ground intersections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.7 Inclusion of hydrostatic equilibrium . . . . . . . . . . . . . . . . . . . . . 109
6.8 Control file examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.8.1 Ground-based observation . . . . . . . . . . . . . . . . . . . . . . 111
6.8.2 Limb sounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112



CONTENTS III

6.8.3 Limb transmission calculations . . . . . . . . . . . . . . . . . . . 113

7 Sensor modeling 115
7.1 Implementation strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.1.1 The sensor transfer matrix . . . . . . . . . . . . . . . . . . . . . . 115
7.1.2 Normalization of H . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.2 Integration as vector multiplication . . . . . . . . . . . . . . . . . . . . . . 116
7.2.1 Piecewise linear functions . . . . . . . . . . . . . . . . . . . . . . 116
7.2.2 Practical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.3 Summation as vector multiplication . . . . . . . . . . . . . . . . . . . . . 118
7.3.1 Piecewise linear functions . . . . . . . . . . . . . . . . . . . . . . 119
7.3.2 Practical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.4 Brightness temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.4.1 Conversion to Planck brightness temperature . . . . . . . . . . . . 120
7.4.2 Conversion to Rayleigh-Jean temperature . . . . . . . . . . . . . . 120

7.5 Control file examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8 Data reduction 123
8.1 Averaging of viewing angles . . . . . . . . . . . . . . . . . . . . . . . . . 123
8.2 Data binning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
8.3 Reduction by eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9 Atmospheric weighting functions 125
9.1 Calculation approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

9.1.1 Pure numerical calculation . . . . . . . . . . . . . . . . . . . . . . 125
9.1.2 Analytical expressions . . . . . . . . . . . . . . . . . . . . . . . . 125

9.2 Absorption LOS WFs with emission . . . . . . . . . . . . . . . . . . . . . 127
9.2.1 Single pass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
9.2.2 1D limb sounding . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
9.2.3 1D downward looking observations . . . . . . . . . . . . . . . . . 132

9.3 Absorption LOS WFs for optical thicknesses . . . . . . . . . . . . . . . . 132
9.3.1 Single pass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
9.3.2 1D limb sounding . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
9.3.3 1D downward looking observations . . . . . . . . . . . . . . . . . 133

9.4 Source line of sight weighting functions . . . . . . . . . . . . . . . . . . . 133
9.4.1 Single pass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
9.4.2 1D limb sounding . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
9.4.3 1D downward looking observations . . . . . . . . . . . . . . . . . 134

9.5 Transformation from vertical altitudes to distances along LOS . . . . . . . 134
9.5.1 Basis functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
9.5.2 Transformation from z to l . . . . . . . . . . . . . . . . . . . . . . 134

9.6 Species WFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
9.7 Continuum absorption WFs . . . . . . . . . . . . . . . . . . . . . . . . . . 137
9.8 Temperature profile WFs . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

9.8.1 Without hydrostatic equilibrium . . . . . . . . . . . . . . . . . . . 139
9.8.2 With hydrostatic equilibrium . . . . . . . . . . . . . . . . . . . . . 140



IV CONTENTS

9.9 Spectroscopic Parameters WFs . . . . . . . . . . . . . . . . . . . . . . . . 140

10 Measurement errors 143
10.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
10.2 Thermal noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

10.2.1 Measurement thermal noise . . . . . . . . . . . . . . . . . . . . . 144
10.2.2 Calibration thermal noise . . . . . . . . . . . . . . . . . . . . . . . 145

10.3 Polynomial baseline ripple . . . . . . . . . . . . . . . . . . . . . . . . . . 145
10.4 Piecewise polynomial baseline ripple . . . . . . . . . . . . . . . . . . . . . 147

II Implementation Issues 149

11 The art of developing ARTS 151
11.1 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
11.2 The ARTS build system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
11.3 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

11.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
11.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
11.3.3 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
11.3.4 Global variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
11.3.5 Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
11.3.6 Version numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
11.3.7 Header files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
11.3.8 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

File comment: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Function comment: . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Generic comment: . . . . . . . . . . . . . . . . . . . . . . . . . . 155

11.4 Extending ARTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
11.4.1 How to add a workspace variable . . . . . . . . . . . . . . . . . . 155
11.4.2 How to add a workspace variable group . . . . . . . . . . . . . . . 155
11.4.3 How to add a workspace method . . . . . . . . . . . . . . . . . . . 156
11.4.4 How to add a source code file . . . . . . . . . . . . . . . . . . . . 156
11.4.5 How to add an example file . . . . . . . . . . . . . . . . . . . . . . 156

11.5 CVS issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
11.5.1 How to check out arts . . . . . . . . . . . . . . . . . . . . . . . . 157
11.5.2 How to update (if you already have a copy) . . . . . . . . . . . . . 157
11.5.3 How to commit your changes . . . . . . . . . . . . . . . . . . . . 157
11.5.4 How to cut a release . . . . . . . . . . . . . . . . . . . . . . . . . 158
11.5.5 How to move your arts working directory . . . . . . . . . . . . . . 159

11.6 Debugging (use of assert) . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

12 Vectors, matrices, and arrays 161
12.1 Implementation files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
12.2 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

12.2.1 Constructing a Vector . . . . . . . . . . . . . . . . . . . . . . . . . 162



CONTENTS V

12.2.2 VectorViews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
12.2.3 What you can do with a Vector (or VectorView) . . . . . . . . . . . 164

Resize (only for Vector, not for VectorView!): . . . . . . . . . . . . 164
Get the number of elements: . . . . . . . . . . . . . . . . . . . . . 164
Sum up all elements: . . . . . . . . . . . . . . . . . . . . . . . . . 164
Element access: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Copying Vectors: . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Assigning a scalar: . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Mathematical operators: . . . . . . . . . . . . . . . . . . . . . . . 165
Maximum and minimum: . . . . . . . . . . . . . . . . . . . . . . 165
Scalar product: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Arbitrary single-argument math functions: . . . . . . . . . . . . . . 165

12.3 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
12.3.1 Constructing a Matrix . . . . . . . . . . . . . . . . . . . . . . . . 166
12.3.2 MatrixViews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
12.3.3 What you can do with a Matrix (or MatrixView) . . . . . . . . . . 167

Resize (only for Matrix, not for MatrixView!): . . . . . . . . . . . 167
Get the number of rows or columns: . . . . . . . . . . . . . . . . . 167
Refer to a row or column: . . . . . . . . . . . . . . . . . . . . . . 167
Element access: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Copying Matrices: . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Assigning a scalar: . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Mathematical operators: . . . . . . . . . . . . . . . . . . . . . . . 168
Maximum and minimum: . . . . . . . . . . . . . . . . . . . . . . 169
Arbitrary single-argument math functions: . . . . . . . . . . . . . . 169
Transpose: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Matrix multiplication: . . . . . . . . . . . . . . . . . . . . . . . . 169

12.4 Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
12.4.1 Constructing an Array . . . . . . . . . . . . . . . . . . . . . . . . 170
12.4.2 What you can do with an Array . . . . . . . . . . . . . . . . . . . 170

Resize: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Get the number of elements: . . . . . . . . . . . . . . . . . . . . . 171
Element access: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Copying Arrays: . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Assigning a scalar of the base type: . . . . . . . . . . . . . . . . . 171
Append to the end: . . . . . . . . . . . . . . . . . . . . . . . . . . 171

13 Workspace variable groups and file formats 173
13.1 Important workspace variable groups . . . . . . . . . . . . . . . . . . . . . 173

13.1.1 Atomic groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
13.1.2 Numeric groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
13.1.3 Arrays based on atomic and numeric groups . . . . . . . . . . . . . 174
13.1.4 Structures based on atomic and numeric groups . . . . . . . . . . . 174

13.2 File formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
13.2.1 ASCII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
13.2.2 Binary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176



VI CONTENTS

General binary file format . . . . . . . . . . . . . . . . . . . . . . 176
Display tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

13.3 HDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

III Utilities 179

14 Utilities 181
14.1 The ARTS-IDL interface: AII . . . . . . . . . . . . . . . . . . . . . . . . 181

14.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
14.1.2 IDL reading routines . . . . . . . . . . . . . . . . . . . . . . . . . 181

read datafile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
read artsvar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

14.1.3 IDL writing routines . . . . . . . . . . . . . . . . . . . . . . . . . 183
write datafile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
write artsvar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

IV Bibliography and Appendices 185

A Workspace variables 193

B ARTS Units and Conversion Factors 205



Chapter 1

The ARTS concept

This section describes the basic ideas underlying ARTS. It also introduces some terminol-
ogy. You should read it if you want to understand how the program works and how it can
be used efficiently. At the end of the chapter, there is also some practical information about
useful command line parameters and such things.

1.1 Introduction

The number of satellite sensors in the millimeter and sub-millimeter spectral range is rapidly
growing. They use various frequency bands and observation geometries. Two important
groups of sensors are for example the nadir viewing millimeter wave sensors like AMSU1

and the limb viewing sub-millimeter wave sensors like the planned SMILES2.

For the data analysis all such sensors require accurate and fast forward models, which
can simulate measurements for a given atmospheric (and maybe ground) state. Depending
on the objective of the sensor, the measurement will depend for example on the distribution
of atmospheric temperature, water vapor, ozone, and many other trace gases.

So far, a lot of effort has been wasted in developing dedicated forward models for differ-
ent sensors, although all these models have many features in common. Moreover, existing
models were not easily modifiable and extendable. Hence, it was decided to develop a new
model which emphasizes modularity, extendibility, and generality.

1The Advanced Microwave Sounding Unit is a sensor on board the polar orbiting satellites of the US-
American National Aeronautics and Space Administration.

2The Superconducting Sub-Millimeter Wave Limb Emission Sounder is a Japanese Sensor which will be
flown for the first time on the International Space Station.

History
000616 Created by Stefan Buehler, based on my DPG2000 poster.
011121 Practical hints added by Stefan Buehler.



2 THE ARTS CONCEPT

1.2 The scope of ARTS

The present version of ARTS is limited to cases where scattering can be neglected and local
thermodynamic equilibrium applies. ARTS has been developed having passive emission
measurements in mind, put pure transmission (that is, the emission is neglected) observa-
tions are also handled. The forward model can be used to simulate measurements for all
(normal?) observation geometries: ground-based, nadir looking, limb sounding and bal-
loon/aircraft measurements. It can be noted that ARTS handles measurements from a point
inside the atmosphere, such as an aircraft or a balloon, in a downward direction. ARTS cov-
ers so far only monochromatic pencil beam calculations, that is, no sensor characteristics
can be included. This part is presently covered by the AMI (ARTS Matlab interface) set of
Matlab functions (see below). Sensor characteristics will be included in ARTS.

Beside providing set of spectra, ARTS calculates weighting functions for a number of
variables. Analytical expressions for the weighting functions are used for species, con-
tinuum absorption and ground emission, and for temperature if hydrostatic equilibrium is
not assumed. Weighting functions are also provided for pointing off-sets, calibration and
temperature (with hydrostatic equilibrium).

For Matlab users there are two accompanying packages called AMI and Qpack3 which
extends the usage of ARTS considerably. First of all, AMI has functions to include sensor
characteristics in the calculations. AMI has further functions to read and write ARTS data
file, and various functions that are of general usage. Qpack is an Matlab environment to
perform OEM inversions and producing set of spectra to test the inversions, where ARTS is
used as calculating engine.

1.3 Enter: ARTS

The most important notion in ARTS is the workspace. All physical quantities (for example
absorption coefficients) are workspace variables. But workspace variables can also be of a
more technical nature, for example various grids.

The program performs a calculation by executing a list of workspace methods, which
are specified in a controlfile. These workspace methods take workspace variables as input,
and generate workspace variables as output. Additional input parameters can be specified
as keyword parameters in the controlfile (Figure 1.1).

It is important to note that the controlfile has a fixed and well-defined syntax. This
syntax is understood by the ARTS parser. The great advantage of this concept is that it is
very easy to add new workspace variables and new workspace methods. The program has
an internal lookup table which lists all workspace methods, as well as their input variables,
output variables, and keyword parameters. To add a new method, one just has to add an
entry to this lookup table, and write the code for the method itself. No further changes to
the program are necessary. In particular, no changes to the program logic or to the parser.
How such an extension can be made practically is described in Section 11.

3AMI is distrubuted by ARTS, while Qpack is a separate package



1.4 GENERIC WORKSPACE METHODS 3

Workspace Variable 2

Keyword

Parameters

Workspace Variable 3

Workspace Method

Workspace Variable 1

Figure 1.1: Specific workspace methods act on specific workspace variables to generate
other specific workspace variables. Additional input parameters can be specified as keyword
parameters in the controlfile.

1.4 Generic Workspace Methods

Generic methods (Figure 1.2) allow the user of the program even more freedom than specific
methods. A generic method is for example VectorReadAscii, which can be used to
read any workspace variable which is a vector from an ASCII file. For example

VectorReadAscii(f_mono){"freqeuency_grid.aa"}

will read the specified file and generate the workspace variable f_grid.
Generic methods are particularly useful for IO operations like in the example above. No

new IO functions are necessary for new workspace variables, as long as they are of standard
types already known to the program (for example vectors or matrices).

1.5 Practical hints

The subdirectory examples of the doc directory contains some example controlfiles.
You should study them to learn more about how the program works. You can also run these
controlfiles like this:

arts absorption_example.arts

This assumes that you are inside the directory where the controlfiles are, and that the arts
executable is in your path. You can also run all of the examples, by saying

make check



4 THE ARTS CONCEPT

Workspace Variable 2

Workspace Variable 3

Workspace Variable 1

Workspace Method

Generic

Control File

Keyword

Parameters

Input
Workspace
Variables

Output
Workspace
Variables

Figure 1.2: For generic workspace methods the workspace variables to act on are specified
in the controlfile.

ARTS offers a number of useful command line parameters. In general, there is a short
form and a long form for each parameter. The short form consists of a minus sign and a
single letter, whereas the long form consists of two minus signs and a descriptive name. To
get a full list, type

arts -h

or

arts --help

Most useful at the beginning should be the -d (--describe), -m (--methods),
-w (--workspacevariables), and -i (--input) flags. For instance, the -d
(--describe) flag gives you online documentation for any workspace method or
workspace variable. Usage:

arts -d f_mono

will print documentation about the workspace variable f_mono, which happens to be the
monochromatic frequency grid.

But what methods and variables are available? You can find out by typing

arts -m all

which will list all workspace methods, or by typing



1.5 PRACTICAL HINTS 5

arts -w all

which will list all workspace variables. As you can see, these lists are quite long. But you
can get more specific information:

arts -m f_mono

will give you a list of all methods that can generate the workspace variable f_mono. Spe-
cific and generic methods are listed separately. Generic methods are in this case all methods
producing a Vector, since f_mono belongs to this group. A similar task is performed by
the -i (--input) flag, with the difference that arts -i f_mono will list those meth-
ods that require f_mono as input, whereas arts -m f_mono lists those that produce
f_mono as output. Finally,

arts -w absCalc

will give you all variables required by the method absCalc (the variable f_mono happens
to be one of them).

Using these command line parameters, it is easy to build up a controlfile. The trick
is, to start at the end. Say you want to compute absorption coefficients. First of all, you
have to find out in which workspace variable these are stored. Look at the list produced
by arts -w all. You can use arts -d to look at some candidates a bit more closely.
This way, you will find out that abs is the variable you are looking for.

In the next step, you can use arts -m abs to find all methods that can calculate abs.
So, you will find the method absCalc. Now you can use arts -w absCalc to find
out the required input variables of that method. Then you can use the -m flag again, to find
the methods producing these variables, and so on.



6 THE ARTS CONCEPT



Chapter 2

Theoretical formalism

In this section a theoretical framework for the forward model is presented. The presentation
follows Rodgers [1990], but some extensions are made, for example, the distinction between
the atmospheric and sensor parts of the forward model is also discussed. After this chapter
was written, C.D. Rodgers published a textbook [Rodgers, 2000] presenting the formalism
in more detail than Rodgers [1990]. Modelling of sensor characteristics is not yet included
in ARTS (this part is so far covered by AMI, see Section 1.2), but treatment of the sensor is
here included for completness.

2.1 The forward model

The radiative intensity, I , at a point in the atmosphere, r, for frequency ν and traversing in
the direction, φ, is dependent on a variety of physical processes and continuous variables
such as the temperature profile, T :

I = F (r, ν, φ, T, . . .) (2.1)

To detect the spectral radiation some kind of sensor, having a finite spatial and frequency
resolution, is needed, and the observed spectrum becomes a vector, y, instead of a contin-
uous function. The atmospheric radiative transfer is simulated by a computer model using
a limited number of parameters as input, and the forward model, F , used in practice can be
expressed as

y = F(xF ,bF ) + ε(xε,bε) (2.2)

where (xF ,bF ) and (xε,bε) together give a total description of both the atmospheric and
sensor states, and ε is the measurement errors. The parameters are divided in such way that

History
000306 Written by Patrick Eriksson, partly based on Eriksson [1999] and Eriks-

son et al. [2000].



8 THEORETICAL FORMALISM

x, the state vector, contains the parameters to be retrieved, and the remainder is given by b,
the model parameter vector. The total state vector is

x =

[
xF
xε

]
(2.3)

and the total model parameter vector is

b =

[
bF
bε

]
(2.4)

The actual forward model consists of either empirically determined relationships, or numer-
ical counterparts of the physical relationships needed to describe the radiative transfer and
sensor effects. The forward model described here is mainly of the latter type, but some parts
are more based on empirical investigations, such as the parameterisations of continuum ab-
sorption.

Both for the theoretical formalism and the practical implementation, it is suitable to
make a separation of the forward model into two main sections, a first part describing the
atmospheric radiative transfer for pencil beam (infinite spatial resolution) monochromatic
(infinite frequency resolution) signals [Eriksson, 1999],

i = Fa(xr,br) (2.5)

and a second part modelling sensor characteristics,

y = Fs(i,xs,bs) + ε(xε,bε) (2.6)

where i is the vector holding the spectral values for the considered set of frequencies and
viewing angles (ii = I(νi, φi), where i is the vector index), and xF and bF are separated
correspondingly, that is, xTF = [xTr ,x

T
s ] and bTF = [bTr ,b

T
s ]. The vectors x and b can now

be expressed as

x =

 xr
xs
xε

 (2.7)

and

b =

 br
bs
bε

 , (2.8)

respectively.
The subscripts of x and b are below omitted as the distinction should be clear by the

context.



2.2 THE SENSOR TRANSFER MATRIX 9

2.2 The sensor transfer matrix

The modelling of the different sensor parts can be described by a number of of analytical
expressions (see Eriksson and Merino [1997]) that together makes the basis for the sensor
model. These expressions are throughout linear operations and it possible, as suggested in
Eriksson et al. [2000], to implement the sensor model as a straightforward matrix multipli-
cation:

y = Hi + ε (2.9)

where H is here denoted as the sensor transfer matrix. The matrix H further incorporate
effects of a data reduction and the total transfer matrix is then

H = HdHs (2.10)

as

y = Hdy
′ = Hd(Hsi + ε′) = Hi + ε (2.11)

where Hd is the reduction matrix, Hs the sensor matrix, and y′ and ε′ are the measurement
vector and the measurement errors, respectively, before data reduction. The matrices Hd

and Hs are described in Section 7 and 8, respectively.

2.3 Weighting functions

2.3.1 Basics

A weighting function is the partial derivative of the spectrum vector y with respect to some
variable used by the forward model. As the input of the forward model is divided between
x or b, the weighting functions are divided correspondingly between two matrices, the state
weighting function matrix

Kx =
∂y

∂x
(2.12)

and the model parameter weighting function matrix

Kb =
∂y

∂b
(2.13)

For the practical calculations of the weighting functions, it is important to note that the
atmospheric and sensor parts can be seperated. For example, if x only hold atmospheric
and spectroscopic variables, Kx can be expressed as

Kx =
∂y

∂i

∂i

∂x
= H

∂i

∂x
(2.14)

This equation shows that the new parts needed to calculate atmospheric weighting func-
tions, are functions giving ∂i/∂x where x can represent the vertical profile of a species,
atmospheric temperature, spectroscopic data etc.



10 THEORETICAL FORMALISM

2.3.2 Transformation between vector spaces

It could be of interest to transform a weighting function matrix from one vector space to
another1. The new vector, x′, is here assumed to be of length n (x′ ∈ Rnx1), while the
original vector, x is of length p (x ∈ Rpx1). The relationship between the two vector
spaces is described by a transformation matrix B:

x = Bx′ (2.15)

where B ∈ Rpxn. For example, if x′ is assumed to be piecewise linear, then the columns of
B contain tenth functions, that is, a function that are 1 at the point of interest and decreases
linearly down to zero at the neighbouring points. The matrix can also hold a reduced set of
eigenvectors.

The weighting function matrix corresponding to x′ is

Kx′ =
∂y

∂x′
(2.16)

This matrix is related to the weighting function matrix of x (Eq. 2.12) as

Kx′ =
∂y

∂x

∂x

∂x′
=
∂y

∂x
B = KxB (2.17)

Note that

Kx′x
′ = KxBx′ = Kxx (2.18)

However, it should be noted that this relationship only holds for those x that can be repre-
sented perfectly by some x′ (or vice versa), that is, x = Bx′, and not for all combinations
of x and x′.

If x′ is the vector to be retrieved, we have that [Rodgers, 1990]

x̂′ = I(y, c) = T (x,b, c) (2.19)

where I and T are the inverse and transfer model, respectively.
The contribution function matrix is accordingly

Dy =
∂x̂′

∂y
(2.20)

that is, Dy corresponds to Kx′ , not Kx.
We have now two possible averaging kernel matrices

Ax =
∂x̂′

∂x
=
∂x̂′

∂y

∂y

∂x
= DyKx (2.21)

Ax′ =
∂x̂′

∂x′
=
∂x̂′

∂y

∂y

∂x

∂x

∂x′
= DyKx′ = AxB (2.22)

where Ax ∈ Rpxn and Ax′ ∈ Rpxp, that is, only Ax′ is square. If p > n, Ax gives
more detailed information about the shape of the averaging kernels than the standard matrix
(Ax′). If the retrieval grid used is coarse, it could be the case that Ax′ will not resolve all
the oscillations of the averaging kernels, as shown in Eriksson [1999, Figure 11].

1This subject is also discussed in Rodgers [2000] (published after writing this).



Part I

Algorithm Descriptions





Chapter 3

Gas Absorption

In general there are three types of absorption/emission spectra:

• sharp lines of finite width

• aggregations (series) of lines called bands

• continua extending over a broad range of wavelengths, with no single lines in it.

This section is therefore firstly devised to give a short theoretical overview of the absorption
quantities which are used in ARTS. The presentation of the calculation methods within
ARTS of these quantities is the second goal. There are two major subsections which deal
separately with the respective types of spectra regarded by ARTS, lines and continua. The
second one extends beyond the scope of mere treatment of the continua and thus gives an
integrated view of continua and spectral lines.

3.1 Line Absorption

We will introduce here the main concepts concerning line absorption. The approach, how-
ever, does not aim at the derivation, but rather at the presentation the following expressions.

Any line is presented by the corresponding profile of the absorption/emission coefficient
as a function of the frequency, in our case that of the absorption - given by the quantity α(ν).
The latter dependency is related to other quantities, which express the three characteristics
of a single line uniquely describing it - position, strength and shape. The strength, or better
the line intensity, is given by the quantity S(T ), where T is absolute temperature. The
shape and the position are expressed through the line-shape function F (ν). Thus we have
the relation

α(ν) = nS(T )F (ν) (3.1)

History
2001-07-05 Template created by Stefan Buehler.
2001-10-05 Line absorption part written, Nikolay Koulev
2001-11-21 Continuum absorption part written, Thomas Kuhn.



14 GAS ABSORPTION

where n is the number density of the absorber, Goody and Yung [1989]. The line-shape
function is normalized as follows∫

F (ν)dν = 1 (3.2)

The values of S(T ) at reference temperature T0 are contained in spectroscopic databases.
The conversion to different temperatures is done by

S(T ) = S(T0)
Q(T0)

Q(T )

e−Ef/(kT ) − e−Ei/(kT )

e−Ef/(kT0) − e−Ei/(kT0)
(3.3)

given the energies Ef and Ei of the two levels between which the transition occurs as well
as the partition function Q(T ), Rothman et al. [1998]. The databases contain the lower
state energy El tabulated along with the S and the transition frequency ν, so that the upper
state energy can be computed by Eu=El+hν. Partition functions for all molecular species
are also available along with spectroscopic databases, either in the form of tabulated values
for a set temperatures, or in the form of FORTRAN routines. One can obtain the total
absorption coefficient by adding the absorption of all spectral lines of all molecular species.

The problem of determining the explicit kind of the line-shape functions is treated in
the following subsection. Another one is dedicated to the partition functions and their cal-
culation..

3.1.1 Line Shape Functions

Up to date there is no way to calculate the line-shape functions analytically just from the
theoretical expressions of quantum dynamics, statistical physics, and theoretical mechanics.
Certain approximations have to be made to account for different physical phenomena related
to the absorption/emission process or to suit better the calculation of different parts of the
spectral line.

There are three phenomena which contribute to the line-shape. These are, in increas-
ing order of importance, the finite lifetime of an excited state in an isolated molecule, the
thermal movement of the gas molecules, and their collisions with each other. They result in
corresponding effects to the line-shape: natural broadening, Doppler, and pressure broaden-
ing. Of these, the first one is completely negligible compared to the other two. Nevertheless,
we will pay a special attention to the natural broadening because its implications are of a
conceptual importance for the broadening processes.

The spectral line shape can be derived in the case of natural broadening from basic
physical considerations and a well-known Fourier transform theorem from the time to the
frequency domain, Thorne et al. [1999]. If we consider classically the spontaneous decay
of the excited state of two-level system in the absence of external radiation, then population
n of these level decreases according to

dn(t)

dt
= −An(t) (3.4)

where A is Einstein A coefficient, which equation can also be interpreted as the rate of the
spontaneously emitted photons because of decay. This relation is more usefully in this case
to be written in the following manner

n(t) = n(0) e−At = n(0)e−t/τ (3.5)



3.1 LINE ABSORPTION 15

where τ is the mean lifetime of the excited state. Thus the number of spontaneously emitted
photons and in this way the flux of the emitted radiation then will be proportional to n.
Therefore we can write for the flux L that

L(t) = L(0) e−t/τ = L(0) e−γt (3.6)

By the afore mentioned theorem, multiplying in the time domain by e−γt is equivalent to
convolving in the frequency domain with a function 1/[ν2 − (γ/4π)2]. Accordingly the
line profile of a spectral line at frequency ν0 as a normalized line-shape function will be, as
difined in Thorne et al. [1999],

F (ν) =
1

π

γ/4π

(ν − ν0)2 + (γ/4π)2
(3.7)

This gives a bell-shaped profile and the function itself is called Lorentzian. The dependence
on the position of the line is apparent through ν0, that is why some authors prefer to denote
the function by F (ν, ν0). The result is important because of two major reasons. Firstly,
without the natural broadening the line would be the delta function δ(ν − νo), as pointed
out in Bernath [1995]. So the spontaneous decay of the excited state is responsible for the
finite width and the certain shape of the line-shape function. Secondly, the Lorentzian type
of function comes significantly into play when explaining some of the other broadening
effects or the complete picture of the broadened line, Thorne et al. [1999].

The second effect, Doppler broadening, is important for the upper stratosphere and
mesosphere for microwave frequencies. The line-shape follows the velocity distribution
of the particles. Under the conditions of thermodynamic equilibrium, we have a proba-
bility distribution for the relative velocity u between the gas molecule and the observer of
Maxwell type

p(u) =

√
m

2πkT
exp

[
−mu

2

2kT

]
(3.8)

where m is the mass of the molecule. Using then the formula for the Doppler shift for
the non-relativistic region ν- ν0 = ν0u / c , one can easily derive the line-shape function,
Bernath [1995],

FD(ν) =
1

γD
√
π
exp

[
−
(
ν − ν0

γD

)2
]

(3.9)

where the quantity γD is called Doppler line width and equals

γD =
ν

c

√
2kT

m
(3.10)

In contrast to the afore mentioned line-shape function for the natural broadening the Doppler
broadening is expressed by a Gaussian line-shape function F (ν). The Doppler line width
γD is so defined that it is equal to the half width at half of the maximum (HWWM) of the
line-shape function. The same way of notating is used for all other width parameters γxy
below.

It can be said without any exaggeration that the pressure broadening effect is the most
complicated one among the others and still represents a complex theoretical task to be tack-
led, and is in the same time of major experimental importance. So far, there is no way to



16 GAS ABSORPTION

calculate analytically from the basics the profile of a pressure, or collisional, line through
a single approach near the line center as well as in the far wing region. The various ap-
proximations, which are therefore used, are immanently limited to the certain line regions
they deal with. The most popular among these approximations is the impact approximation
which postulates that the duration of the collisions of the gas particles is very small com-
pared to the average time between the collisions. Lorentz was the first to achieve a result
exploiting this approach, the Lorentz line-shape function:

FL(ν) =
γL
π

1

(ν − ν0)2 + γ2
L

(3.11)

where γL is the Lorentz line width, Thorne et al. [1999]. As one can see, the result Eq. 3.11
is pretty similar to Eq. 3.7 but the specific line parameters γ and γL make them differ sig-
nificantly in the corresponding frequency regions of interest. For atmospheric pressures γL
is much greater and because of that, of experimental significance in contrast to γ.
Elaborating the model of Lorentz, van Vleck and Weisskopf made a correction to it, Van
Vleck and Weisskopf [1945],particularly for the microwave region:

FV VW (ν) =

(
ν

ν0

)2 γL
π

[
1

(ν − ν0)2 + γ2
L

+
1

(ν + ν0)2 + γ2
L

]
(3.12)

which can be reduced to a Lorentzian for (ν − ν0) << ν0 and 0 << ν0. Except for the
additional factor (ν/ν0)2 , FV VW can be regarded as the sum of two FL, or respectively
lines, one with its center frequency at ν0, the other at −νo.

The van Vleck and Huber lineshape [Van Vleck and Huber, 1977] is similar to Eq. 3.12,
except for the factor (ν/ν0)2 which is replaced by (ν ∗ tanh(h ∗ ν/(2kT )))/(ν0 ∗ tanh(h ∗
ν0/(2kT ))), with k the Boltzmann constant, h the Planck constant, and T the atmospheric
temperature (the denominator is actually a consequence of the line strength definition in the
spectroscopic catalogs). The lineshape Eq. 3.12 with this factor can be used for the entire
frequency range, since the microwave approximation: tanh(x) = x, that leads to the factor
(ν/ν0)2, is not made.

The combined picture of a simultaneously Doppler and pressure broadened line is the
next step of the approximations development. The line-shape function has to approximated
in this case by the Voigt line-shape function

FV oigt(ν, ν0) =

∫
FL(ν, ν ′) FD(ν ′, ν0) dν ′ (3.13)

though there’s no strict justification for its use - the two processes are assumed to act inde-
pendently, which in reality is not the fact. Regardless of this flaw, it is the only way up to
date to model the combination of the broadening processes. The integral in Eq. 3.13 can not
be computed analytically, so certain approximation algorithms must be used.

Another possibility would be the combination of the last two equations Eq. 3.12 and
Eq. 3.13. The respective result then will be

FS =

(
ν

ν0

)2

[FV oigt(ν, ν0) + FV oigt(ν,−ν0)] (3.14)

The advantage of such a model is that it behaves like a van Vleck-Weisskopf line-shape
function in the high pressure limit and like a Voigt one in the low pressure limit. There is



3.1 LINE ABSORPTION 17

one important caveat to the equation Eq. 3.14: it has to be made sure that the algorithm that
is used to compute the Voigt function really produces a Lorentz line in the high pressure
limit. Another point of significance is the demand that the model yields meaningful results
far from the line center, since the line center from the “mirror” line at -ν0 is situated approx-
imately 2ν0 away from the frequency ν0 of computation. The algorithm of Drayson [1976]
and Oliveiro and Longbothum [1977] was explicitly checked to satisfy both requirements,
while this was found to be not true for some other algorithms, commonly used for Voigt-
shape computation. In particular, the it is not true for the Hui-Armstrong-Wray Formula, as
defined in Hui et al. [1978] and in Equation 2.60 of Rosenkranz [1993]. So, provided the
stated above is fulfilled, the FS line shape gives a smooth transition from high tropospheric
pressures to low stratospheric ones, and should be valid near the line centers throughout the
microwave region.

3.1.2 Partition Functions

The treatment of the partition functions is directly related to the molecular energy states and
their statistical distribution during the radiation process.

In any case of spectroscopic interest the free molecules of a gas are not optically thick
at all frequencies, so the radiation energy is not represented by blackbody radiation. The
most common assumption made, which is sufficient in the case of tropospheric and low
stratospheric research, is the local thermodynamic equilibrium or LTE . According to it,
it’s possible to find a common temperature, which may vary from place to place, that fits
the Boltzmann energy population distribution and the Maxwell velocities distribution. This
practically means, that under LTE the collisional processes must be of greater importance
than radiative ones. In other words, an excited state must have a higher probability of de-
excitation by collision than by spontaneous radiation. This is the important factor which
makes natural broadening differ quantitatively so much from the pressure (collisional) one,
though both are described qualitatively almost identically by Lorentzian line- shape func-
tions.

According to the Maxwell-Boltzmann distribution law, in LTE the total number of gas
particles Nn in a state En is given by

Nn = N0
gn
g0
e−En/kT (3.15)

where N0 is particle number in the ground state, and gn, go are the statistical weights (de-
generacies) of the n−state and the ground state, Gordy and Cook [1970]. Thus the total
particle number N is given by

N =
N0

g0

∞∑
n=0

gn e
−En/kT =

N0

g0
Q(T ) (3.16)

The quantity Q(T ) is the partition function of the gas, which generally speaking describes
the energy states distribution of the gas particles.

The partition function for a perfect gas molecule can be represented by the product of
the translational and the internal partition functions, as defined in Herzberg [1945],

Q = Qtr Qint (3.17)



18 GAS ABSORPTION

bearing in mind that the respective energies, translational and internal, are independent of
each other. The first quantity Qtr accounts for the distribution of the translational energy of
the gas particles - it takes into account that the translational velocities of the particles fulfill
the Maxwell distribution. The quantity, however, which we are interested in in (3.3) is the
internal partition function (or the total internal partition function because the transitions
between the discrete internal energy states are responsible for the absorption or emittance of
radiation. Accordingly Qint describes the distribution of energy among the internal energy
states of the gas particles.

The internal partition function for free gaseous molecules is a function of the electronic,
the vibrational, the rotational, and the nuclear spin states. An approximation is used in
Gordy and Cook [1970] in order to display the individual contribution explicitly

Qint = Qe Qv Qr Qn (3.18)

and thus the interaction between these various states is neglected. For practically all poly-
atomic molecules the excited electronic states are entirely negligible to those of the ground
states, i.e. Qe = 1 . Only for the very few polyatomic molecules with a multiplet ground
state (NO2 , ClO2 , and free radicals) has the electronic contribution to be considered.
If we neglect the anharmonicities, the vibrational partition function, with vibrational energy
levels measured with respect to the ground state for the harmonic oscillator, is acording
Herzberg [1945]

Qv =

(∑
ν1

e−ν1hω1/kT

)(∑
ν2

e−ν2hω2/kT

)
... (3.19)

where ν1, ν2,..., the vibrational quantum numbers, can each have the values 0,1,2,... and ω1,
ω2,..are the frequencies of the fundamental modes of vibration. The summation is taken over
all values of ν1, ν2,..., and each fundamental mode is counted separately. This result is valid
for non-degenerate vibrations. If we use the simple expression for geometric progression∑

νi

e−νihωi/kT =
1

1− ehωi/kT
(3.20)

and the degeneracies d1, d2,... of the fundamental modes, we get finally for the vibrational
partition function

Qv =
(
1− ehω1/kT

)−d1 (
1− ehω2/kT

)−d2
... (3.21)

The rotational partition function looks differently for the different symmetry types of
molecules. For diatomic and linear polyatomic molecules with no center of symmetry the
corresponding expression is, as defined in Gordy and Cook [1970]

Qr =
∞∑
J=0

(2J + 1)e−hBJ(J+1)/kT

=
kT

hB
+

1

3
+

1

15

hB

kT
+

4

315

(
hB

kT

)2

+ ...

∼=
kT

hB
(3.22)



3.1 LINE ABSORPTION 19

For rigid symmetric-, asymmetric-, and spherical top molecules there are also other factors
to be taken into consideration, such as the spatial structure of the molecules, nuclear spin,
inversion and internal rotation. The general expression in the case of a rigid symmetric- top
molecule according Herzberg [1945] is

Qr =
1

σ

∞∑
J=0

J∑
K=−J

(2J + 1) e−h[BJ(J+1)+(A−B)K2]/kT (3.23)

where σ is measure of the degree of symmetry. The usual symmetric top has C3 or C3ν

symmetry, therefore σ = 3. To a good approximation, the summation above can expressed
as in Gordy and Cook [1970]

Qr =
1

σ

[(
π

B2A

)(
kT

h

)3
]1/2

=
5.34× 106

σ

(
T 3

B2A

)1/2

(3.24)

For an asymmetric top the formula would then be

Qr =
5.34× 106

σ

(
T 3

ABC

)1/2

(3.25)

and for a spherical top, using the current notation of Gordy and Cook [1970] in the respec-
tive expression in Herzberg [1945],

Qr =
5.34× 106

σ

(
T 3

A3

)1/2

(3.26)

3.1.3 Line Catalogs

There are several spectroscopic catalogs implemented in ARTS: HITRAN, JPL, MYTRAN,
and the ARTS inherent catalog format.

Special attention will be paid here only to the inherent format in ARTS. To keep track
with the changes in the catalog format, every catalog file must start with ARTSCAT − x
, where for current version x = 2. Files with different or missing version will be rejected.
The current version is stored in the private member variable mversion. It can be read with
the member function Version, which returns a String ‘ARTSCAT-x’. After the version tag
(ARTSCAT-x), ARTS outputs the number of lines when catalog files are written. This
number is not used by reading routines, though.

The line catalog should not have any fixed column widths because the precision of the
parameters should not be limited by the format. The catalog can then be stored in principle
as binary or ASCII, though currently are implemented only ASCII files. In the ASCII
version the columns are separated by one or more blanks. The line format is then specified
by only the order and the units of the columns. As the catalog entry for each transition can
be quite long, it can be broken across lines in the ASCII file. Each new transition is marked
with an ‘@’ character. The first column will contain the species and isotope, following the
naming scheme described below. Scientific notation is allowed, e.g. 501.12345e9. Note
that starting with ARTSCAT-2, the intensity is per molecule, i.e., it does not contain the
isotopic ratio. This is similar to JPL, but different to HITRAN. The line format is:



20 GAS ABSORPTION

Col Variable Label Unit
-----------------------------------------------
0 ‘@’ ENTRY -
1 name NAME -
2 center frequency F Hz
3 pressure shift of F PSF Hz/Pa
4 line intensity I0 mˆ2/Hz
5 reference temp. for I0 T_I0 K
6 lower state energy ELOW J
7 air broadened width AGAM Hz/Pa
8 self broadened width SGAM Hz/Pa
9 AGAM temp. exponent NAIR -
10 SGAM temp. exponent NSELF -
11 ref. temp. for AGAM, SGAM T_GAM K
12 number of aux. parameters N_AUX -
13 auxiliary parameter AUX1 -
14 ...
15 error for F DF Hz
16 error for I0 DI0 %
17 error for AGAM DAGAM %
18 error for SGAM DSGAM %
19 error for NAIR DNAIR %
20 error for NSELF DNSELF %
21 error for PSF DPSF %

The parameters 0-12 must be present, the others can be missing, since they are not needed
for the calculation. For the error fields (15-21), a −1 means that no value exists.
Thus a valid ARTS line file would be:

ARTSCAT-2 2
@ CH4-211 1011349857.063 0 2.96070344144819e-27 296
2183.6851 13314.2468393782 21302.7949430052 0.75 0.75 296 0
@ O3-666 1088246622.54 0 2.82913939200384e-22 296
522.5576 21361.9693734024 27723.2206411054 0.76 0.76 296 0

Some species need special parameters that are not needed by other species (for example
overlap coefficients for O2). In the case of oxygen two parameters are sufficient to describe
the overlap, but other species, e.g., methane, may need more coefficients. The default for
N AUX is zero. In that case, no further AUX fields are present.

3.1.4 Species specific data

The following part treats the species related data in ARTS - all currently implemented
species with the respective molecular masses, isotopic ratios, partition functions, and the
sources for this information.



3.1 LINE ABSORPTION 21

Table 3.1 lists the implemented species in ARTS. The first row gives the ARTS molecule
name, the second the ARTS isotope name (these two identify the species within ARTS). The
third row gives the number of this species in the MYTRAN catalog, the fourth the one used
in HITRAN96, and the fifth the corresponding tag numbers of the JPL00 catalog.

ARTS ARTS MYTRAN HITRAN JPL00
Name Isotope Tag Tag Tag
H2O 161 11 11 18003, 18005

181 12 12 20003
171 13 13 19003
162 14 14 19002
182 -1 15 21001
172 -1 16
262 -1 -1 20001
SelfContStandardType -1 -1
ForeignContStandardType -1 -1
ForeignContMaTippingType -1 -1
ContMPM93 -1 -1
SelfContCKD24 -1 -1
ForeignContCKD24 -1 -1
ForeignContATM01 -1 -1
CP98 -1 -1
MPM87 -1 -1
MPM89 -1 -1
MPM93 -1 -1
PWR98 -1 -1

CO2 626 21 21
636 22 22
628 23 23 46013
627 24 24 45012
638 25 25
637 26 26
828 27 27
728 28 28
SelfContPWR93 -1 -1
ForeignContPWR93 -1 -1

O3 666 31 31 48004, 48005,
48006, 48007,
48008

668 32 32 50004, 50006
686 33 33 50003, 50005
667 34 34 49002
676 35 35 49001

N2O 446 41 41 44004, 44009,
44012

Table 3.1: (continued)



22 GAS ABSORPTION

ARTS ARTS MYTRAN HITRAN JPL00
Name Isotope Tag Tag Tag

456 42 42 45007
546 43 43 45008
448 44 44 46007
447 -1 45

CO 26 51 51 28001
36 52 52 29001
28 53 53 30001
27 -1 54 29006
38 -1 55
37 -1 56

CH4 211 -1 61
311 -1 62
212 -1 63 17003

O2 66 71 71 32001, 32002
68 72 72 34001
67 73 73 33002
SelfContStandardType -1 -1
SelfContMPM93 -1 -1
SelfContPWR93 -1 -1
PWR98 -1 -1
PWR93 -1 -1
PWR88 -1 -1
MPM93 -1 -1
MPM92 -1 -1
MPM89 -1 -1
MPM85 -1 -1

NO 46 81 81 30008
56 -1 82
48 -1 83

SO2 626 91 91 64002, 64005
646 92 92 66002
636 93 -1 65001
628 94 -1 66004

NO2 646 101 101 46006
NH3 4111 111 111 17002, 17004

5111 112 112 18002
4112 -1 -1 18004

HNO3 146 121 121 63001, 63002,
63003, 63004,
63005, 63006

OH 61 131 131 17001
81 132 132 19001

Table 3.1: (continued)



3.1 LINE ABSORPTION 23

ARTS ARTS MYTRAN HITRAN JPL00
Name Isotope Tag Tag Tag

62 133 133 18001
HF 19 141 141 20002

29 -1 -1 21002
HCl 15 151 151 36001

17 152 152 38001
25 -1 -1 37001
27 -1 -1 39004

HBr 19 161 161 80001
11 162 162 82001

HI 17 -1 171
ClO 56 181 181 51002, 51003

76 182 182 53002, 53006
OCS 622 191 191 60001

624 192 192 62001
632 193 193 61001
822 194 194 62002
623 195 195

H2CO 1126 201 201 30004
1136 202 202 31002
1128 203 203 32004
1226 -1 -1 31003
2226 -1 -1 32006

HOCl 165 211 211 52006
167 212 212 54005

N2 44 -1 221
SelfContMPM93 -1 -1
SelfContPWR93 -1 -1
SelfContStandardType -1 -1
SelfContBorysow -1 -1
DryContATM01 -1 -1

HCN 124 231 231 27001, 27003
134 232 232 28002
125 233 233 28003
224 -1 -1 28004

CH3Cl 215 241 241 50007
217 242 242 52009

H2O2 1661 251 251 34004
C2H2 1221 -1 261

1231 -1 262
C2H6 1221 -1 271
PH3 1111 281 281 34003
COF2 269 291 291 66001

Table 3.1: (continued)



24 GAS ABSORPTION

ARTS ARTS MYTRAN HITRAN JPL00
Name Isotope Tag Tag Tag
SF6 29 -1 301
H2S 121 311 311 34002

141 -1 312
131 -1 313
122 -1 -1 35001

HCOOH 1261 321 321 46005
1361 -1 -1 47002
2261 -1 -1 47003
1262 -1 -1 47004

HO2 166 331 331 33001
O 6 341 341 16001
ClONO2 5646 351 351 97002

7646 352 352 99001
NO+ 46 -1 361 30011
OClO 656 431 -1 67001

676 432 -1 69001
BrO 96 401 -1 95001

16 402 -1 97001
H2SO4 126 481 -1 98001
Cl2O2 565 491 -1 102001

765 492 -1 104001
HOBr 169 371 371 96001

161 372 372 98002
C2H4 221 381 381

231 382 382
CH3CN 211124 -1 -1 41001

311124 -1 -1 42006
211134 -1 -1 42007
211125 -1 -1 42001
211224 -1 -1 42008

HNC 142 -1 -1 27002
HNC 143 -1 -1 28005
HNC 152 -1 -1 28006
HNC 242 -1 -1 28007
liquidcloud MPM93 -1 -1
icecloud MPM9 -1 -1
rain MPM93 -1 -1

Table 3.1: Implemented species in ARTS

Table 3.2 gives an overview of the isotopic ratios and their sources, and the molecular
mass of the species used in used in ARTS. The isotopic ratio of the species was in general
taken from HITRAN00, even for species where JPL00 and HITRAN00 give isotopic ratios.



3.1 LINE ABSORPTION 25

Species not present in HITRAN00 were extracted from JPL00. JPL00 isotopic ratios are
normalized to 1 for some molecules, for these cases, the HITRAN00 isotopic ratio of the
major isotope was used to scale the JPL00 isotopic ratio to relative number.

As in 3.1 the first two columns give the ARTS molecule name and the ARTS isotope
name. The next two ones give the isotopic ratio and the source it is taken from respec-
tively. An entry of 1 corresponds to HITRAN00, 2 to JPL00, 3 to JPL00 multiplied with the
maximum abundance of this molecule in HITRAN. The last column contains the molecular
masses of the isotopes. An entry of -1 is prescribed to the continuum tags.

ARTS ARTS Isotopic Isotopic Ratio Mass
Name Isotope Ratio Source
H2O 161 0.99731702 1 18

181 0.00199983 1 20
171 0.00037200 1 19
162 0.00031069 1 19
182 6.23003E-07 1 21
172 1.15853E-07 1 20
262 2.2430204E-08 3 20
SelfContStandardType -1 -1 -1
ForeignContStandardType -1 -1 -1
ForeignContMaTippingType -1 -1 -1
ContMPM93 -1 -1 -1
SelfContCKD24 -1 -1 -1
ForeignContCKD24 -1 -1 -1
ForeignContATM01 -1 -1 -1
CP98 -1 -1 -1
MPM87 -1 -1 -1
MPM89 -1 -1 -1
MPM93 -1 -1 -1
PWR98 -1 -1 -1

CO2 626 0.98420 1 44
636 0.0110574 1 45
628 0.00394707 1 46
627 0.000733989 1 45
638 0.000044346 1 47
637 0.0000082462 1 46
828 0.00000395734 1 48
728 0.0000014718 1 47
SelfContPWR93 -1 -1 -1
ForeignContPWR93 -1 -1 -1

O3 666 0.992901 1 48
668 0.00398194 1 50
686 0.00199097 1 50
667 0.000740 1 49
676 0.000370 1 49

Table 3.2: (continued)



26 GAS ABSORPTION

ARTS ARTS Isotopic Isotopic Ratio Mass
Name Isotope Ratio Source
N2O 446 0.990333 1 44

456 0.00364093 1 45
546 0.00364093 1 45
448 0.00198582 1 46
447 0.000369 1 46

CO 26 0.986544 1 28
36 0.0110836 1 29
28 0.00197822 1 30
27 0.00036867 1 29
38 0.000022225 1 31
37 0.0000041329 1 30

CH4 211 0.988274 1 16
311 0.0111031 1 17
212 0.000615751 1 17

O2 66 0.995262 1 32
68 0.00399141 1 34
67 0.00074235 1 33
SelfContStandardType -1 -1 -1
SelfContMPM93 -1 -1 -1
SelfContPWR93 -1 -1 -1
PWR98 -1 -1 -1
PWR93 -1 -1 -1
PMR88 -1 -1 -1
MPM93 -1 -1 -1
MPM92 -1 -1 -1
MPM89 -1 -1 -1
MPM87 -1 -1 -1
MPM85 -1 -1 -1

NO 46 0.993974 1 30
56 0.00365431 1 31
48 0.00199312 1 32

SO2 626 0.945678 1 64
646 0.0419503 1 66
636 0.0074989421 2 65
628 0.0020417379 2 66

NO2 646 0.991616 1 46
NH3 4111 0.9958715 1 17

5111 0.00366129 1 18
4112 0.00044792294 3 18

HNO3 146 0.989110 1 63
OH 61 0.997473 1 17

81 0.00200014 1 19
Table 3.2: (continued)



3.1 LINE ABSORPTION 27

ARTS ARTS Isotopic Isotopic Ratio Mass
Name Isotope Ratio Source

62 0.000155371 1 18
HF 19 0.99984425 1 20

29 0.00014994513 3 21
HCl 15 0.757587 1 36

17 0.242257 1 38
25 0.00011324004 2 37
27 3.6728230E-05 2 39

HBr 19 0.50678 1 80
11 0.49306 1 82

HI 17 ,0.99984425 2 128
ClO 56 0.755908 1 51

76 0.24172 1 53
OCS 622 0.937395 1 60

624 0.0415828 1 62
632 0.0105315 1 61
623 0.00739908 1 61
822 0.0018797 1 61

H2CO 1126 0.986237 1 30
1136 0.0110802 1 31
1128 0.00197761 1 32
1226 0.00029578940 3 31
2226 2.2181076E-08 3 32

HOCl 165 0.75579 1 52
167 0.241683 1 54

N2 44 0.9926874 1 28
SelfContMPM93 -1 -1 -1
SelfContPWR93 -1 -1 -1
SelfContStandardType -1 -1 -1
SelfContBorysow -1 -1 -1
DryContATM01 -1 -1 -1

HCN 124 0.985114 1 27
134 0.011076 1 28
125 0.00362174 1 28
224 0.00014773545 3 28

CH3Cl 215 0.748937 1 50
217 0.239491 1 52

H2O2 1661 0.994952 1 34
C2H2 1221 0.977599 1 26

1231 0.021966 1 27
C2H6 1221 0.97699 1 30
PH3 1111 0.99953283 1 34
COF2 269 0.986544 1 66

Table 3.2: (continued)



28 GAS ABSORPTION

ARTS ARTS Isotopic Isotopic Ratio Mass
Name Isotope Ratio Source
SF6 29 0.95018 1 146
H2S 121 0.949884 1 34

141 0.0421369 1 36
131 0.00749766 1 35
122 0.00029991625 2 35

HCOOH 1261 0.983898 1 46
1361 0.010913149 3 47
2261 0.00014755369 3 47
1262 0.00014755369 3 47

HO2 166 0.995107 1 33
O 6 0.997628 1 16
ClONO2 5646 0.74957 1 97

7646 0.239694 1 99
NO+ 46 0.993974 1 30
OClO 656 0.75509223 2 67

676 0.24490632 2 69
BrO 96 0.50582466 2 95

16 0.49431069 2 97
H2SO4 126 0.95060479 2 98
Cl2O2 565 0.57016427 2 102

765 0.36982818 2 104
HOBr 169 0.505579 1 102

161 0.491894 1 104
C2H4 221 0.977294 1 28

231 0.0219595 1 29
CH3CN 211124 0.97366840 3 41
CH3CN 311124 0.011091748 3 42
CH3CN 211134 0.011091748 3 42
CH3CN 211125 0.0036982817 3 42
CH3CN 211224 0.00044977985 3 42
HNC 142 0.98505998 3 27
HNC 143 0.011091748 3 28
HNC 152 0.0036982817 3 28
HNC 242 0.00014996849 3 28
liquidcloud -1 -1 -1
icecloud -1 -1 -1
rain -1 -1 -1

Table 3.2: Isotopic ratios within ARTS, source of the ratios and molecular mass

Table 3.3 refers to the partition function data. It is calculated following HITRAN96,
where the coefficients of a third order polynomial in temperature of the partition function
are given. Mainly HITRAN96 coefficients are used, the coefficients of species not covered



3.1 LINE ABSORPTION 29

in HITRAN96, but present in ARTS, were generated by a polynomial fit to the partition
function given in JPL00. The source of the partition function coefficients is given in the
third column, where 1 indicates the HITRAN96 source, and 2 the JPL00 source.

Within the generation of partition function coefficients from the JPL00 catalog, a gen-
eral comparison of the partition function ratio (the important quantity for the conversion of
the catalog intensity to other temperatures) for species present in JPL00 and HITRAN96
was performed. The maximum error found between the JPL00 and HITRAN96 partition
function ratios within the temperature range of 150 K to 300 K is given in the table when
both catalogs cover the species. Otherwise, the quality of the polynomial fit is given as
the maximum difference found between 150 K and 300 K for the original JPL00 partition
function and the polynomial fit.

Errors of more than 10 % were found for some species when no correction for populated
vibrational energy levels was applied. The correction for vibrational energy levels was
performed with data mainly extracted from the Chase et al. [1985] compilation, except for
O2, CO, NH3 , and ClO which were taken from Rosenkranz [1993]. The vibrational
modes for the minor isotopes were taken from the main isotope when no other data was
available. A few species still have errors of about 10 %, which could either be explained
by incorrect/missing vibrational modes or differences in the partition functions of the two
catalogs. All species with no vibrational information are marked as ‘no info’.

The continuum tags for the respective species, listed out in the two tables above, are
omitted in this case. The simple reason for this is because continua calculations do not need
any partition functions.

The partition function polynomials (PF) themselves for the individual species are to be
found in /arts/src/partition_function_data.cc}.

ARTS ARTS PF No Corr. Corr. Vibrational Modes
Name Isotope Source % % cm−1

H2O 161 1 0.33 0.28 1594.7, 3651.1, 3755.9
181 1 0.33 0.28 1594.7, 3651.1, 3755.9
171 1 0.39 0.35 1594.7, 3651.1, 3755.9
162 1 0.50 0.46 1594.7, 3651.1, 3755.9
182 2 0.33 0.32 1594.7, 3651.1, 3755.9
262 2 0.35 0.34 1594.7, 3651.1, 3755.9

CO2 626 1 no info
636 1 no info
628 1 8.76 4.40 667.3, 1384.9, 2349.3
627 1 8.67 4.32 667.3, 1384.9, 2349.3
638 1 no info
637 1 no info
828 1 no info
728 1 no info

O3 666 1 1.30 705, 1043, 1110
668 1 5.82 2.64 693.0
686 1 5.88 2.49 678.0
667 1 5.25 1.25 705, 1043, 1110

Table 3.3: (continued)



30 GAS ABSORPTION

ARTS ARTS PF No Corr. Corr. Vibrational Modes
Name Isotope Source % % cm−1

676 1 5.29 1.28 705, 1043, 1110
N2O 446 1 12.71 0.89 588.8, 588.8, 1284.9, 2223.8

456 1 13.33 1.26 588.8, 588.8, 1284.9, 2223.8
546 1 12.83 0.95 588.8, 588.8, 1284.9, 2223.8
448 1 12.11 0.82 588.8, 588.8, 1284.9, 2223.8
447 1 588.8, 588.8, 1284.9, 2223.8

CO 26 1 0.03 0.03 2143.5
36 1 0.01 0.01 2143.5
28 1 0.01 0.01 2143.5
27 1 0.02 0.02 2143.5
38 1 2143.5
37 1 2143.5

CH4 211 1 1306, 1306, 1306, 1534, 1534,
2917, 3019

311 1 1306, 1306, 1306, 1534, 1534,
2917, 3019

212 1 22.18 21.43 1306, 1306, 1306, 1534, 1534,
2917, 3019

O2 66 1 0.06 0.11 1556.5
68 1 0.68 0.62 1556.5
67 1 0.71 0.65 1556.5

NO 46 1 1.56 1.56 no info
56 1 no info
48 1 no info

SO2 626 1 9.28 1.26 517.7, 1151.4, 1361.8
646 1 9.25 1.23 517.7, 1151.4, 1361.8
636 2 0.35 1.32 517.7, 1151.4, 1361.8
628 2 0.35 1.32 517.7, 1151.4, 1361.8

NO2 646 1 3.46 0.98 756.8, 1357.8, 1665.5
NH3 4111 1 2.07 1.09 950, 1629, 1629, 3335,

3414, 3414
5111 1 22.22 21.12 950, 1629, 1629, 3335,

3414, 3414
4112 2 0.52 0.78 950, 1629, 1629, 3335,

3414, 3414
HNO3 146 2 0.38 4.00 465, 583, 680, 765, 886,

1320, 1335, 1710, 3560
OH 61 1 0.85 0.85 no info

81 1 0.84 0.84 no info
62 1 1.04 1.04 no info

HF 19 1 0.02 0.02 no info
29 2 0.04 0.04 no info

HCl 15 1 2.32 2.32 no info
Table 3.3: (continued)



3.1 LINE ABSORPTION 31

ARTS ARTS PF No Corr. Corr. Vibrational Modes
Name Isotope Source % % cm−1

17 1 2.30 2.30 no info
25 2 0.03 0.03 no info
27 2 0.03 0.03 no info

HBr 19 1 1.89 1.89 no info
11 1 1.89 1.89 no info

HI 17 1 no info
ClO 56 1 0.83 1.94 842.4

76 1 0.81 1.96 842.4
OCS 622 1 19.14 1.49 524, 524, 859, 2064

624 1 19.14 1.66 524, 524, 859, 2064
632 1 20.48 2.43 524, 524, 859, 2064
822 1 20.07 2.15 524, 524, 859, 2064

H2CO 1126 1 3.55 2.80 1163.5, 1247.4, 1500.6,
1746.1, 2766.4, 2843.4

1136 1 3.94 3.18 1163.5, 1247.4, 1500.6,
1746.1, 2766.4, 2843.4

1128 1 1.39 0.74 1163.5, 1247.4, 1500.6,
1746.1,2766.4, 2843.4

1226 2 0.34 0.18 1163.5, 1247.4, 1500.6,
1746.1,2766.4, 2843.4

2226 2 0.34 0.21 1163.5, 1247.4, 1500.6,
1746.1, 2766.4, 2843.4

HOCl 165 1 3.89 0.95 725, 1239.4, 3609.5
167 1 3.89 0.95 725, 1239.4, 3609.5

N2 44 1 no info
HCN 124 1 6.84 0.51 713.5, 713.5, 2096.3, 3311.5

134 1 7.05 0.38 713.5, 713.5, 2096.3, 3311.5
125 1 7.13 0.45 713.5, 713.5, 2096.3, 3311.5
224 2 1.42 1.72 713.5, 713.5, 2096.3, 3311.5

CH3Cl 215 1 5.86 1.65 732, 1017, 1017, 1355, 1455,
1455, 2968, 3054, 3054

217 1 5.92 1.71 732, 1017, 1017, 1355, 1455,
1455, 2968, 3054, 3054

H2O2 1661 1 14.46 14.46 no info
C2H2 1221 1 no info

1231 1 no info
C2H6 1221 1 no info
PH3 1111 1 3.70 2.06 992, 1122, 1122, 2323, 2328,

2328
COF2 269 1 16.72 13.92 381, 381, 1074, 1978
SF6 29 1 no info
H2S 121 1 0.60 0.29 1183,2615,2627

141 1 no info
Table 3.3: (continued)



32 GAS ABSORPTION

ARTS ARTS PF No Corr. Corr. Vibrational Modes
Name Isotope Source % % cm−1

131 1 no info
122 2 0.40 0.32 1183, 2615, 2627

HCOOH 1261 1 12.54 12.54 no info
1361 2 6.53 6.54 no info
2261 2 0.55 0.55 no info
1262 2 0.57 0.57 no info

HO2 166 1 1.10 1.10 no info
O 6 1 no info
ClONO2 5646 2 1.87 1.87 no info

7646 2 1.85 1.85 no info
NO+ 46 1 0.01 0.01 no info
OClO 656 2 1.55 1.09 447.4, 945.3, 1109

676 2 0.75 1.13 447.4, 945.3, 1109
BrO 96 2 0.09 0.09 no info

16 2 0.09 0.09 no info
H2SO4 126 2 0.39 0.39 no info
Cl2O2 565 2 0.29 0.29 no info
Table 3.3: Partition function (PF) within ARTS, comparison with HTRAN96
and JPL00 PFs, vibrational modes (Note: O3-666 in JPL00 includes vibrational
modes).

3.1.5 ARTS Workspace Variables and Methods

Both expressions (3.1) and (3.3) are used for the line by line calculations of the absorption.
In order to calculate it certain workspace variables and methods are used. It has to be
remembered that the certain values given in the following examples are arbitrarily chosen
and given only for a better illustration.

There are two alternative ways to calculate the absorption coefficients in ARTS.The first
one is through the workspace method

absCalc{}

This method actually works through calling internally in ARTS two other workspace meth-
ods:

xsec_per_tgCalc{}
absCalcFromXsec{}

The first one calculates the cross section x per tag group, the second one - the absorption co-
efficients α from the cross sections and the volume mixing ratios VMR at altitude i through
the expression αi = xi × VMRi . The second alternative way of computing the absorp-
tion coefficients is by using the afore mentioned methods explicitly in the control file in
combination with one another

xsec_per_tgCalc{}
absCalcFromXsec{}



3.1 LINE ABSORPTION 33

Therefore we will pay special attention to the functioning, the input and output workspace
variables of absCalc. This method calculates the total absorption coefficient as well as
the ones per defined tag group. Thus the two output workspace variables are abs and
abs_per_tag. The input workspace variables are :

tgs : defining the available tag groups for the calculation of the absorption coefficients;

f_mono : the monochromatic frequency grid [Hz];

p_abs : the pressure grid for the absorption coefficients [Pa];

t_abs : temperature associated with the pressures in p_abs [K];

n2_abs : the total nitrogen profile associated with the pressures in p_abs [-];

h2o_abs : the total water profile associated with the pressures in p_abs [-];

vmrs : the VMRs (unit: absolute number) on the p_abs grid;

lines_per_tg : a list of spectral line data for each tag;

lineshape : lineshape specification: function, norm, cutoff;

cont_description_names : a list of names of continuum models;

cont_description_parameters : continuum model parameters.

All these input workspace variables have to be defined and set by the respective workspace
methods for the proper functioning of absCalc. Any exception of this will lead to an error
message.
First, the species of interest should be determined. This is done by the workspace method:

tgsDefine {
[ "O3",

"ClO",
"N2",
"H2O" ]

}

which produces as output tgs. In our case case this will create a list of four tag groups.
For each of them the absorption coefficients will be calculated later on. The monochromatic
grid is created through the method

VectorNLinSpace(f_mono){
start = 1e9
stop = 200e9
n = 200

}

thus producing f_mono . The grid can be optionally saved into a file through
VectorWriteAscii (f_mono) {""} . The pressure grid is created through the
method



34 GAS ABSORPTION

VectorNLogSpace(p_abs){
start = 100000
stop = 10
n = 140

}

with output p_abs. Again, it can be optionally written into a file with

VectorWriteAscii(p_abs){""}

The corresponding temperatures to the pressure as well as the VMRs is realized through
loading the respective input profiles, defined by the workspace variables raw_ptz and
raw_vmrs. The corresponding methods are

MatrixReadAscii (raw_ptz)
{"/arts-data/atmosphere/fascod/midlatitude-summer.tz.aa"}

and

raw_vmrsReadFromScenario
{"/arts-data/atmosphere/fascod/midlatitude-summer"}

where the profiles are read from the atmospheric scenarios, in this case the one
midlatitude-summer. Both physical profiles of H2O and N2 are loaded through
similar workspace methods

h2o_absSet{}
n2_absSet{}

needed for the input variables h2o_abs and n2_abs. Though they are at the bottom of
the above given list of input workspace variables, it is better to treat the continuum variables
at this place. In our case of line by line calculations we are not interested in the continuum
description, that’s why we should just call a workspace method to assign empty arrays to
the variables:

cont_descriptionInit{}

The next variable to be set is lines_per_tg , done by the method

lines_per_tgReadFromCatalogues{
filenames = ["/arts-data/spectroscopy/jpl00/jpl00.cat",

"/arts-dat/spectroscopy/hitran96/hitran96_lowfreq.par"]
formats = [ "JPL", "HITRAN96" ]
fmin = [ 0, 0 ]
fmax = [ 200e9, 200e9 ]

}

where lines from individual catalogs (here JPL and HITRAN96) are assigned to the different
defined tag groups. Another possibility of doing this is to call two other methods one after
another:



3.1 LINE ABSORPTION 35

linesReadFromHitran {
filename = "/arts-data/spectroscopy/hitran96/hitran96_lowfreq.par"
fmin = 1e9
fmax = 200e9
}

and thus creating the variable lines , used afterward as input in

lines_per_tgCreateFromLines{}

in order to get finally lines_per_tg defined. Here is the proper place to give the indi-
vidual methods for reading the available spectroscopic catalogs in ARTS, i.e. creating the
variable lines from them. The ARTS own catalog format is read by

linesReadfromArts {
filename = "ozone.al"
fmin = 0
fmax = 1e12

}

A similar procedure is done for the other catalogs:

linesReadfromHitran {
filename = "hitran96_lowfreq.par"
fmin = 0
fmax = 1e12

}

for HITRAN96–01,

linesReadfromHitran2004 {
filename = "hitran04.par"
fmin = 0
fmax = 1e12

}

for HITRAN04,

linesReadfromJpl {
filename = "jpl100.cat"
fmin = 0
fmax = 1e12

}

for JPL, and

linesReadfromMytran {
filename = "mytran98.my"
fmin = 0
fmax = 1e12

}



36 GAS ABSORPTION

for MYTRAN.
The last input variable for absCalc to be discussed is lineshape . It is created either
generally for all tag groups through

lineshapeDefine{
shape = "Voigt_Kuntz6"
normalizationfactor = "linear"
cutoff = -1

}

or to set it individually for each tag group

lineshape_per_tgDefine{
shape = ["Voigt_Kuntz6","no_shape","Voigt_Kuntz6",]
normalizationfactor = ["quadratic","no_norm","linear",]
cutoff = [-1,-1,-1]

}

More elucidation on the three parameters shape , normalizationfactor and
cutoff is needed. The first one accounts for the different lineshape models now avail-
able in ARTS. It’s done by setting shape to a given model name :

Lorenz : Lorenz line shape;

Doppler : Doppler line shape

Voigt_Kuntz6 : Kuntz approximation to the Voigt line shape with relative accuracy
better than 2× 10−6;

Voigt_Kuntz4 : Kuntz approximation to the Voigt line shape with relative accuracy
better than 2× 10−4;

Voigt_Kuntz3 : Kuntz approximation to the Voigt line shape with relative accuracy
better than 2× 10−3;

Voigt_Drayson : Drayson approximation to the Voigt profile;

Rosenkranz_Voigt_Kuntz6 : Rosenkranz oxygen absorption including overlap cor-
rection, at high altitudes Kuntz routine, requires the ARTS catalog with auxiliary
overlap parameters; profile;

Rosenkranz_Voigt_Drayson : Rosenkranz oxygen absorption including overlap
correction, at high altitudes Drayson routine, requires the ARTS catalog with auxil-
iary overlap parameters

The normalizationfactor sets the different normalization factors of the line shape:

no_norm : 1 (unity);

linear : (ν/ν0);

quadratic : (ν/ν0)2;



3.2 CONTINUUM ABSORPTION 37

VVH : (ν ∗ tanh(h ∗ ν/(2kT )))/(ν0 ∗ tanh(h ∗ ν0/(2kT )))

The cutoff can be set to -1 for no cutoff or to a positive number for a cutoff at a given
frequency in [Hz], e.g. 650e9.

Thus we have generated all input workspace variables for absCalc. Therefore this
part of the subsection is a little bit short of being able to serve as a control file in ARTS for
absorption, provided that just one method is used where more alternatives are available and
superfluous methods are skipped. The only addition to make it complete is to use after all
input variable generating methods the

absCalc{}

method, the result of which can be saved into files through

MatrixWriteAscii (abs) {""}

or

ArrayOfMatrixWriteAscii (abs_per_tg) {""}

There is also an alternative version of absCalc: absCalcSaveMemory, which does
not calculate abs_per_tg (only abs is calculated), thus is not suited for the calculation
of weighting functions. But absCalcSaveMemory is able to handle larger absorption
jobs than absCalc if the jobs is close to the machine specific memory limitations.

3.2 Continuum Absorption

As pointed out above, some molecules show beside the resonant line absorption also non-
resonant continuum absorption. The main qualitative difference is the smooth dependence
on frequency of the non-resonant absorption part in contrast to the resonant absorption part
who shows strong local maxima and minima.

The implemented continuum absorption modules are connected with water vapor
(H2O), oxygen (O2), nitrogen (N2), and carbon dioxide (CO2). Since these molecules have
various permanent electric or magnetic multipoles, the physical explanations for the contin-
uum absorption is different for each of these molecules.

Water Vapor has a strong electric dipole moment and posses therefore a wealth of ro-
tational transitions in the microwave up to the submillimeter range. One explanation for
the H2O- continuum absorption is the inadequate formulation of the far wings of a spectral
line, since the usually employed Van Vleck and Weisskopf [1945] line shape is according
to its derivation only valid in the near wing zone. Other explanations are (see Rosenkranz
[1993] for details) far wing contribution from far-infrared water vapor lines, collision in-
duced absorption (CIA), and water polymer absorption. At present one can not definitively
decide which of these possibilities is the correct one, probably all of them play a more or
less important role, depending on the frequency range.

oxygen is one of the rare molecules in the Earth’s atmosphere where a permanent mag-
netic dipole moment is present. The aligned spins of the two valence electrons gives a 3Σ
ground state of molecular oxygen. Due to the selection rules for magnetic dipole transi-
tions, transitions with resonance frequency equal to zero are allowed. Such transitions have
a characteristic Debye line shape function.



38 GAS ABSORPTION

The homonuclear nitrogen molecule has in lowest order an electric quadrupole moment
of modest magnitude. For the frequency range below 1 THz the collision induced rotation
absorption band Goody and Yung [1989] is of most importance. The band center is around
3 THz and at 1 THz the band strength is approximately 1/6 of the maximum value (see
Figure 5.2 of Goody and Yung [1989]). The electric field of the quadrupole moment of
one molecule induces a dipole moment in the second molecule. This allows rotational
transitions according to the electric quadrupole selection rules, |∆ J | =0,2 (see Rosenkranz
[1993] for details). In a similar way exhibits carbon dioxide a collision induced absorption
band (maximum around 1.5 THz, Figure 5.10 of Goody and Yung [1989]). Characteristic
for collision induced absorption is the dependency on the square of the molecular density.

3.2.1 Water Vapor Continuum Models

As shown by Liebe and Layton [1987], Rosenkranz [1998], and Ma and Tipping [1990], the
water vapor continuum absorption can be well described by

αc = ν2 ·Θ3 · (Co
H2O · P

2
H2O ·Θ

ns + Co
d · PH2O · Pd ·Θ

nf) (3.27)

where the microwave approximation (hν � kBT ) of the radiation field term is already
applied. The adjustment of Eq. 3.27 to the data is performed through the parameter set
Co

H2O, ns, Co
d , and nf. Table 3.4 gives some commonly used continuum parameter sets.

model Co
H2O ns Co

d nd ref.[
dB/km

hPa2 GHz2

]
[1]

[
dB/km

hPa2 GHz2

]
[1]

MPM87 6.50·10−8 7.5 0.206·10−8 0.0 Liebe and Layton [1987]
MPM89 6.50·10−8 7.3 0.206·10−8 0.0 Liebe [1989]
CP98 8.04·10−8 7.5 0.254·10−8 0.0 Cruz Pol et al. [1998]
PWR98 7.80·10−8 4.5 0.236·10−8 0.0 Rosenkranz [1998]
MPM93∗ 7.73·10−8 4.55 0.253·10−8 1.55 Liebe et al. [1993]

Table 3.4: Values of commonly used continuum parameter sets. The last line (MPM93∗)
represents an approximation of the pseudo-line continuum of MPM93 in the form of Eq.
3.27.

The MPM93 Continuum Parameterization

In the MPM93 model [Liebe et al., 1993], the water vapor continuum is treated as a pseudo-
line located in the far infrared around 2 THz. The pseudo-line continuum has therefore not
four but seven parameters, the pseudo-line center frequency (ν∗) and the six pseudo-line
parameters (b∗1,· · ·,b∗6):

αMPM93
c = 0.1820 · b∗1

ν∗
· PH2O ·Θ

3.5 · exp (b∗2 · (1−Θ)) · ν2 · Fc(ν, νk) (3.28)

Fc(ν, νk) =

[
γc

(ν∗ + ν)2 + γ2
c

+
γc

(ν∗ − ν)2 + γ2
c

]
(3.29)

γc = b∗3 ·
(
b∗4 · PH2O ·Θ

b∗6 + Pd ·Θ
b∗5
)

(3.30)



3.2 CONTINUUM ABSORPTION 39

Table 3.5 lists the values of this continuum parameter set. It is remarkable that all these pa-
rameters are much larger compared to the physical water vapor line parameters of the same
model. The only exception is b∗2, the parameter which governs the exponential temperature
behavior of the line strength. The magnitude of the pseudo-line width is shown for four

ν∗ b∗1 b∗2 b∗3 b∗4 b∗5 b∗6
[GHz] [kHz

hPa ] [1] [MHz
hPa ] [1] [1] [1]

1780.000 2230.000 0.952 17.620 30.50 2.00 5.00

Table 3.5: List of the MPM93 pseudo-line water vapor continuum parameters.

different cases in Table 3.6.

contribution total
H2O–H2O H2O–air

γc(200 K) 40.8 GHz 80.4 GHz 121.2 GHz
γc(300 K) 5.4 GHz 23.0 GHz 28.4 GHz

Table 3.6: Magnitude of the line width of the pseudo-line of the continuum term in MPM93.
Assumed is a total pressure of 1000 hPa and a water vapor partial pressure of 10 hPa.

This change of continuum parameterization makes it difficult to compare MPM93 with
the models which use Eq. (3.27). However, with respect to microwave frequencies, the line
shape function, Fc(ν), can be approximated since the magnitude of the pseudo-line width is
much smaller compared to the distance between microwave frequencies and ν∗, as shown
for four different cases in Table 3.6:

Fc(ν, νk) ≈ 2 · γc
ν2

c
(3.31)

Inserting Eq. (3.31) into Eq. (3.28) gives a quadratic frequency dependence of the MPM93
continuum, similar to the continuum parameterization expressed in Eq. (3.27). By addition-
ally approximating the temperature dependence to the simple form

ns · ln (Θ) = ln
(
Θ3.5 · eb∗2·(1−Θ)

)
ns = 3.5 + b∗2 ·

1−Θ

ln (Θ)

ns ≈ 3.5− b∗2 = 2.55 with ln (Θ) ≈ (Θ− 1) (3.32)

one can rearrange the pseudo-line continuum to fit Eq. (3.27) (denoted by MPM93∗). The
so deduced continuum parameter set is given in Table 3.4.
The MPM93∗ continuum parameters Co

H2O and Co
d are 20 % and 15 % larger, respectively,

than in the case of MPM87/MPM89. Large discrepancies exist for the temperature ex-
ponents ns and nd between MPM93∗ and earlier model versions. The exponent ns is in
MPM93∗ only 60 % of the corresponding value in MPM89 and the temperature dependence
of the H2O-air term is significant larger than for earlier MPM versions. This reduction of



40 GAS ABSORPTION

ns is mainly due to additional measurements considered in MPM93 (Refs. Becker and Aut-
ler [1946]; Godon et al. [1992]), while the continuum parameters in MPM87/MPM89 are
determined by a single laboratory measurement at 138 GHz.

3.2.2 Oxygen Continuum Absorption

As pointed out by Van Vleck [1987], the standard theory for non-resonant absorption is that
of Debye (see also Townes and Schawlow [1955]). The Debye line shape is obtained from
the VVW line shape function by the limiting case νk → 0. Both, Liebe et al. [1993] and
Rosenkranz [1993] adopted the Debye theory for their models. The only difference is the
formulation of the line broadening, where the influence of water vapor is treated slightly
different:

αc = C · Pd ·Θ
2 · ν2 · γ
ν2 + γ2

(3.33)

γ = w · (Pd ·Θ
0.8 + 1.1 · PH2O ·Θ) : Rosenkranz (3.34)

γ = w · Ptot ·Θ0.8 : MPM93 (3.35)

where Pd denotes the dry air partial pressure (Pd = Ptot − PH2O). The value for
the strength is C = 2.56·10−20 1/(m Pa Hz) in the case of the Rosenkranz model and
C = 2.57·10−20 1/(m Pa Hz) in the case of the MPM93 model. The MPM93 value for C is
therefore about 0.4 % larger than in the Rosenkranz model. Since the volume mixing ratio
of oxygen in dry air is constant in the lower Earth atmosphere (0.20946 [Goody, 1995]),
both models incorporate the oxygen VMR (VMRO2

) in the constant C. In the arts model
the separation between the oxygen VMR and the constant C is explicitely done. In this
case follows:

C = 0.20946 · Ĉ (3.36)

Ĉ = 1.22 · 10−19 [1/(m Hz Pa)] : Rosenkranz (3.37)

Ĉ = 1.23 · 10−19 [1/(m Hz Pa)] : MPM93 (3.38)

The width parameter w is in both models the same, w = 5.6·103 Hz/Pa. If we define the
width γ in a more general way like

γ = w · (A · Pd ·Θ
nd +B · PH2O ·Θ

nw) (3.39)

we can fit both models, the Rosenkranz and the MPM93 model, into the same parameteriza-
tion with (A = 1, B = 1.1, nd = 0.8, nw = 1.0) for the Rosenkranz model and (A = 1.0,
B = 1.0, nd = 0.8, nw = 0.8) for MPM93.

The oxygen continuum absorption term is proportional to the collision frequency of
a single oxygen molecule with other air molecules and thus proportional to the dry air
pressure1.

1The absorption due to weakly bound complexes of O2–X with X = H2O, N2 is treated separately and
therefore not included in this Debye formula.



3.2 CONTINUUM ABSORPTION 41

3.2.3 Nitrogen Continuum Absorption

Since molecular nitrogen has in its unperturbed state no electric or magnetic dipole moment
(but an electric quadrupole moment), it shows no rotational spectral signature in the mi-
crowave region. Regardless of this, nitrogen absorbs radiation in this frequency range due
to collision induced absorption (CIA). Far–infrared roto-translational band structures from
free–free interactions give rise to far wing absorption below 1 THz.

Different parameterizations of this absorption term for the frequency range below 1 THz
are available Rosenkranz [1993]; Liebe et al. [1993]; Borysow and Frommhold [1986].
Common to all these models is the quadratic dependency on N2 partial pressure which
is a direct consequence of the underlying CIA processes involved. The simplest model is
given by Rosenkranz [1993], which uses the same parameterization as for the water vapor
continuum, described in Equation 3.27:

αc = C · νnν ·ΘnT · PnpN2 (3.40)

with C = 4.56 · 10−13 dB/(km hPa2 GHz2), nν = 2, nT = 3.55, and np = 2, respectively.
The laboratory data set for the determination of C is manly from Dagg et al. [1975, 1978]
around 70 and 140 GHz, respectively.

The MPM models has compared with Equation 3.40 an additional frequency dependent
term which leads to the following expression

αc = Ĉ · (1.0− 1.2 · 10−5 · ν1.5) · ν2 ·Θ3.5 · P 2
d : MPM89 (3.41)

αc = Ĉ · ν2

(1.0 + a · νnν )
·Θ3.5 · P 2

d : MPM93 (3.42)

a =

where the parameter is Ĉ = 2.55 · 10−13 dB/(km hPa2 GHz2), a =1.9·10−5 GHz−nν , and
nν = 1.5. based on data from Stankevich [1974] and Stone et al. [1984]. With respect to the
22 GHz water vapor line, the additional frequency terms in brackets in Equations 3.41 and
3.42 are nearly unity and therefore not essential. Therefore all three parameterizations have
the same frequency and temperature relationship, but the absolute magnitude is in the case
of Rosenkranz 80 % higher compared with the MPM models.

The not yet in arts implemented model of Borysow and Frommhold2 is somewhat dif-
ferent since their focus is mainly on the radiative transfer in the Titan’s atmosphere with the
infrared interferometer spectrometer, IRIS, on board the Voyager Spacecraft. This detailed
model is primarily designed to parameterize each of the roto-translational spectral lines
around 200 cm−1 (≈ 6 THz) accurately. The analyzed data set incorporate the data source
used by the Rosenkranz but is largely extended with measurements in the far–infrared.

3.2.4 Carbon dioxide Continuum Absorption

Rosenkranz [1993] gives a similar parameterization for the CO2-continuum absorption term
as for the nitrogen continuum, with

αc = ·ν2 ·
[
Cs · P 2

CO2 ·Θ
ns + Cf · PCO2 · PN2 ·Θ

nf
]

(3.43)

2the source code of this model can be downloaded from the home page of A. Borysow:
http://www.astro.ku.dk/∼aborysow/



42 GAS ABSORPTION

where the parameter values Cs = 3.23 · 10−11 dB/(km hPa2 GHz2), Cf = 1.18 · 10−11

dB/(km hPa2 GHz2), ns = 5.08, and nf = 4.7, respectively, are determined from laboratory
measurements of Ho et al. [1966]; Dagg et al. [1975]. Since the foreign term includes only
nitrogen as perturber, one can get an estimate for dry air by replacing PN2 by the dry air
partial pressure in Equation 3.43. Because nitrogen is usually a more efficient perturber
than oxygen, this estimation can be regarded as an upper limit. Concerning the Earth’s
atmosphere, the foreign broadening term is more interesting since the carbon dioxide partial
pressure is only approximately 0.04 % of the nitrogen partial pressure up to 90 km.

3.2.5 ARTS Workspace Variables and Methods

This section explains how the above described continua are represented in the structure of
the arts source code and how one can invoke them in the arts control file.

The continuum tags need more input specification than normal trace gas tags. Why
this is so can be seen from Eq. 3.27 and Table 3.4. For a single function for the water
vapor continuum we find several different function parameters in the literature. To solve
this ambiguity arts has two methods implemented which helps the user to select a single
set of parameters in an easy way. In connection with this input parameters we distinguish
generally two types, the referenced models which are taken from the literature (e. g. Liebe
et al. [1993] or Rosenkranz [1993]) and the user model, for which the arts user is providing
the necessary parameter values.

After selecting the continuum tag with the tagDefine method, the arts user has to
setup the arts internal structure (i. e. the workspace variables cont description names,
cont description models, and cont description parameters) for the selected continuum
tags, which can simply be done by putting the following line into the arts control file:

cont_descriptionInit{}

After this initialization is done, the continuum tag specific information has to be trans-
fered to arts. This is possible with the arts method cont descriptionAppend, which has itself
three input variables: tagname, model, and userparameters. The user has to specify these
input variables in the arts control file for each selected continuum tag. Below is a list of
all the implemented continuum tags and the associated valid range of the input variables
for cont descriptionAppend. For a condensed overview of the possible continuum tags and
their referenced models see Table 3.7 and the online documentation can be found under
arts/doc/doxygen/html/continua cc.html.

One has to note at this place that the two input variables model and userparameters
are to some extend redundant. Therefore one can also produce an ambiguity by giving
contradicting values for these two input variables. To avoid such ambiguities the arts user
should keep in mind the general rule that only the user model (model =”user”) needs in-
put parameters via the input variable userparameters. All the referenced models need no
input via userparameters. If you try to run the arts control file with a referenced model
and input parameters you will get an error message. Below in the detailed description of
cont descriptionAppend you can find correct examples for all the continuum tags.

• The general water vapor continuum function as described in Eq. (3.27) is divided
up into two separate tags in arts. The term proportional to P 2

H2O has the tag name



3.2 CONTINUUM ABSORPTION 43

"H2O-SelfContStandardType". This tag can be used for eider the referenced
models MPM87 [Liebe and Layton, 1987], MPM89 [Liebe, 1989], CP98 [Cruz Pol
et al., 1998], PWR98 [Rosenkranz, 1998] or with an arbitrary user defined model pa-
rameter set (Co

H2O, ns). The information if a referenced or a user model is selected
is given to arts via the input parameter model of the method cont descriptionAppend.
The valid models are ”MPM87” (for the MPM87 model), ”MPM89” (for the MPM89
model), ”CruzPol” (for the CP98 model), ”Rosenkranz” (for the PWR98 model), and
”user” (for the user defined model). Only in the case of the user defined model has
thew user to specify the parameter set (Co

H2O, ns) via the input parameter userparam-
eters. Here one has to obey the arts units for Co

H2O and ns which are [1/(m·Hz2·Pa2)]
and [1], respectively. For all the referenced models the necessary parameters are
internally stored in arts and have not to be given by the user. Therefore the input
parameter userparameters is empty in these cases. However, if you give some val-
uers via userparameters to arts and select simultaneously a referenced model via the
input parameter model you will get a warning message. It is a general rule that in the
method cont descriptionAppend the value of the input parameter model dominates
over the values specified with input parameter userparameters, so the calculation will
be performed according to the selected model.

The following list describes all the valid combinations of parameters for the tag
"H2O-SelfContStandardType" are listed (the values for the model user are
just example values):

cont_descriptionAppend{
tagname = "H2O-SelfContStandardType"
model = "Rosenkranz"
userparameters = [ ]

}
cont_descriptionAppend{

tagname = "H2O-SelfContStandardType"
model = "CruzPol"
userparameters = [ ]

}
cont_descriptionAppend{

tagname = "H2O-SelfContStandardType"
model = "MPM87"
userparameters = [ ]

}
cont_descriptionAppend{

tagname = "H2O-SelfContStandardType"
model = "MPM89"
userparameters = [ ]

}
cont_descriptionAppend{

tagname = "H2O-SelfContStandardType"
model = "user"
userparameters = [ 2.046e-33, 5.289 ]



44 GAS ABSORPTION

}

• The general water vapor continuum function as described in Equation (3.27)
is divided up into two separate tags in arts. The term proportional to P 2

H2O
was explained above while the term proportional to PH2O · Pd is named
"H2O-ForeignContStandardType" will be described here. This tag can be
used for eider the referenced models MPM87 [Liebe and Layton, 1987], MPM89
[Liebe, 1989], CP98 [Cruz Pol et al., 1998], PWR98 [Rosenkranz, 1998] or with an ar-
bitrary user defined model parameter set (Co

H2O, ns). The information if a referenced
or a user model is selected is given to arts via the input parameter model of the method
cont descriptionAppend. The valid models are M̈PM87(̈for the MPM87 model),
M̈PM89(̈for the MPM89 model), C̈ruzPol(̈for the CP98 model), R̈osenkranz(̈for the
PWR98 model), and üser(̈for the user defined model). Only in the case of the user
defined model has thew user to specify the parameter set (Co

H2O, ns) via the input pa-
rameter userparameters. Here one has to obey the arts units for Co

H2O and ns which
are [1/(m·Hz2·Pa2)] and [1], respectively. For all the referenced models the necessary
parameters are internally stored in arts and have not to be given by the user. There-
fore the input parameter userparameters is empty in these cases. However, if you
give some valuers via userparameters to arts and select simultaneously a referenced
model via the input parameter model you will get a warning message. It is a gen-
eral rule that in the method cont descriptionAppend the value of the input parameter
model dominates over the values specified with input parameter userparameters, so
the calculation will be performed according to the selected model.

The following list describes all the valid combinations of parameters for the tag
"H2O-ForeignContStandardType" are listed (the values for the model user
are just example values):

cont_descriptionAppend{
tagname = "H2O-ForeignContStandardType"
model = "Rosenkranz"
userparameters = [ ]

}
cont_descriptionAppend{

tagname = "H2O-ForeignContStandardType"
model = "CruzPol"
userparameters = [ ]

}
cont_descriptionAppend{

tagname = "H2O-ForeignContStandardType"
model = "MPM87"
userparameters = [ ]

}
cont_descriptionAppend{

tagname = "H2O-SelfContStandardType"
model = "MPM89"
userparameters = [ ]



3.2 CONTINUUM ABSORPTION 45

}
cont_descriptionAppend{

tagname = "H2O-ForeignContStandardType"
model = "user"
userparameters = [ 5.793e-35, 1.551 ]

}

• The MPM version 1993 (”MPM93”) [Liebe et al., 1993] has a special treatment
of the water vapor continuum. The simple function of Eq. 3.27 is therefore not
valid. In MPM93 the H2O-continuum is described by a pseudo water vapor line
in the far-infrared (FIR) region. This means that seven parameters are needed, one
central frequency and six line parameters. The original parameter set is given in
Liebe et al. [1993]. The MPM93 water vapor continuum has the arts tag name
"H2O-ContMPM93". Since this parameterization is very special, the valid mod-
els in the arts method cont descriptionAppend are only ”MPM93” and ”user”. For
the referenced model ”MPM93” the input parameter userparameters must be empty
while for the user model one has to specify all seven continuum parameters in arts
units: the pseudo-line center frequency, ν∗ (in Hz), and the six pseudo-line parame-
ters b∗1,· · ·,b∗6 (in units of [Hz/Pa], [1], [Hz/Pa], [1], [1], [1]).

In the following all the valid possibilities for the tag "H2O-ContMPM93" are listed
(the values for the model user are just example values):

cont_descriptionAppend{
tagname = "H2O-ContMPM93"
model = "MPM93"
userparameters = [ ]

}
cont_descriptionAppend{

tagname = "H2O-ContMPM93"
model = "user"
userparameters = [ 1780.0e9, 22300.0, 0.952,

17.60e4, 30.5, 2.0, 5.0 ]
}

• The oxygen continuum models of Rosenkranz [Rosenkranz, 1993] and MPM93
[Liebe et al., 1993], as described in Section 3.2.2, are only slightly different
in some respect so that both can be described with a single arts tag named
"O2-SelfContStandardType". The only discrepancy is in the formulation of
the width γ. If the user model is selected, then the following parameter set has to be
given: (Ĉ, w, A, B, nd, nw) which are explained in Eqs. (3.33) and (3.39). The units
of these parameters are: [1/(m·Pa·Hz)], [Hz/Pa], [1], [1], [1], [1]. For a description of
these parameters see Eqs. (3.33), (3.36), and (3.39).

The following list describes all the valid combinations of parameters for the tag
"O2-SelfContStandardType" are listed (the values for the model user are just
example values):



46 GAS ABSORPTION

cont_descriptionAppend{
name = "O2-SelfContStandardType"
model = "Rosenkranz"
userparameters = [ ]

}
cont_descriptionAppend{

name = "O2-SelfContStandardType"
model = "MPM93"
userparameters = [ ]

}
cont_descriptionAppend{

name = "O2-SelfContStandardType"
model = "user"
userparameters = [ 1.23e-19, 5600.0,

1.0, 1.0, 1.0, 1.0 ]
}

• The Rosenkranz [1993] N2-N2 continuum as explained in Section 3.2.3 has the arts
tag name "N2-SelfContStandardType". For this tag two possible models are
implemented: the referenced model of Rosenkranz and the user model. In case of
the user model one has to provide the parameters C, nν , nT , and np in units of
[1/(m·Pa2·Hz2], [1], [1], and [1], respectively. Below are the two possibilities illus-
trated:

cont_descriptionAppend{
tagname = "N2-SelfContStandardType"
model = "Rosenkranz"
userparameters = [ ]

}
cont_descriptionAppend{

tagname = "N2-SelfContStandardType"
model = "user"
userparameters = [ 1.05e-38, 2.00, 3.55, 2.00 ]

}

• The MPM93 model [Liebe et al., 1993] has a different approach for the N2-N2 contin-
uum than Rosenkranz [1993], as shown by Eq. 3.41. To be able to use this referenced
model, one has to use the tag called "N2-SelfContMPM93". Similarly to the N2-
continuum tag described before, two allowed models are implemented: ”MPM93”
and ”user” (see the examples below). In the case of the user model the parameters C,
a, and nν in units of [1/(m·Pa2·Hz2], [GHz−nν ], and [1], respectively.

cont_descriptionAppend{
tagname = "N2-SelfContMPM93"
model = "MPM93"
userparameters = [ ]



3.2 CONTINUUM ABSORPTION 47

}
cont_descriptionAppend{

tagname = "N2-SelfContMPM93"
model = "user"
userparameters = [ 5.87e-39, 6.10e-19 1.5 ]

}

• The Rosenkranz [1993] CO2-CO2 continuum term is according to Equation (3.43) of
Section 3.2.4 proportional to P 2

CO2. This absorption feature has the arts tag name
"CO2-SelfContPWR93". For this tag two possible models are implemented: the
referenced model of Rosenkranz and the user model. In case of the user model one has
to provide the parameters Cs and ns in units of [1/(m·Pa2·Hz2] and [1], respectively.
Below are the two possibilities illustrated:

cont_descriptionAppend{
tagname = "CO2-SelfContPWR93"
model = "Rosenkranz"
userparameters = [ ]

}
cont_descriptionAppend{

tagname = "CO2-SelfContPWR93"
model = "user"
userparameters = [ 7.43e-37, 5.08 ]

}

• The Rosenkranz [1993] CO2-N2 continuum term is according to as explained in Equa-
tion (3.43) of Section 3.2.4 proportional to PCO2 · PN2. This absorption feature has
the arts tag name "CO2-ForeignContPWR93". For this tag two possible models
are implemented: the referenced model of Rosenkranz and the user model. In case of
the user model one has to provide the parametersCf and nf in units of [1/(m·Pa2·Hz2]
and [1], respectively. Below are the two possibilities illustrated:

cont_descriptionAppend{
tagname = "CO2-ForeignContPWR93"
model = "Rosenkranz"
userparameters = [ ]

}
cont_descriptionAppend{

tagname = "CO2-ForeignContPWR93"
model = "user"
userparameters = [ 2.71e-37, 4.7]

}

All the continuum tags have their individual fixed line shape. Therefore the arts meth-
ods which controls this input information should be defined as follows: shape = ”no shape”
, normalizationfactor = ”no norm”, and cutoff = -1. An example for the arts method line-
shape per tgDefine is presented below for the case of two selected continuum tags in the
method tagDefine:



48 GAS ABSORPTION

lineshape_per_tgDefine{
shape = [ "no_shape",

"no_shape"]
normalizationfactor = [ "no_norm",

"no_norm"]
cutoff = [ -1,

-1]
}



3.2 CONTINUUM ABSORPTION 49

co
nt

in
uu

m
co

nt
de

sc
ri

pt
io

nA
pp

en
d

in
pu

t
re

fe
re

nc
e/

ar
ts

so
ur

ce
co

de
fu

nc
tio

n
in

pu
tp

ar
am

et
er

ar
ts

ug
ui

de
w

at
er

va
po

r
(H

2
O

)
R

os
en

kr
an

z
ta

gn
am

e
=

"
H
2
O
-
S
e
l
f
C
o
n
t
S
t
a
n
d
a
r
d
T
y
p
e
"

R
os

en
kr

an
z

[1
99

8]
St

an
da

rd
H

2O
se

lf
co

nt
in

uu
m

H
2
O
−

H
2
O

m
od

el
=

”R
os

en
kr

an
z”

Se
c.

3.
2.

1
us

er
pa

ra
m

et
er

s
=

[]
R

os
en

kr
an

z
ta

gn
am

e
=

"
H
2
O
-
F
o
r
e
i
g
n
C
o
n
t
S
t
a
n
d
a
r
d
T
y
p
e
"

R
os

en
kr

an
z

[1
99

8]
St

an
da

rd
H

2O
fo

re
ig

n
co

nt
in

uu
m

H
2
O
−

dr
y

ai
r

m
od

el
=

”R
os

en
kr

an
z”

Se
c.

3.
2.

1
us

er
pa

ra
m

et
er

s
=

[]
C

ru
z-

Po
l

ta
gn

am
e

=
"
H
2
O
-
S
e
l
f
C
o
n
t
S
t
a
n
d
a
r
d
T
y
p
e
"

C
ru

z
Po

le
ta

l.
[1

99
8]

St
an

da
rd

H
2O

se
lf

co
nt

in
uu

m
H

2
O
−

H
2
O

m
od

el
=

”C
ru

zP
ol

”
Se

c.
3.

2.
1

us
er

pa
ra

m
et

er
s

=
[]

C
ru

z-
Po

l
ta

gn
am

e
=

"
H
2
O
-
F
o
r
e
i
g
n
C
o
n
t
S
t
a
n
d
a
r
d
T
y
p
e
"

C
ru

z
Po

le
ta

l.
[1

99
8]

St
an

da
rd

H
2O

fo
re

ig
n

co
nt

in
uu

m
H

2
O
−

dr
y

ai
r

m
od

el
=

”C
ru

zP
ol

”
Se

c.
3.

2.
1

us
er

pa
ra

m
et

er
s

=
[]

M
PM

87
ta

gn
am

e
=

"
H
2
O
-
S
e
l
f
C
o
n
t
S
t
a
n
d
a
r
d
T
y
p
e
"

Li
eb

e
an

d
La

yt
on

[1
98

7]
St

an
da

rd
H

2O
se

lf
co

nt
in

uu
m

H
2
O
−

H
2
O

m
od

el
=

”M
PM

87
”

Se
c.

3.
2.

1
us

er
pa

ra
m

et
er

s
=

[]
M

PM
87

ta
gn

am
e

=
"
H
2
O
-
F
o
r
e
i
g
n
C
o
n
t
S
t
a
n
d
a
r
d
T
y
p
e
"

Li
eb

e
an

d
La

yt
on

[1
98

7]
St

an
da

rd
H

2O
fo

re
ig

n
co

nt
in

uu
m

H
2
O
−

dr
y

ai
r

m
od

el
=

”M
PM

87
”

Se
c.

3.
2.

1
us

er
pa

ra
m

et
er

s
=

[]
M

PM
89

ta
gn

am
e

=
"
H
2
O
-
S
e
l
f
C
o
n
t
S
t
a
n
d
a
r
d
T
y
p
e
"

Li
eb

e
[1

98
9]

St
an

da
rd

H
2O

se
lf

co
nt

in
uu

m
H

2
O
−

H
2
O

m
od

el
=

”M
PM

89
”

Se
c.

3.
2.

1
us

er
pa

ra
m

et
er

s
=

[]
M

PM
89

ta
gn

am
e

=
"
H
2
O
-
F
o
r
e
i
g
n
C
o
n
t
S
t
a
n
d
a
r
d
T
y
p
e
"

Li
eb

e
[1

98
9]

St
an

da
rd

H
2O

fo
re

ig
n

co
nt

in
uu

m
H

2
O
−

dr
y

ai
r

m
od

el
=

”M
PM

89
”

Se
c.

3.
2.

1
us

er
pa

ra
m

et
er

s
=

[]
M

PM
93

ta
gn

am
e

=
"
H
2
O
-
C
o
n
t
M
P
M
9
3
"

Li
eb

e
et

al
.[

19
93

]
M

PM
93

H
2O

co
nt

in
uu

m
Ta

bl
e

3.
7:

(c
on

tin
ue

d)



50 GAS ABSORPTION

co
nt

in
uu

m
co

nt
de

sc
ri

pt
io

nA
pp

en
d

re
fe

re
nc

e/
ar

ts
so

ur
ce

co
de

fu
nc

tio
n

in
pu

tp
ar

am
et

er
ar

ts
ug

ui
de

H
2
O
−

ai
r

m
od

el
=

”M
PM

93
”

Se
c.

3.
2.

1
us

er
pa

ra
m

et
er

s
=

[]
ox

yg
en

(O
2
)

R
os

en
kr

an
z

ta
gn

am
e

=
"
S
e
l
f
C
o
n
t
S
t
a
n
d
a
r
d
T
y
p
e
"

R
os

en
kr

an
z

[1
99

3]
St

an
da

rd
O

2
co

nt
in

uu
m

O
2
−

ai
r

m
od

el
=

”R
os

en
kr

an
z”

Se
c.

3.
2.

2
us

er
pa

ra
m

et
er

s
=

[]
M

PM
93

ta
gn

am
e

=
"
O
2
-
S
e
l
f
C
o
n
t
S
t
a
n
d
a
r
d
T
y
p
e
"

Li
eb

e
et

al
.[

19
93

]
St

an
da

rd
O

2
co

nt
in

uu
m

O
2
−

ai
r

m
od

el
=

”M
PM

93
”

Se
c.

3.
2.

2
us

er
pa

ra
m

et
er

s
=

[]
ni

tr
og

en
(N

2
)

R
os

en
kr

an
z

ta
gn

am
e

=
"
N
2
-
S
e
l
f
C
o
n
t
S
t
a
n
d
a
r
d
T
y
p
e
"

R
os

en
kr

an
z

[1
99

3]
St

an
da

rd
N

2
se

lf
co

nt
in

uu
m

N
2
−

N
2

m
od

el
=

”R
os

en
kr

an
z”

Se
c.

3.
2.

3
us

er
pa

ra
m

et
er

s
=

[]
M

PM
93

ta
gn

am
e

=
"
N
2
-
S
e
l
f
C
o
n
t
M
P
M
9
3
"

Li
eb

e
et

al
.[

19
93

]
M

PM
93

N
2

co
nt

in
uu

m
N

2
−

N
2

m
od

el
=

”R
os

en
kr

an
z”

Se
c.

3.
2.

3
us

er
pa

ra
m

et
er

s
=

[]
ca

rb
on

di
ox

id
e

C
O

2

R
os

en
kr

an
z

ta
gn

am
e

=
"
C
O
2
-
S
e
l
f
C
o
n
t
P
W
R
9
3
"

R
os

en
kr

an
z

[1
99

3]
R

os
en

kr
an

z
C

O
2

se
lf

co
nt

in
uu

m
C

O
2
−

C
O

2
m

od
el

=
”R

os
en

kr
an

z”
Se

c.
3.

2.
4

us
er

pa
ra

m
et

er
s

=
[]

R
os

en
kr

an
z

ta
gn

am
e

=
"
C
O
2
-
F
o
r
e
i
g
n
C
o
n
t
P
W
R
9
3
"

R
os

en
kr

an
z

[1
99

3]
R

os
en

kr
an

z
C

O
2

fo
re

ig
n

co
nt

in
uu

m
C

O
2
−

N
2

m
od

el
=

”R
os

en
kr

an
z”

Se
c.

3.
2.

4
us

er
pa

ra
m

et
er

s
=

[]
Ta

bl
e

3.
7:

T
hi

s
ta

bl
e

gi
ve

s
an

ov
er

vi
ew

of
th

e
im

pl
em

en
te

d
re

fe
re

nc
ed

co
nt

in
ua

m
od

el
s

an
d

ho
w

th
ey

ar
e

sp
ec

ifi
ed

in
th

e
ar

ts
m

et
ho

d
co

nt
de

sc
ri

pt
io

nA
pp

en
d.

A
dd

iti
on

al
ly

th
e

re
fe

re
nc

e
an

d
th

e
ar

ts
so

ur
ce

co
de

fu
nc

tio
n

na
m

e
(s

ee
fil

e
ar

ts
/s

rc
/c

on
tin

ua
.c

c
ar

e
pr

ov
id

ed
.T

he
de

ta
ile

d
on

lin
e

do
cu

m
en

ta
tio

n
ca

n
be

fo
un

d
un

de
ra

rt
s/

do
c/

do
xy

ge
n/

ht
m

l/c
on

tin
ua

cc
.h

tm
l)

.



3.2 CONTINUUM ABSORPTION 51

ARTS Example Control File for the Continuum Tags

Below you will find an example of a control file for all the implemented fixed model con-
tinua. Please note that to run this example control file you have to specify user specific
path and input file names to run it properly. You can find this example in the arts directory
arts/doc/examples/cont example.arts

# ######## EXAMPLE CONTINUUM TAG CONTROL FILE #######
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# define the arts continuum tags of arts
tgsDefine{
      [ 
        "H2O−SelfContStandardType",
        "H2O−ForeignContStandardType",
        "H2O−ContMPM93",
        "O2−SelfContStandardType",
        "N2−SelfContStandardType",
        "N2−SelfContMPM93",
        "CO2−SelfContPWR93",
        "CO2−ForeignContPWR93"
      ] 
}
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# initialize the continua tag structures
cont_descriptionInit{}
#
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#
# define the continua tags with the appropriate input
#
# −−−−− H2O continuum
#
# Rosenkranz−type H2O−H2O continuum:
cont_descriptionAppend{
    tagname        = "H2O−SelfContStandardType"
    model          = "Rosenkranz"
    userparameters = [ ]
}
#
# Rosenkranz−type H2O−dry air continuum:
cont_descriptionAppend{
    tagname        = "H2O−ForeignContStandardType"
    model          = "Rosenkranz"
    userparameters = [ ]
}
#
# MPM93−type H2O−air continuum:
cont_descriptionAppend{
    tagname        = "H2O−ContMPM93"
    model          = "MPM93"
    userparameters = [ ]
}
#
# −−−−− O2 continuum 
#
# Standard O2−air continuum:
cont_descriptionAppend{
    tagname        = "O2−SelfContStandardType"
    model          = "Rosenkranz"
    userparameters = [ ]
}
#
# −−−−− N2 continuum
#
# Rosenkranz N2−N2 continuum (only N2−N2 broadening):
cont_descriptionAppend{
    tagname        = "N2−SelfContStandardType"
    model          = "Rosenkranz"
    userparameters = [ ]
}
# MPM93 N2−N2 continuum (only N2−N2 broadening):
cont_descriptionAppend{
    tagname        = "N2−SelfContMPM93"
    model          = "MPM93"
    userparameters = [ ]
}
#

This is essential for the later use of
description structure in arts.

the method cont_descriptionAppend.

initialize the continua tag

calculation.

continuum tag selection for

description of every continum tag

also mentioned in the tagDefine
methode above. Each description
has three input variables: 

    *  model to select a referenced

    * tag name

        model or the user model

    * user given input parameters

Only in the case where the model

"user" is selected, the user given
input parameters are considered.

All other models neglect these
input parameters.

       (only valid for model "user")



52 GAS ABSORPTION

# −−−−− CO2 continuum 
#
# Rosenkranz CO2−CO2 continuum:
cont_descriptionAppend{
    tagname        = "CO2−SelfContPWR93"
    model          = "Rosenkranz"
    userparameters = [ ]
}
# Rosenkranz CO2−N2 continuum:
cont_descriptionAppend{
    tagname        = "CO2−ForeignContPWR93"
    model          = "Rosenkranz"
    userparameters = [ ]
}
#
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#
# Read the pressure, temperature, and altitude 
# profiles and create the workspace variable ‘raw_ptz’.
# ATTENTION! The path and file names are user specific!
MatrixReadAscii (raw_ptz) 
        {"@ac_arts_data@/atmosphere/fascod/midlatitude−summer.tz.aa"}
#
# The same for the input VMR profiles
# ATTENTION! The path and file names are user specific!
raw_vmrsReadFromScenario
         {"@ac_arts_data@/atmosphere/fascod/midlatitude−summer"}
#
# Create the pressure grid ‘p_abs’ (just an example)
VectorNLogSpace(p_abs){
        start = 100000.000
        stop  =   1000.000
        n     = 100
}
# reads the input profiles
AtmFromRaw{}
#
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#
# Set the H2O profile
h2o_absSet{}
#
# Set the N2 profile
n2_absSet{}
#
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#
# Read spectral line data from HITRAN96 catalogue for 
# the frequency range from 1 to 2 GHz.
# This in not essential for the continuum tags but 
# bust be given as input for absCalc below.
# ATTENTION! THE PATH AND FILE NAMES ARE USER SPECIFIC!
#
lines_per_tgReadFromCatalogues{
  filenames = [ "@ac_arts_data@/spectroscopy/hitran96/hitran96_lowfreq.par" ]
  formats   = [ "HITRAN96" ]
  fmin      = [ 1.0e9 ]
  fmax      = [ 2.0e9 ]
}
#
# Create an example frequency grid ‘f_mono’
VectorNLinSpace(f_mono){
        start =    100.0e9
        stop  =    200.0e9
        n     =    100    
}
#
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#
#

Input frequency grid
on which the calculation
is performed.

also necessary for the 
method absCalc.

Spectral line data is

Information about the 

H2O and N2 have to
be given seperately.

Also the VMR profiles
model atmosphere.



3.3 COMPLETE ABSORPTION MODELS 53

# Set the lineshape function for each continuum tag
lineshape_per_tgDefine{
        shape               = [ "no_shape", 
                                "no_shape", 
                                "no_shape",
                                "no_shape",
                                "no_shape",
                                "no_shape",
                                "no_shape", 
                                "no_shape"]
        normalizationfactor = [ "no_norm", 
                                "no_norm", 
                                "no_norm", 
                                "no_norm",
                                "no_norm",
                                "no_norm", 
                                "no_norm", 
                                "no_norm"]
        cutoff              = [ −1,
                                −1, 
                                −1, 
                                −1, 
                                −1,        
                                −1,
                                −1, 
                                −1]
}
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# calculate the absorption coefficients, unit=1/meter
absCalc{}
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# These we definitely want to write to files:
# 1. absorption coefficient per continuum tag
ArrayOfMatrixWriteAscii (abs_per_tg) {""}
# 2. temperature profile
VectorWriteAscii (t_abs)  {""}
# 3. altitude grid
VectorWriteAscii (z_abs)  {""}
# 4. pressure grid
VectorWriteAscii(p_abs)   {""}
# 5. frequency grid
VectorWriteAscii (f_mono) {""}
# 6. cont_descriptionAppend continuum tagnames
ArrayOfStringWriteAscii (cont_description_names) {""}
# 7. cont_descriptionAppend model selections
ArrayOfStringWriteAscii (cont_description_models) {""}
# 8. cont_descriptionAppend user given input parameters
ArrayOfVectorWriteAscii (cont_description_parameters) {""}
#####################################################

The line shape of the 
continuum tags are all
internally set. Therefore
The user has not to specify
the line shape here.

This is the method which
calculates the absorption
coefficients in units of
1/meters.

Here the output is written
into the output files.

3.3 Complete Absorption Models

The MPM absorption model of Liebe and coworkers consists of modules for water vapor
and oxygen absorption. The Rosenkranz (PWR98) absorption model include also H2O and
O2 while the Cruz-Pol et al. (CP98) absorption models include absorption due to water
vapor. Additionally the CP98 model has a strongly reduced parameter set for the H2O-



54 GAS ABSORPTION

line absorption since it is especially intended for the range around the 22 GHz water line.
The MPM and R98 are valid from the microwave up to the submillimeter frequency range
(1-1000 GHz).

Implemented in ARTS are the following modules of the above mentioned models:

species model
H2O MPM87, MPM89, MPM93, PWR98, CP98
O2 MPM93, PWR98

3.3.1 Complete Water Vapor Models

In ARTS several complete water vapor absorption models are implemented and can easily
be used. Implemented models are the versions MPM87 Liebe and Layton [1987], MPM89
Liebe [1989], and MPM93 Liebe et al. [1993] of the Liebe Millimeter-wave Propagation
Model and additionally the models of Cruz-Pol et al. (CP98) Cruz Pol et al. [1998] and
P. W. Rosenkranz (PWR98) Rosenkranz [1998]. MPM and PWR98 are especially desigend
for fast absorption calculations in the frequency range of 1-1000 GHz while the CP98 model
is a reduced model for a narrow frequency band around the 22 GHz H2O-line (especially
used by ground-based radiometers).

The total water vapor absorption (αtot) is in all the stated models described by a line
absorption (α`) term and a continuum absorption (αc) term:

αtot = α` + αc (3.44)

The main differences between the different models is the line shape used for α` and the
formulation of αc.

It has to be emphasized that, α` and αc of different models are not necessarily compat-
ible and should therefore not be interchanged between different models.

MPM87 Water Vapor Absorption Model

This version, which is described in Liebe and Layton [1987] and follows the general line
of the MPM model to divide the total water vapor absorption, αMPM87

tot , into a spectral line
term, αMPM87

` , and a continuum term not attributed to spectral lines, αMPM87
c :

αMPM87
tot = αMPM87

` + αMPM87
c dB/km (3.45)

Water Vapor Line Absorption: The MPM87 Liebe and Layton [1987] water vapor line
catalog consists of 30 lines from 22 GHz up to 988 GHz. The center frequencies and param-
eter values are listed in Table 3.8. To describe the line absorption, a set of three parameters
(b1,k and b3,k) per line are used: two for the line strength and one for the line width. The
total line absorption coefficient (in units of dB/km) is the sum over all individual line ab-
sorption coefficients3:

αMPM87
` = 0.1820 · νk · PH2O ·

∑
k

Sk(T ) · F (ν, νk) dB/km (3.46)

3The factor 0.1820 · 106 is equal to (4π/c) · 10 log (e) (the term (4π/c) comes from the definition of the
absorption coefficient in terms of the dielectric constant and the term 10 log (e) is due to the definition of the
Decibel.) The velocity of light is defined as c = 2.9979 · 10−4 km GHz. The factor 106 is incorporated into the
line strength and does therefore not appear in the pre-factor.



3.3 COMPLETE ABSORPTION MODELS 55

where Sk(T ) is the line intensity described by the parameterization

Sk(T ) = b1,k · PH2O ·Θ
3.5 · exp (b2,k · [1−Θ]) kHz (3.47)

with νk as the line center frequency, PH2O the water vapor partial pressure and Θ =
300 K/T .
The line shape function, F (ν, νk), in Eq. (3.46) is the standard Van Vleck-Weisskopf
(VVW) function, given by:

F (ν, νk) =

(
ν

νk

)
·
[

γk
(ν − νk)2 + γ2

k
+

γk
(ν + νk)2 + γ2

k

]
(3.48)

(3.49)

The pressure broadened line width, γk, is calculated with the single parameter b3,k in the
following way:

γk = b3,k · (4.80 · PH2O ·Θ
1.1 + Pd ·Θ

0.6) GHz (3.50)

where Pd is the partial pressure of dry air (Pd = Ptot − PH2O). The parameterizations of
Sk(T ) and γk are already in use for the early version of MPM81 Liebe [1981].

νk b1,k b2,k b3,k

k [GHz] [kHz
kPa ] [1] [GHz

kPa ]
1 22.235080 0.1090 2.143 27.84· 10−3

2 67.813960 0.0011 8.730 27.60· 10−3

3 119.995940 0.0007 8.347 27.00· 10−3

4 183.310117 2.3000 0.653 31.64· 10−3

5 321.225644 0.0464 6.156 21.40· 10−3

6 325.152919 1.5400 1.515 29.70· 10−3

7 336.187000 0.0010 9.802 26.50· 10−3

8 380.197372 11.9000 1.018 30.36· 10−3

9 390.134508 0.0044 7.318 19.00· 10−3

10 437.346667 0.0637 5.015 13.70· 10−3

11 439.150812 0.9210 3.561 16.40· 10−3

12 443.018295 0.1940 5.015 14.40· 10−3

13 448.001075 10.6000 1.370 23.80· 10−3

14 470.888947 0.3300 3.561 18.20· 10−3

15 474.689127 1.2800 2.342 19.80· 10−3

16 488.491133 0.2530 2.814 24.90· 10−3

17 503.568532 0.0374 6.693 11.50· 10−3

18 504.482692 0.0125 6.693 11.90· 10−3

19 556.936002 510.0000 0.114 30.00· 10−3

20 620.700807 5.0900 2.150 22.30· 10−3

21 658.006500 0.2740 7.767 30.00· 10−3

22 752.033227 250.0000 0.336 28.60· 10−3

23 841.073593 0.0130 8.113 14.10· 10−3

24 859.865000 0.1330 7.989 28.60· 10−3

Table 3.8: (continued)



56 GAS ABSORPTION

k νk b1,k b2,k b3,k

25 899.407000 0.0550 7.845 28.60· 10−3

26 902.555000 0.0380 8.360 26.40· 10−3

27 906.205524 0.1830 5.039 23.40· 10−3

28 916.171582 8.5600 1.369 25.30· 10−3

29 970.315022 9.1600 1.842 24.00· 10−3

30 987.926764 138.0000 0.178 28.60· 10−3

Table 3.8: List of H2O spectral lines and their spectroscopic parameters (H2O-air
mixture) for the MPM87 model Liebe and Layton [1987].

Water Vapor Continuum Absorption: The water vapor continuum absorption coeffi-
cient in MPM87, αMPM87

c , is determined from laboratory measurements at 137.8 GHz by
Liebe and Layton covering the following parameter range:

temperature 282-316 K
relative humidity 0-95 %
dry air pressure 0 - 160 kPa

The mathematical expression of αMPM87
c is derived from the far wing approximation of the

line absorption and is expressed as follows

αMPM87
c = ν2 · PH2O · (C

o
H2O · PH2O ·Θ

ns + Co
d · Pd ·Θ

nf), (3.51)

with the continuum parameter set Co
H2O, Co

d , ns, and nf. The determined values of the
continuum parameters are:

Co
H2O = 6.496 · 10−6 (dB/km) / (hPa·GHz)2

ns = 10.5

Co
d = 0.206 · 10−6 (dB/km) / (hPa·GHz)2

nd = 3.0

MPM89 Water Vapor Absorption Model

MPM89 is described in Liebe [1989] and follows the general line of the MPM model to
devide the total water vapor absorption, αMPM89

tot , into a spectral line term, αMPM89
` , and

a continuum term not attributed to spectral lines, αMPM89
c :

αMPM89
tot = αMPM89

` + αMPM89
c dB/km (3.52)

All the absorption coefficients are calculated in units of dB/km.

Water Vapor Line Absorption: The MPM89 water vapor line catalog consists of the
same 30 lines like MPM87 from 22 GHz up to 988 GHz. The center frequencies and pa-
rameter values are listed in Table 3.9. To describe the line absorption, a set of six parameters
(b1,k and b6,k) per line are used: two for the line strength and four for the line width. The



3.3 COMPLETE ABSORPTION MODELS 57

total line absorption coefficient (in units of dB/km) is the sum over all individual line ab-
sorption coefficients4:

αMPM89
` = 0.1820 · νk · PH2O ·

∑
k

Sk(T ) · F (ν, νk) dB/km (3.53)

where Sk(T ) is the line intensity described by the parameterization

Sk(T ) = b1,k · PH2O ·Θ
3.5 · exp (b2,k · [1−Θ]) kHz (3.54)

whit νk as the line center frequency, PH2O the water vapor partial pressure and Θ =
300 K/T .
The line shape function, F (ν, νk), in Eq. (3.53) is the standard Van Vleck-Weisskopf
(VVW) function, given by

F (ν, νk) =

(
ν

νk

)
·
[

γk
(ν − νk)2 + γ2

k
+

γk
(ν + νk)2 + γ2

k

]
(3.55)

where the pressure broadened line width, γk, is calculated as

γk = b3,k · (b5,k · PH2O ·Θ
b6,k + Pd ·Θ

b4,k) · 10−3 GHz (3.56)

with Pd = Ptot − PH2O as the dry air partial pressure. The only difference between
MPM87 and MPM89 with respect to the line absorption is the parameterization of the pres-
sure broadened line width, γk, which is calculated with the four parameters b3,k to b6,k in
the case of MPM89 whereas in MPM87 a single parameter (b3,k) is used (see Eq. (3.50)).

νk b1,k b2,k b3,k b4,k b5,k b6,k

k [GHz] [kHz
kPa ] [1] [MHz

kPa ] [1] [1] [1]
1 22.235080 0.1090 2.143 28.11 0.69 4.80 1.00
2 67.813960 0.0011 8.735 28.58 0.69 4.93 0.82
3 119.995940 0.0007 8.356 29.48 0.70 4.78 0.79
4 183.310074 2.3000 0.668 28.13 0.64 5.30 0.85
5 321.225644 0.0464 6.181 23.03 0.67 4.69 0.54
6 325.152919 1.5400 1.540 27.83 0.68 4.85 0.74
7 336.187000 0.0010 9.829 26.93 0.69 4.74 0.61
8 380.197372 11.9000 1.048 28.73 0.69 5.38 0.84
9 390.134508 0.0044 7.350 21.52 0.63 4.81 0.55

10 437.346667 0.0637 5.050 18.45 0.60 4.23 0.48
11 439.150812 0.9210 3.596 21.00 0.63 4.29 0.52
12 443.018295 0.1940 5.050 18.60 0.60 4.23 0.50
13 448.001075 10.6000 1.405 26.32 0.66 4.84 0.67
14 470.888947 0.3300 3.599 21.52 0.66 4.57 0.65
15 474.689127 1.2800 2.381 23.55 0.65 4.65 0.64
16 488.491133 0.2530 2.853 26.02 0.69 5.04 0.72
17 503.568532 0.0374 6.733 16.12 0.61 3.98 0.43
18 504.482692 0.0125 6.733 16.12 0.61 4.01 0.45

Table 3.9: (continued)
4see footnote for MPM97 line absorption



58 GAS ABSORPTION

k νk b1,k b2,k b3,k b4,k b5,k b6,k

19 556.936002 510.0000 0.159 32.10 0.69 4.11 1.00
20 620.700807 5.0900 2.200 24.38 0.71 4.68 0.68
21 658.006500 0.2740 7.820 32.10 0.69 4.14 1.00
22 752.033227 250.0000 0.396 30.60 0.68 4.09 0.84
23 841.073593 0.0130 8.180 15.90 0.33 5.76 0.45
24 859.865000 0.1330 7.989 30.60 0.68 4.09 0.84
25 899.407000 0.0550 7.917 29.85 0.68 4.53 0.90
26 902.555000 0.0380 8.432 28.65 0.70 5.10 0.95
27 906.205524 0.1830 5.111 24.08 0.70 4.70 0.53
28 916.171582 8.5600 1.442 26.70 0.70 4.78 0.78
29 970.315022 9.1600 1.920 25.50 0.64 4.94 0.67
30 987.926764 138.0000 0.258 29.85 0.68 4.55 0.90

Table 3.9: List of H2O spectral lines and their spectroscopic parameters (H2O-air
mixture) for the MPM89 model Liebe [1989].

Water Vapor Continuum Absorption: The MPM89 continuum absorption coefficients
in, αMPM89

c , are identical as those in MPM87 (see Sec. 3.3.1 for details):

αMPM89
c = ν2 · PH2O · (C

o
H2O · PH2O ·Θ

ns + Co
d · Pd ·Θ

nf), (3.57)

with

Co
H2O = 6.496 · 10−6 (dB/km) / (hPa·GHz)2

ns = 10.5

Co
d = 0.206 · 10−6 (dB/km) / (hPa·GHz)2

nd = 3.0

MPM93 Water Vapor Absorption Model

This version, which is described in Liebe et al. [1993] and follows the general line of the
MPM model to devide the total water vapor absorption, αMPM93

tot , into a spectral line term,
αMPM93
` , and a continuum term not attributed to spectral lines, αMPM93

c :

αMPM93
tot = αMPM93

` + αMPM93
c dB/km (3.58)

The continuum absorption is parameterized like a resonant spectral line of H2O, a so-called
pseudo-line. This is a fundamental change in the parameterization of the water vapor con-
tinuum in respect to all older versions of MPM, which makes it quite complicate to compare
the different versions, especially to distinguish a self- and foreign broadening term in the
continuum.



3.3 COMPLETE ABSORPTION MODELS 59

Water Vapor Line Absorption: The water vapor line spectrum of MPM93 Liebe et al.
[1993] consists of 34 lines below 1 THz (four more than in MPM89 and MPM87). To
describe the MPM93 water vapor line absorption, a set of six parameters (b1,k and b3,k) per
line are used: two for the line strength and four for the line width. The total line absorption
coefficient (in units of dB/km) is the sum over all individual line absorption coefficients5:

αMPM93
` = 0.1820 · νk · PH2O ·

∑
k

Sk(T ) · F (ν, νk) dB/km (3.59)

where Sk(T ) is the line intensity described by the parameterization

Sk(T ) = b1,k · PH2O ·Θ
3.5 · exp (b2,k · [1−Θ]) kHz (3.60)

with νk as the line center frequency, PH2O the water vapor partial pressure and Θ =
300 K/T .
The line shape function, F (ν, νk), in Eq. (3.46) is the standard Van Vleck-Weisskopf
(VVW) function, given by:

F (ν, νk) =

(
ν

νk

)
·
[

γk
(ν − νk)2 + γ2

k
+

γk
(ν + νk)2 + γ2

k

]
(3.61)

(3.62)

The pressure broadened line width, γk, is calculated with the single parameter b3,k in the
following way:

γk = b3,k · (4.80 · PH2O ·Θ
1.1 + Pd ·Θ

0.6) GHz (3.63)

where Pd is the partial pressure of dry air (Pd = Ptot − PH2O).
The parameterizations of Sk(T ) was already in use for the early version of MPM81

Liebe [1981]. The expression for γk is the same as in MPM89. The main difference between
MPM93 and MPM89 concerning the water vapor line absorption is the updated line catalog.

νk b1,k b2,k b3,k b4,k b5,k b6,k

k [GHz] [kHz
hPa ] [1] [MHz

hPa ] [1] [1] [1]
1 22.235080 0.01130 2.143 2.811 4.80 0.69 1.00
2 67.803960 0.00012 8.735 2.858 4.93 0.69 0.82
3 119.995940 0.00008 8.356 2.948 4.78 0.70 0.79
4 183.310091 0.24200 0.668 3.050 5.30 0.64 0.85
5 321.225644 0.00483 6.181 2.303 4.69 0.67 0.54
6 325.152919 0.14990 1.540 2.783 4.85 0.68 0.74
7 336.222601 0.00011 9.829 2.693 4.74 0.69 0.61
8 380.197372 1.15200 1.048 2.873 5.38 0.54 0.89
9 390.134508 0.00046 7.350 2.152 4.81 0.63 0.55

10 437.346667 0.00650 5.050 1.845 4.23 0.60 0.48
11 439.150812 0.09218 3.596 2.100 4.29 0.63 0.52
12 443.018295 0.01976 5.050 1.860 4.23 0.60 0.50
13 448.001075 1.03200 1.405 2.632 4.84 0.66 0.67

Table 3.10: (continued)
5see footnote for MPM97 line absorption



60 GAS ABSORPTION

νk b1,k b2,k b3,k b4,k b5,k b6,k

14 470.888947 0.03297 3.599 2.152 4.57 0.66 0.65
15 474.689127 0.12620 2.381 2.355 4.65 0.65 0.64
16 488.491133 0.02520 2.853 2.602 5.04 0.69 0.72
17 503.568532 0.00390 6.733 1.612 3.98 0.61 0.43
18 504.482692 0.00130 6.733 1.612 4.01 0.61 0.45

19+ 547.676440 0.97010 0.114 2.600 4.50 0.70 1.00
20+ 552.020960 1.47700 0.114 2.600 4.50 0.70 1.00

21 556.936002 48.74000 0.159 3.210 4.11 0.69 1.00
22 620.700807 0.50120 2.200 2.438 4.68 0.71 0.68

23+ 645.866155 0.00713 8.580 1.800 4.00 0.60 0.50
24 658.005280 0.03022 7.820 3.210 4.14 0.69 1.00
25 752.033227 23.96000 0.396 3.060 4.09 0.68 0.84
26 841.053973 0.00140 8.180 1.590 5.76 0.33 0.45
27 859.962313 0.01472 7.989 3.060 4.09 0.68 0.84
28 899.306675 0.00605 7.917 2.985 4.53 0.68 0.90
29 902.616173 0.00426 8.432 2.865 5.10 0.70 0.95
30 906.207325 0.01876 5.111 2.408 4.70 0.70 0.53
31 916.171582 0.83400 1.442 2.670 4.78 0.70 0.78

32+ 923.118427 0.00869 10.220 2.900 5.00 0.70 0.80
33 970.315022 0.89720 1.920 2.550 4.94 0.64 0.67
34 987.926764 13.21000 0.258 2.985 4.55 0.68 0.90

ν∗ b∗1 b∗2 b∗3 b∗4 b∗5 b∗6
[GHz] [kHz

hPa ] [1] [MHz
hPa ] [1] [1] [1]

1780.000000 2230.00000 0.952 17.620 30.50 2.00 5.00
Table 3.10: List of used H2O spectral lines and their spectroscopic coefficients of
H2O in air for the MPM93 model [Liebe et al., 1993]. The last separated line is
the unphysical pseudo-line used in MPM93. The lines which are marked with a
”+” were not in the MPM87/MPM89 line catalog.

The MPM93 Continuum Parameterization: In the MPM93 version the water vapor
continuum is parameterized as an ordinary spectral line (Eqs. (3.60, 3.61)). The parame-
ters of this continuum ”pseudo-line” (ν∗, b∗1, b∗2, b∗3, b∗4, b∗5, b∗6) are given in Table 3.10.
More details about this continuum parameterization and its microwave approximation can
be found in Section 3.2.1 of this guide.

CP98 Water Vapor Absorption Model

Line Absorption component [Cruz Pol et al., 1998] for the water vapor line absorption
is based on MPM87 with the main difference that the line catalog consists of only a single
line at νo = 22 GHz. The contributions from the other lines is put into the water vapor
continuum module. The line absorption is therefore very quickly calculated (in units of
Np/km) according to the formula

αCP98
` = 0.0419 · S0(T ) · F (ν, νk) (3.64)



3.3 COMPLETE ABSORPTION MODELS 61

with

S0(T ) = 0.0109 · CL · PH2O · ν0 ·Θ
3.5 · exp (2.143 · [1−Θ])

γ = 0.002784 · CW · (Pd ·Θ
0.6 + 4.8 · PH2O ·Θ

1.1)

(3.65)

where PH2O and Pd are the partial pressure of water vapor and dry air in units of hPa,
respectively and the Van Vleck-Weisskopf line shape, F (ν, νk). The numbers correspond
to the line parameters form MPM87 for this special line and the factors CL and CW are
adjustable scaling factors to match the model with the measurements. Setting the scaling
factors to CL=1.00 and CW=1.00 leads to the same results as for MPM87. According to the
parameter estimation of Cruz–Pol et al. best agreement between data and model is obtained
with CL = 1.0639±0.016 and CW = 1.0658±0.0096. The correlation between these two
scaling factors was found to be negligible, as can be seen from Table 3.11.

CL CW CC CX
value 1.0639 1.0658 1.2369 1.0739
std. dev. 0.016 0.0096 0.155 0.252
correlation
CL 1 -0.085 0.045 -0.048
CW -0.085 1 -0.513 0.485
CC 0.045 -0.513 1 -0.989
CX -0.048 0.485 -0.989 1

Table 3.11: Scaling parameter values with standard deviation and correlation coefficients
according to [Cruz Pol et al., 1998]. The scaling parameters are CL:22 GHz line strength,
CW :22 GHz line width , CC :H2O-continuum, and CX :O2-absorption. CX scales the entire
oxygen absorption, the continuum as well as the line absorption. The Cruz-Pol et al. model
uses the Rosenkranz [1993] oxygen absorption model.

The main reason why the Cruz-Pol model (CP98) considers only one line lies in the
fact that CP98 is especially designed for the data analysis in the 20-31.4 GHz region. The
determination of the scaling factors was performed with ground based radiometer data in
the frequency range of from different locations6 in the USA.

Water Vapor Continuum Absorption: The CP98 model uses the same water vapor con-
tinuum parameterization as MPM87, just scaled with an empirical factor, CC, determined
from the above mentioned data:

αCP98
c = CC · αMPM87

c (3.66)

The scaling factor CC , as given in Table 3.11, gives a 23.69 % increased continuum ab-
sorption compared with MPM87 (see Table 3.4 for a comparison of the parameter values).
But one has to keep in mind that CC has a high correlation with the scaling factor of the
oxygen absorption, CX , since these two components could not be completely distinguished

6The data were recorded at San Diego, California (11. December 1991) and West Palm Beach, Florida
(8.-21. March 1992)



62 GAS ABSORPTION

in the data. Therefore the value of 23.69 % has a standard deviation of 15.5 % and is not so
reliable than CL and CW .

PWR98 Water Vapor Absorption Model

The water vapor continuum formulation of Rosenkranz [1998] is a re-investigation of the ex-
isting models MPM87/MPM89, MPM93, and CKD 2.1 especially for the frequency region
below 1-1000 GHz. in the context of the available laboratory and atmospheric data [Bauer
et al., 1989, 1993, 1995; Becker and Autler, 1946; English et al., 1994; Godon et al., 1992;
Liebe, 1984; Liebe and Layton, 1987; Westwater et al., 1980].

Rosenkranz adopted the structure of MPM89 for his improved model (R98). However,
some important differences exist compared with MPM89:

• the water vapor line catalogs are different

• the R98 uses the Van Vleck–Weisskopf line shape function with cutoff and MPM89
without cutoff

Water Vapor Line Absorption: The local line absorption is defined as

αR98
` = NH2O ·

∑
k

Sk(T ) · Fc(ν, νk)

= NH2O ·
∑
k

Sk(T ) ·
(
ν

νk

)2

· [fc(ν,+νk) + fc(ν,−νk)] Np/km (3.67)

where NH2O is the number density of water molecules, ν the frequency and S the line
intensity, calculated from the HITRAN92 data base Rothman et al. [1992]. Considered for
this re-investigation are 15 lines with a frequency lower than 1 THz as listed in Table 3.12.

The line shape function Fc(ν, νk) has a cutoff frequency, νcutoff, and a baseline subtrac-
tion similar to the CKD model Clough et al. [1989]. The introduction of a cutoff frequency
has two advantages: (1) the cutoff avoids applying the line shape to distant frequencies
where the line form is theoretically not well understood and (2) the cutoff also establishes a
limit to the summation in Eq. (3.67) where lines far away from the cutoff limit do not con-
tribute to the sum. The Rosenkranz formulation uses the same value for the cutoff frequency
as the CKD model:

νcutoff = 750 GHz (3.68)

The explicit mathematical form of the line shape function is defined in such a way that in
the limit νcutoff →∞ the combination of Eq. (3.67) with the line shape function would be
equivalent to a Van Vleck–Weisskopf [Van Vleck and Weisskopf , 1945] line shape:

fc(ν,±νk) =


γk
π

{
1

(ν ∓ νk)2 + γ2
k
− 1

ν2
cutoff + γ2

k

}
: |ν ± νk| < νcutoff

0 : |ν ± νk| ≥ νcutoff

(3.69)

νk is the line center frequency and γk the line half width, which is calculated according to

γk = ws,k · PH2O ·Θ
ns + wf,k · Pd ·Θ

nf GHz (3.70)



3.3 COMPLETE ABSORPTION MODELS 63

with PH2O and Pd as the partial pressure of water vapor and of dry air, respectively. The line
depending parameters ws,k, ns, wf,k, and nf are listed in Table 3.12 and the dimensionless
parameter Θ is defined as Θ = 300 K/T .

Because of the structural similarity to MPM89, the line broadening parameters differ
only in minor respects from the values used therein (only the parameters xs,1, wf,2 and ws,2

are significantly different).

index νk wf,k nf ws,k ns
k [GHz] [GHz/kPa] [1] [GHz/kPa] [1]
1 22.2351 0.00281 0.69 0.01349 0.61
2 183.3101 0.00281 0.64 0.01491 0.85
3 321.2256 0.00230 0.67 0.01080 0.54
4 325.1529 0.00278 0.68 0.01350 0.74
5 380.1974 0.00287 0.54 0.01541 0.89
6 439.1508 0.00210 0.63 0.00900 0.52
7 443.0183 0.00186 0.60 0.00788 0.50
8 448.0011 0.00263 0.66 0.01275 0.67
9 470.8890 0.00215 0.66 0.00983 0.65

10 474.6891 0.00236 0.65 0.01095 0.64
11 488.4911 0.00260 0.69 0.01313 0.72
12 556.9360 0.00321 0.69 0.01320 1.00
13 620.7008 0.00244 0.71 0.01140 0.68
14 752.0332 0.00306 0.68 0.01253 0.84
15 916.1712 0.00267 0.70 0.01275 0.78

Table 3.12: Line parameters of the Rosenkranz absorption model (R98) (values taken from
Rosenkranz [1998]).

Water Vapor Continuum Absorption: The continuum absorption in R98 has the same
functional dependence on frequency, pressure, and temperature like in MPM87/MPM89
(see Sec. 3.3.1 for details):

αR98
c = ν2 · PH2O · (C

o
H2O · PH2O ·Θ

ns + Co
d · Pd ·Θ

nf) (3.71)

with

Co
H2O = 7.80 · 10−8 (dB/km) / (hPa·GHz)2

ns = 7.5

Co
d = 0.236 · 10−8 (dB/km) / (hPa·GHz)2

nd = 3.0

The main difference to the MPM versions are the values of these parameters, since
Rosenkranz used additional data to fit his set of parameters. A second point is the cutoff in
the line shape of the line absorption calculation. Since this cutoff decreases the line absorp-
tion in the window regions, the continuum absorption tends to compensate this decrease to



64 GAS ABSORPTION

get the same total absorption as withouot cutoff. This effects mainly the parameters Co
H2O

and Co
d but has also an influence in the temperature dependence and therefore on ns and nd.

3.3.2 Complete Oxygen Models

Since the Maxwell equations are symmetric in the electric and magnetic fields, electric as
well as magnetic dipole transitions are both possible although magnetic dipoles are in gen-
eral some orders of magnitudes weaker and therefore not relevant in atmospheric radiative
transfer models. An exception to this is the complex around 60 GHz of the paramagnetic
oxygen magnetic dipole transitions. This bulk of lines arise due to the fact that for rota-
tional quantum numbers K > 1 the allowed transitions ∆J = ±1 have an energy gap of
approximately 60 GHz.
The most frequently used absorption model for this absorption effect is that of Liebe,
Rosenkranz, and Hufford Liebe et al. [1992] (also reported in Rosenkranz [1993] with a
slightly different parameterization).

For oxygen – like for water vapor – the total absorption (αtot) is modelled as the line
absorption (α`) plus a continuum absorption (αc):

αtot = α` + αc (3.72)

It has to be emphasized that, α` and αc of different models are not necessarily compatible
and should therefore not be interchanged.

PWR93 Oxygen Absorption Model

Resonant Oxygen Absorption The oxygen absorption model of Rosenkranz is described
in Rosenkranz [1993]. It is based on the investigations made by Liebe, Rosenkranz, and
Hufford Liebe et al. [1992]. The FORTRAN77 computer program of Rosenkranz for the O2

absorption calculation can be downloaded via anonymous ftp from mesa.mit.edu/phil/lbl rt.
The oxygen line catalog has 40 lines from which 33 lines build the complex around

60 GHz. The parameterization of the line absorption, αR98
` , is:

αR98
` =

nO2

π
·

40∑
k=1

Sk(T ) · F (ν, νk) (3.73)

line intensity:

Sk(T ) = Sk(300 K) / exp (bk ·Θ) (3.74)

line shape function:

F (ν, νk) =

(
ν

νk

)2

·
[

Γk + (ν − νk) · Yk
(ν − νk)2 + Γ2

k

+
Γk − (ν + νk) · Yk

(ν + νk)2 + Γ2
k

]
line width:

Γk = wk ·
(
Pd ·Θ

0.8 + 1.1 · PH2O ·Θ
)

(3.75)

line coupling:

Yk = Pair ·Θ
0.8 · [yk + (Θ− 1) · vk]

number density of O2:

nO2 = (0.20946 · Pair)/(kB · T )



3.3 COMPLETE ABSORPTION MODELS 65

where Sk(300 K) denotes the reference line intensity at T=300 K ant the exponential term
approximates the exact partition function. All model parameters (see Refs. Rosenkranz
[1993] and Liebe et al. [1992] for the laboratory measurements and the fitting parameters)
are tabulated in Table 3.13.

index νk Sk(300 K) bk wk yk vk
k [GHz] [cm2 Hz] [1] [MHz

hPa ] [10−3

hPa ] [10−3

hPa ]
1 118.7503 .2936· 10−14 .009 1.63 -0.0233 0.0079
2 56.2648 .8079· 10−15 .015 1.646 0.2408 -0.0978
3 62.4863 .2480· 10−14 .083 1.468 -0.3486 0.0844
4 58.4466 .2228· 10−14 .084 1.449 0.5227 -0.1273
5 60.3061 .3351· 10−14 .212 1.382 -0.5430 0.0699
6 59.5910 .3292· 10−14 .212 1.360 0.5877 -0.0776
7 59.1642 .3721· 10−14 .391 1.319 -0.3970 0.2309
8 60.4348 .3891· 10−14 .391 1.297 0.3237 -0.2825
9 58.3239 .3640· 10−14 .626 1.266 -0.1348 0.0436
10 61.1506 .4005· 10−14 .626 1.248 0.0311 -0.0584
11 57.6125 .3227· 10−14 .915 1.221 0.0725 0.6056
12 61.8002 .3715· 10−14 .915 1.207 -0.1663 -0.6619
13 56.9682 .2627· 10−14 1.260 1.181 0.2832 0.6451
14 62.4112 .3156· 10−14 1.260 1.171 -0.3629 -0.6759
15 56.3634 .1982· 10−14 1.660 1.144 0.3970 0.6547
16 62.9980 .2477· 10−14 1.665 1.139 -0.4599 -0.6675
17 55.7838 .1391· 10−14 2.119 1.110 0.4695 0.6135
18 63.5685 .1808· 10−14 2.115 1.108 -0.5199 -0.6139
19 55.2214 .9124· 10−15 2.624 1.079 0.5187 0.2952
20 64.1278 .1230· 10−14 2.625 1.078 -0.5597 -0.2895
21 54.6712 .5603· 10−15 3.194 1.05 0.5903 0.2654
22 64.6789 .7842· 10−15 3.194 1.05 -0.6246 -0.2590
23 54.1300 .3228· 10−15 3.814 1.02 0.6656 0.3750
24 65.2241 .4689· 10−15 3.814 1.02 -0.6942 -0.3680
25 53.5957 .1748· 10−15 4.484 1.00 0.7086 0.5085
26 65.7648 .2632· 10−15 4.484 1.00 -0.7325 -0.5002
27 53.0669 .8898· 10−16 5.224 .97 0.7348 0.6206
28 66.3021 .1389· 10−15 5.224 .97 -0.7546 -0.6091
29 52.5424 .4264· 10−16 6.004 .94 0.7702 0.6526
30 66.8368 .6899· 10−16 6.004 .94 -0.7864 -0.6393
31 52.0214 .1924· 10−16 6.844 .92 0.8083 0.6640
32 67.3696 .3229· 10−16 6.844 .92 -0.8210 -0.6475
33 51.5034 .8191· 10−17 7.744 .89 0.8439 0.6729
34 67.9009 .1423· 10−16 7.744 .89 -0.8529 -0.6545
35 368.4984 .6460· 10−15 .048 1.92 0.0000 0.0000
36 424.7631 .7047· 10−14 .044 1.92 0.0000 0.0000
37 487.2494 .3011· 10−14 .049 1.92 0.0000 0.0000

Table 3.13: (continued)



66 GAS ABSORPTION

index νk Sk(300 K) bk wk yk vk
38 715.3932 .1826· 10−14 .145 1.81 0.0000 0.0000
39 773.8397 .1152· 10−13 .141 1.81 0.0000 0.0000
40 834.1453 .3971· 10−14 .145 1.81 0.0000 0.0000

Table 3.13: List of O2 spectral lines of the Rosenkranz absorption model
Rosenkranz [1993].

Oxygen Continuum Absorption: As pointed out by Van Vleck Van Vleck [1987], the
standard theory for non-resonant absorption is that of Debye (see also Ref. Townes and
Schawlow [1955]). The Debye line shape is obtained from the VVW line shape function by
the limiting case νk → 0. Rosenkranz Rosenkranz [1993] adopt the Debye theory for his
models:

αc = C · Pd ·Θ
2 · ν2 · γ
ν2 + γ2

(3.76)

γ = w · (Pd ·Θ
0.8 + 1.1 · PH2O ·Θ) (3.77)

The values for the parameters are C = 1.11 · 10−5 dB/km/(hPa GHz) and w = 5.6 · 10−4

GHz/hPa, respectively. This absorption term is proportional to the collision frequency of a
single oxygen molecule and thus proportional to the dry air pressure7.

MPM93 Oxygen Absorption Model

Oxygen Line Absorption: The oxygen line catalog has 44 lines from which 37 lines
build the complex around 60 GHz [Liebe et al., 1993]. The parameterization of the line
absorption, αMPM

` , is (in units of dB/km):

αMPM
` = 0.1820 · ν2 ·

44∑
k=1

Sk(T ) · F (ν, νk) dB/km (3.78)

with

line intensity:

Sk(T ) =
a1,k

νk
· Pd ·Θ

3 · exp [a2,k · (1−Θ)] (3.79)

line shape function:

F (ν, νk) =

[
γk + (ν − νk) · δk

(ν − νk)2 + γ2
k

+
γk − (ν + νk) · δk

(ν + νk)2 + γ2
k

]
line width:

γk = a3,k · 10−3 · (Pd ·Θ
a4,k + 1.10 · PH2O ·Θ) (3.80)

line coupling:

δk = Pair ·Θ
0.8 · [a5,k + Θ · a6,k]

7The absorption due to weakly bound complexes of O2–X with X = H2O, N2 is treated separately and
therefore not included in this Debye formula.



3.3 COMPLETE ABSORPTION MODELS 67

where a1−5,k are the fitted parameters due to laboratory measurements Liebe et al. [1992].
All model parameters are tabulated in Table 3.14. One has to note that in the MPM93 code
is a threshold value for αMPM

` implemented:

αMPM
` =

{
αMPM
` : αMPM

` > 0

0 : αMPM
` < 0

(3.81)

Therefore the oxygen absorption in the wings of the strong O2-lines is remarkably higher
than in the R93 model.

index νk a1,k a2,k a3,k a4,k a5,k a6,k

k [GHz] [kHz
hPa ] [1] [MHz

hPa ] [1] [ 103

hPa ] [ 103

hPa ]
1 50.474238 0.094 9.694 0.890 0.0 0.240 0.790
2 50.987749 0.246 8.694 0.910 0.0 0.220 0.780
3 51.503350 0.608 7.744 0.940 0.0 0.197 0.774
4 52.021410 1.414 6.844 0.970 0.0 0.166 0.764
5 52.542394 3.102 6.004 0.990 0.0 0.136 0.751
6 53.066907 6.410 5.224 1.020 0.0 0.131 0.714
7 53.595749 12.470 4.484 1.050 0.0 0.230 0.584
8 54.130000 22.800 3.814 1.070 0.0 0.335 0.431
9 54.671159 39.180 3.194 1.100 0.0 0.374 0.305
10 55.221367 63.160 2.624 1.130 0.0 0.258 0.339
11 55.783802 95.350 2.119 1.170 0.0 -0.166 0.705
12 56.264775 54.890 0.015 1.730 0.0 0.390 -0.113
13 56.363389 134.400 1.660 1.200 0.0 -0.297 0.753
14 56.968206 176.300 1.260 1.240 0.0 -0.416 0.742
15 57.612484 214.100 0.915 1.280 0.0 -0.613 0.697
16 58.323877 238.600 0.626 1.330 0.0 -0.205 0.051
17 58.446590 145.700 0.084 1.520 0.0 0.748 -0.146
18 59.164207 240.400 0.391 1.390 0.0 -0.722 0.266
19 59.590983 211.200 0.212 1.430 0.0 0.765 -0.090
20 60.306061 212.400 0.212 1.450 0.0 -0.705 0.081
21 60.434776 246.100 0.391 1.360 0.0 0.697 -0.324
22 61.150560 250.400 0.626 1.310 0.0 0.104 -0.067
23 61.800154 229.800 0.915 1.270 0.0 0.570 -0.761
24 62.411215 193.300 1.260 1.230 0.0 0.360 -0.777
25 62.486260 151.700 0.083 1.540 0.0 -0.498 0.097
26 62.997977 150.300 1.665 1.200 0.0 0.239 -0.768
27 63.568518 108.700 2.115 1.170 0.0 0.108 -0.706
28 64.127767 73.350 2.620 1.130 0.0 -0.311 -0.332
29 64.678903 46.350 3.195 1.100 0.0 -0.421 -0.298
30 65.224071 27.480 3.815 1.070 0.0 -0.375 -0.423
31 65.764772 15.300 4.485 1.050 0.0 -0.267 -0.575
32 66.302091 8.009 5.225 1.020 0.0 -0.168 -0.700
33 66.836830 3.946 6.005 0.990 0.0 -0.169 -0.735
34 67.369598 1.832 6.845 0.970 0.0 -0.200 -0.744

Table 3.14: (continued)



68 GAS ABSORPTION

index νk a1,k a2,k a3,k a4,k a5,k a6,k

35 67.900867 0.801 7.745 0.940 0.0 -0.228 -0.753
36 68.431005 0.330 8.695 0.920 0.0 -0.240 -0.760
37 68.960311 0.128 9.695 0.900 0.0 -0.250 -0.765
38 118.750343 94.500 0.009 1.630 0.0 -0.036 0.009
39 368.498350 6.790 0.049 1.920 0.6 0.000 0.000
40 424.763124 63.800 0.044 1.930 0.6 0.000 0.000
41 487.249370 23.500 0.049 1.920 0.6 0.000 0.000
42 715.393150 9.960 0.145 1.810 0.6 0.000 0.000
43 773.839675 67.100 0.130 1.820 0.6 0.000 0.000
44 834.145330 18.000 0.147 1.810 0.6 0.000 0.000

Table 3.14: List of O2 spectral lines of the MPM93 absorption model Liebe et al.
[1993].

Oxygen Continuum Absorption: As pointed out by Van Vleck Van Vleck [1987], the
standard theory for non-resonant absorption is that of Debye (see also Ref. Townes and
Schawlow [1955]). The Debye line shape is obtained from the VVW line shape function by
the limiting case νk → 0. Liebe et al. [1993] adopt the Debye theory for his model:

αc = C · Pd ·Θ
2 · ν2 · γ
ν2 + γ2

(3.82)

γ = w · Ptot ·Θ0.8

The values for the parameters are C = 1.11 · 10−5 dB/km/(hPa GHz) and w = 5.6 · 10−4

GHz/hPa, respectively. This absorption term is proportional to the collision frequency of a
single oxygen molecule and thus proportional to the dry air pressure8.

3.3.3 ARTS Workspace Variables and Methods

This section explains how the above described full models (continuum+lines) are repre-
sented in the structure of the arts source code and how one can invoke them in the arts
control file.

The full model tags need more input specification than normal trace gas tags. Why
this is so can be seen from Eq. 3.27 and Table 3.4. For a single function for the water
vapor continuum we find several different function parameters in the literature. To solve
this ambiguity arts has two methods implemented which helps the user to select a single
set of parameters in an easy way. In connection with this input parameters we distinguish
generally two types, the referenced models which are taken from the literature (e. g. Liebe
et al. [1993] or Rosenkranz [1993]) and the user model, for which the arts user is providing
the necessary parameter values.

After selecting the continuum tag with the tagDefine method, the arts user has to
setup the arts internal structure (i. e. the workspace variables cont description names,

8The absorption due to weakly bound complexes of O2–X with X = H2O, N2 is treated separately and
therefore not included in this Debye formula.



3.3 COMPLETE ABSORPTION MODELS 69

cont description models, and cont description parameters) for the selected continuum
tags, which can simply be done by putting the following line into the arts control file:

cont_descriptionInit{}

After this initialization, the continuum tag specific information has to be transfered to
arts. This is possible with the arts method cont descriptionAppend, which has itself three
input variables: tagname, model, and userparameters. The user has to specify these input
variables in the arts control file for each selected continuum tag. Below is a list of all
the implemented continuum tags and the associated valid range of the input variables for
cont descriptionAppend. For a condensed overview of the possible continuum tags and
their referenced models see Table 3.15 and the online documentation can be found under
arts/doc/doxygen/html/continua cc.html.

One has to note at this place that the two input variables model and userparameters
are to some extend redundant. Therefore one can also produce an ambiguity by giving
contradicting values for these two input variables. To avoid such ambiguities the arts user
should keep in mind the general rule that only the user model (model =”user”) needs in-
put parameters via the input variable userparameters. All the referenced models need no
input via userparameters. If you try to run the arts control file with a referenced model
and input parameters you will get an error message. Below in the detailed description of
cont descriptionAppend you can find correct examples for all the continuum tags.

• The water vapor model of MPM87 [Liebe and Layton, 1987] has the arts tag name
"H2O-MPM87". The details about this water vapor absorption model are described
in Section 3.3.1. The standard way to use the full (=continuum+lines) MPM87 water
vapor absorption model is to set the input variable model to ”MPM87” and leaving
the input parameter userparameters empty. It might be necessary in some cases to use
only the line or the continuum absorption part of MPM87. This can be easily done by
setting model to ”MPM87Lines” or ”MPM87Continuum”, respectively (leaving the
input parameter userparameters empty too).
To have a minimum possibility of variation for MPM87, arts allows to run MPM87
also with model = ”user”. In this case the user has to provide three scaling factors,
CC, CL, and CW , with the input variable userparameters, userparameters = [CC,
CL, CW ]. Each line intensity Sk(T ) (see Eq. (3.47)) is multiplied with the scaling
factor CL, while CW scales each line width, γk, (see Eq. (3.50)). The continuum
absorption, αMPM87

c , (see Eq. (3.51)) also scales with CC.
In the following all the valid possibilities for the tag "H2O-MPM87" are listed (the
values for the model user are just example values):

cont_descriptionAppend{
name = "H2O-MPM87"
model = "MPM87"
userparameters = [ ]

}
cont_descriptionAppend{

name = "H2O-MPM87"
model = "MPM87Lines"



70 GAS ABSORPTION

userparameters = [ ]
}
cont_descriptionAppend{

name = "H2O-MPM87"
model = "MPM87Continuum"
userparameters = [ ]

}
cont_descriptionAppend{

name = "H2O-MPM87"
model = "user"
userparameters = [ 1.0, 1.0, 1.0 ]

}

• The full water vapor absorption model MPM89 Liebe [1989] has the arts tag name
"H2O-MPM89". The details about this water vapor absorption model are described
in Section 3.3.1. The standard way to use the full (=continuum+lines) MPM87 water
vapor absorption model is to set the input variable model to ”MPM89” and leaving
the input parameter userparameters empty. It might be necessary in some cases to use
only the line or the continuum absorption part of MPM89. This can be easily done by
setting model to ”MPM89Lines” or ”MPM89Continuum”, respectively (leaving the
input parameter userparameters empty too).
To have a minimum possibility of variation for MPM89, arts allows to run MPM89
also with model = ”user”. In this case the user has to provide three scaling factors,
CC, CL, and CW , with the input variable userparameters, userparameters = [CC,
CL, CW ]. Each line intensity Sk(T ) (see Eq. (3.54)) is multiplied with the scaling
factor CL, while CW scales each line width, γk, (see Eq. (3.56)). The continuum
absorption, αMPM89

c , (see Eq. (3.57)) also scales with CC.
In the following all the valid possibilities for the tag "H2O-MPM89" are listed (the
values for the model user are just example values):

cont_descriptionAppend{
name = "H2O-MPM89"
model = "MPM89"
userparameters = [ ]

}
cont_descriptionAppend{

name = "H2O-MPM89"
model = "MPM89Lines"
userparameters = [ ]

}
cont_descriptionAppend{

name = "H2O-MPM89"
model = "MPM89Continuum"
userparameters = [ ]

}
cont_descriptionAppend{



3.3 COMPLETE ABSORPTION MODELS 71

name = "H2O-MPM89"
model = "user"
userparameters = [ 1.0, 1.0, 1.0 ]

}

• The water vapor model of MPM93 Liebe et al. [1993] has the arts tag name
H2O-MPM93. The details about this water vapor absorption model are described
in Section 3.3.1. The standard way to use the full (=continuum+lines) MPM93 water
vapor absorption model is to set the input variable model to ”MPM93” and leaving
the input parameter userparameters empty. It might be necessary in some cases to use
only the line or the continuum absorption part of MPM93. This can be easily done by
setting model to ”MPM93Lines” or ”MPM93Continuum”, respectively (leaving the
input parameter userparameters empty too).
To have a minimum possibility of variation for MPM93, arts allows to run MPM93
also with model = ”user”. In this case the user has to provide three scaling factors,
CC, CL, and CW , with the input variable userparameters, userparameters = [CC,
CL, CW ]. Each line intensity Sk(T ) (see Eq. (3.60)) is multiplied with the scaling
factor CL, while CW scales each line width, γk, (see Eq. (3.63)). The continuum
absorption, αMPM93

c , (see Eq. (3.60)) also scales with CC.
In the following all the valid possibilities for the tag "H2O-MPM93" are listed (the
values for the model user are just example values):

cont_descriptionAppend{
name = "H2O-MPM93"
model = "MPM93"
userparameters = [ ]

}
cont_descriptionAppend{

name = "H2O-MPM93"
model = "MPM93Lines"
userparameters = [ ]

}
cont_descriptionAppend{

name = "H2O-MPM93"
model = "MPM93Continuum"
userparameters = [ ]

}
cont_descriptionAppend{

name = "H2O-MPM93"
model = "user"
userparameters = [ 1.0, 1.0, 1.0 ]

}

• The water vapor model of CP98 [Cruz Pol et al., 1998] has the arts tag name
"H2O-CP98". The details about this water vapor absorption model are described
in Section 3.3.1. The standard way to use the full (=continuum+lines) CP98 water



72 GAS ABSORPTION

vapor absorption model is to set the input variable model to ”CP98” and leaving the
input parameter userparameters empty. It might be necessary in some cases to use
only the line or the continuum absorption part of CP98. This can be easily done by
setting model to ”CruzPolLines” or ”CruzPolContinuum”, respectively (leaving the
input parameter userparameters empty too).
To have a minimum possibility of variation for CP98, arts allows to run CP98 also
with model = ”user”. In this case the user has to provide three scaling factors, CC,
CL, and CW , with the input variable userparameters, userparameters = [CC, CL,
CW ]. Each line intensity Sk(T ) (see Eq. (3.65)) is multiplied with the scaling factor
CL, while CW scales each line width, γk, (see Eq. (3.65)). The continuum absorp-
tion, αCP98

c , (see Eq. (3.66)) also scales with CC.
In the following all the valid possibilities for the tag "H2O-CP98" are listed (the
values for the model user are just example values):

cont_descriptionAppend{
name = "H2O-CP98"
model = "CruzPol"
userparameters = [ ]

}
cont_descriptionAppend{

name = "H2O-CP98"
model = "CruzPolLines"
userparameters = [ ]

}
cont_descriptionAppend{

name = "H2O-CP98"
model = "CruzPolContinuum"
userparameters = [ ]

}
cont_descriptionAppend{

name = "H2O-CP98"
model = "user"
userparameters = [ 1.0, 1.0, 1.0 ]

}

• The water vapor model of PWR98 [Rosenkranz, 1998] has the arts tag name
"H2O-PWR98". The details about this water vapor absorption model are described
in Section 3.3.1. The standard way to use the full (=continuum+lines) CP98 water va-
por absorption model is to set the input variable model to ”Rosenkranz” and leaving
the input parameter userparameters empty. It might be necessary in some cases to use
only the line or the continuum absorption part of PWR98. This can be easily done by
setting model to ”RosenkranzLines” or ”RosenkranzContinuum”, respectively (leav-
ing the input parameter userparameters empty too).
To have a minimum possibility of variation for CP98, arts allows to run PWR98 also
with model = ”user”. In this case the user has to provide three scaling factors, CC,
CL, and CW , with the input variable userparameters, userparameters = [CC, CL,



3.3 COMPLETE ABSORPTION MODELS 73

CW ]. Each line intensity Sk(T ) (see Eq. (3.67)) is multiplied with the scaling factor
CL, while CW scales each line width, γk, (see Eq. (3.70)). The continuum absorp-
tion, αR98

c , (see Eq. (3.71)) also scales with CC.
In the following all the valid possibilities for the tag "H2O-PWR98" are listed (the
values for the model user are just example values):

cont_descriptionAppend{
name = "H2O-PWR98"
model = "Rosenkranz"
userparameters = [ ]

}
cont_descriptionAppend{

name = "H2O-PWR98"
model = "RosenkranzLines"
userparameters = [ ]

}
cont_descriptionAppend{

name = "H2O-PWR98"
model = "RosenkranzContinuum"
userparameters = [ ]

}
cont_descriptionAppend{

name = "H2O-PWR98"
model = "user"
userparameters = [ 1.0, 1.0, 1.0 ]

}

• The MPM93 full absorption model for oxygen [Liebe et al., 1993] has the arts tag
name "O2-MPM93". The details about this oxygen absorption model are described
in Section 3.3.2. The standard way to use the full (=continuum+lines) MPM93 oxy-
gen absorption model is to set the input variable model to ”MPM93” and leaving the
input parameter userparameters empty. It might be necessary in some cases to use
only the line or the continuum absorption part of MPM93. This can be easily done by
setting model to ”MPM93Lines” or ”MPM93Continuum”, respectively (leaving the
input parameter userparameters empty too).
To have a minimum possibility of variation for MPM93, arts allows to run MPM93
also with model = ”user”. In this case the user has to provide four scaling factors,
CC, CL, CW , and CO, with the input variable userparameters, e. g. userparame-
ters = [CC, CL, CW , CO]. Each line intensity Sk(T ) (see Eq. (3.79)) is multiplied
with the scaling factor CL, while CW scales each line width, γk, (see Eq. (3.80))
and CO the line coupling parameter (see Eq. (3.81)). The continuum absorption, (see
Eq. (3.82)) also scales with CC.
In the following all the valid possibilities for the tag "O2-MPM93" are listed (the
values for the model user are just example values):

cont_descriptionAppend{



74 GAS ABSORPTION

name = "O2-MPM93"
model = "MPM93"
userparameters = [ ]

}
cont_descriptionAppend{

name = "O2-MPM93"
model = "MPM93Lines"
userparameters = [ ]

}
cont_descriptionAppend{

name = "O2-MPM93"
model = "MPM93Continuum"
userparameters = [ ]

}
cont_descriptionAppend{

name = "O2-MPM93"
model = "user"
userparameters = [ 1.0, 1.0, 1.0, 1.0 ]

}

• The PWR93 full absorption model for oxygen [Rosenkranz, 1993] has the arts tag
name "O2-PWR93". The details about this oxygen absorption model are described
in Section 3.3.2. The standard way to use the full (=continuum+lines) PWR93 oxy-
gen absorption model is to set the input variable model to ”Rosenkranz” and leaving
the input parameter userparameters empty. It might be necessary in some cases to use
only the line or the continuum absorption part of PWR93. This can be easily done by
setting model to ”RosenkranzLines” or ”RosenkranzContinuum”, respectively (leav-
ing the input parameter userparameters empty too).
To have a minimum possibility of variation for PWR93, arts allows to run PWR93
also with model = ”user”. In this case the user has to provide four scaling factors,
CC, CL, CW , and CO, with the input variable userparameters, e. g. userparame-
ters = [CC, CL, CW , CO]. Each line intensity Sk(T ) (see Eq. (3.74)) is multiplied
with the scaling factor CL, while CW scales each line width, γk, (see Eq. (3.75))
and CO the line coupling parameter (see Eq. 3.76)). The continuum absorption, (see
Eq. (3.76)) also scales with CC.
In the following all the valid possibilities for the tag "O2-PWR93" are listed (the
values for the model user are just example values):

cont_descriptionAppend{
name = "O2-PWR93"
model = "Rosenkranz"
userparameters = [ ]

}
cont_descriptionAppend{

name = "O2-PWR93"
model = "RosenkranzLines"



3.3 COMPLETE ABSORPTION MODELS 75

userparameters = [ ]
}
cont_descriptionAppend{

name = "O2-PWR93"
model = "RosenkranzContinuum"
userparameters = [ ]

}
cont_descriptionAppend{

name = "O2-PWR93"
model = "user"
userparameters = [ 1.0, 1.0, 1.0, 1.0]

}



76 GAS ABSORPTION

co
nt

in
uu

m
co

nt
de

sc
ri

pt
io

nA
pp

en
d

in
pu

t
re

fe
re

nc
e/

ar
ts

so
ur

ce
co

de
fu

nc
tio

n
in

pu
tp

ar
am

et
er

ar
ts

ug
ui

de
w

at
er

va
po

r
(H

2
O

)
R

os
en

kr
an

z
ta

gn
am

e
=

"
H
2
O
-
P
W
R
9
8
"

R
os

en
kr

an
z

[1
99

8]
PW

R
98

H
2O

A
bs

M
od

el
m

od
el

=
”R

os
en

kr
an

z”
us

er
pa

ra
m

et
er

s
=

[]
C

ru
z-

Po
l

ta
gn

am
e

=
"
H
2
O
-
C
P
9
8
"

C
ru

z
Po

le
ta

l.
[1

99
8]

C
P9

8H
2O

A
bs

M
od

el
m

od
el

=
”C

ru
zP

ol
”

us
er

pa
ra

m
et

er
s

=
[]

M
PM

97
ta

gn
am

e
=

"
H
2
O
-
M
P
M
8
7
"

Li
eb

e
an

d
La

yt
on

[1
98

7]
M

PM
87

H
2O

A
bs

M
od

el
m

od
el

=
”M

PM
93

”
us

er
pa

ra
m

et
er

s
=

[]
M

PM
89

ta
gn

am
e

=
"
H
2
O
-
M
P
M
8
9
"

Li
eb

e
[1

98
9]

M
PM

89
H

2O
A

bs
M

od
el

m
od

el
=

”M
PM

93
”

us
er

pa
ra

m
et

er
s

=
[]

M
PM

93
ta

gn
am

e
=

"
H
2
O
-
M
P
M
9
3
"

Li
eb

e
et

al
.[

19
93

]
M

PM
93

H
2O

A
bs

M
od

el
m

od
el

=
”M

PM
93

”
us

er
pa

ra
m

et
er

s
=

[]
ox

yg
en

(O
2
)

R
os

en
kr

an
z

ta
gn

am
e

=
"
O
2
-
S
e
l
f
C
o
n
t
P
W
R
9
3
"

R
os

en
kr

an
z

[1
99

3]
PW

R
93

O
2A

bs
M

od
el

m
od

el
=

”R
os

en
kr

an
z”

us
er

pa
ra

m
et

er
s

=
[]

M
PM

93
ta

gn
am

e
=

"
O
2
-
S
e
l
f
C
o
n
t
M
P
M
9
3
"

Li
eb

e
et

al
.[

19
93

]
M

PM
93

O
2A

bs
M

od
el

m
od

el
=

”M
PM

93
”

us
er

pa
ra

m
et

er
s

=
[]

Ta
bl

e
3.

15
:

T
hi

s
ta

bl
e

gi
ve

s
an

ov
er

vi
ew

of
th

e
im

pl
em

en
te

d
re

fe
re

nc
ed

fu
ll

(c
on

tin
ua

+l
in

e)
ab

so
rp

tio
n

m
od

el
s

an
d

ho
w

th
ey

ar
e

sp
ec

ifi
ed

in
th

e
ar

ts
m

et
ho

d
co

nt
de

sc
ri

pt
io

nA
pp

en
d.

A
dd

iti
on

al
ly

th
e

re
fe

re
nc

e
an

d
th

e
ar

ts
so

ur
ce

co
de

fu
nc

tio
n

na
m

es
(s

ee
fil

e
ar

ts
/s

rc
/c

on
tin

ua
.c

c
ar

e
pr

ov
id

ed
.

T
he

de
ta

ile
d

on
lin

e
do

cu
m

en
ta

tio
n

ca
n

be
fo

un
d

un
de

r
ar

ts
/d

oc
/d

ox
yg

en
/h

tm
l/c

on
tin

ua
cc

.h
tm

l)
.



3.3 COMPLETE ABSORPTION MODELS 77

ARTS Example Control File for the Full Model Tags

Below you will find an example of a control file for all the implemented fixed full
models to calculate line+continuum absorption of water vapor and oxygen. Please note
that to run this example control file you have to specify user specific paths and in-
put file names to run it properly. You can find this example in the arts directory
arts/doc/examples/fullmodels example.arts

# ######## EXAMPLE FULL MODEL TAG CONTROL FILE #######
# define the arts full model tags of arts
tgsDefine{
      [ 

"N2−SelfContStandardType",
"H2O−CP98",
"H2O−MPM87",
"H2O−MPM89",
"H2O−MPM93",
"H2O−PWR98",
"O2−PWR93",
"O2−MPM93"

      ] 
}
#
#
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#
#
cont_descriptionInit{}
#
#
# −−−−− H2O full models (line+continuum) −−−−−−−−−−−−
#
# Cruz−Pol 1998 H2O absorption model (line + continuum)
cont_descriptionAppend{
    tagname        = "H2O−CP98"
    model         = "CruzPol"
    userparameters = [ ]
}
#
# Rosenkranz 1998 H2O absorption model (lines + continuum)
cont_descriptionAppend{
    tagname        = "H2O−PWR98"
    model         = "Rosenkranz"
    userparameters = [ ]
}
#
# MPM87 H2O absorption model (lines + continuum)
cont_descriptionAppend{
    tagname        = "H2O−MPM87"
    model         = "MPM87"
    userparameters = [ ]
}
#
# MPM89 H2O absorption model (lines + continuum)
cont_descriptionAppend{
    tagname        = "H2O−MPM89"
    model          = "MPM89"
    userparameters = [ ]
}
#
# MPM93 H2O absorption model (lines + continuum)
cont_descriptionAppend{
    tagname        = "H2O−MPM93"
    model          = "MPM93"
    userparameters = [ ]
}
#
#
#
# −−−−− O2 full models (line+continuum) −−−−−−−−−−−−−
#
# Rosenkranz O2 absorption model (line + continuum):
cont_descriptionAppend{
    tagname        = "O2−PWR93"
    model         = "RosenkranzContinuum"
    userparameters = [ ]
}
#

calculation.

full model tag selection for

This is essential for the later use of
description structure in arts.

the method cont_descriptionAppend.

initialize the continua tag

description of every full model tag

also mentioned in the tagDefine
methode above. Each description
has three input variables: 

    * model to select a referenced

    * tag name

        model or the user model

    * user given input parameters

Only in the case where the model

"user" is selected, the user given
input parameters are considered.

All other models neglect these
input parameters.

       (only valid for model "user"

        otherwise leave it blank)



78 GAS ABSORPTION

# MPM93 O2 absorption model (lines + continuum)
cont_descriptionAppend{
    tagname        = "O2−MPM93"
    model         = "MPM93Continuum"
    userparameters = [ ]
}
#
# −−−−− N2 continuum −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# One has to provide a N2 tag for method absCalc that’s 
# the only reason why we specify here the N2 continuum tag
# Rosenkranz N2−N2 continuum (only N2−N2 broadening):
cont_descriptionAppend{
    tagname        = "N2−SelfContStandardType"
    model          = "Rosenkranz"
    userparameters = [ ]
}
#
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#
# Read the pressure, temperature, and altitude 
# profiles and create the workspace variable ‘raw_ptz’.
# ATTENTION! THE PATH AND FILE NAMES ARE USER SPECIFIC!
MatrixReadAscii (raw_ptz) 
        {"@ac_arts_data@/atmosphere/fascod/midlatitude−summer.tz.aa"}
#
# The same for the input VMR profiles
# ATTENTION! THE PATH AND FILE NAMES ARE USER SPECIFIC!
raw_vmrsReadFromScenario
         {"@ac_arts_data@/atmosphere/fascod/midlatitude−summer"}
#
# Create the pressure grid ‘p_abs’ (just an example)
VectorNLogSpace(p_abs){
        start = 100000.000
        stop  =   1000.000
        n     = 100
}
# reads the input profiles
AtmFromRaw{}
#
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#
# Set the H2O profile
h2o_absSet{}
#
# Set the N2 profile
n2_absSet{}
#
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#
# Read spectral line data from HITRAN96 catalogue for 
# the frequency range from 1 to 2 GHz.
# This in not essential for the continuum tags but 
# bust be given as input for absCalc below.
# ATTENTION! THE PATH AND FILE NAMES ARE USER SPECIFIC!
lines_per_tgReadFromCatalogues{
  filenames = [ "@ac_arts_data@/spectroscopy/hitran96/hitran96_lowfreq.par" ]
  formats   = [ "HITRAN96" ]
  fmin      = [ 1.0e9 ]
  fmax      = [ 2.0e9 ]
}
# Create an example frequency grid ‘f_mono’
VectorNLinSpace(f_mono){
        start =    100.0e9
        stop  =    200.0e9
        n     =    100    
}
#
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#
#

Input frequency grid
on which the calculation
is performed.

also necessary for the 
method absCalc.

Spectral line data is

Information about the 

H2O and N2 have to
be given seperately.

Also the VMR profiles
model atmosphere.



3.3 COMPLETE ABSORPTION MODELS 79

# Set the lineshape function for each continuum tag
lineshape_per_tgDefine{
        shape               = [ "no_shape", 
                                "no_shape", 
                                "no_shape",
                                "no_shape",
                                "no_shape",
                                "no_shape",
                                "no_shape", 
                                "no_shape"]
        normalizationfactor = [ "no_norm", 
                                "no_norm", 
                                "no_norm", 
                                "no_norm",
                                "no_norm",
                                "no_norm", 
                                "no_norm", 
                                "no_norm"]
        cutoff              = [ −1,
                                −1, 
                                −1, 
                                −1, 
                                −1,        
                                −1,
                                −1, 
                                −1]
}
#
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#
# calculate the absorption coefficients, unit=1/meter
absCalc{}
#
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#
# These we definitely want to write to files:
# 1. absorption coefficient per continuum tag
ArrayOfMatrixWriteAscii (abs_per_tg) {""}
# 2. temperature profile
VectorWriteAscii (t_abs)  {""}
# 3. altitude grid
VectorWriteAscii (z_abs)  {""}
# 4. pressure grid
VectorWriteAscii(p_abs)   {""}
# 5. frequency grid
VectorWriteAscii (f_mono) {""}
# 6. cont_descriptionAppend continuum tagnames
ArrayOfStringWriteAscii (cont_description_names) {""}
# 7. cont_descriptionAppend model selections
ArrayOfStringWriteAscii (cont_description_models) {""}
# 8. cont_descriptionAppend user given input parameters
ArrayOfVectorWriteAscii (cont_description_parameters) {""}
###########################################################

Here the output is written
into the output files.

This is the method which
calculates the absorption
coefficients in units of
1/meters.

The line shape of the 
full model tags are all
internally set. Therefore
The user has not to specify
the line shape here.



80 GAS ABSORPTION



Chapter 4

Cloud Absorption

4.1 Liquid water and ice particle absorption

So far only absorption due to air was described. However hydrometeors1 can have a no-
ticeable effect on the radiative transfer through the atmosphere in the 10-30 GHz frequency
range.

The MPM93 model provides beside the absorption model of air also an absorption
model for suspended liquid water droplets and ice particles [Liebe et al., 1989, 1991; Huf-
ford, 1991; Liebe et al., 1993]. The model is applicable for the Rayleigh regime, for which
the relation r < 0.05 · λ holds where r is the particle radius and λ is the wavelength2, e. g.
for a frequency of around 22 GHz this means r < 500µm. Considering Salby [1996], this
criterium is – except for cirrus – nearly for every aerosol and cloud class satisfied. But one
has to bear in mind that these values have a wide range of variability, for example, Salby
[1996] states that the mean particle radius for stratus, cumulus, and nimbus clouds can be
in the range of 10-1000µm and that the particle radius distribution is highly unsymmetric.

With respect to the imaginary part of the complex refractivity, a unified parameterization
of liquid and ice particle absorption is formulated in MPM93:

α = 0.1820 · ν ·N ′′ dB/km (4.1)

N ′′ =
3

2
· w
m
· =[(εr − 1)/(εr + 2)]

N ′′ =
3

2
· w
m
·
[

3 · ε′′r
(ε′r + 2)2 + (ε′′r )2

]

where w is the liquid water (0.0< LWC < 5.0 g/m3) or ice mass (0.0 IWC 1.0 g/m3) con-
tent and m is the water or ice bulk density (ρl,i=1.0 g/cm3 and 0.916 g/cm3, respectively).
The difference between liquid water and ice absorption is put in the expressions for the
complex permittivities (i. e. the relative dielectric constant), εr = ε

′
r + i · ε′′r , which depend

on frequency and temperature.
• Complex permittivity for suspended liquid water droplets:

ε
′
r = εo − ν2 ·

[
εo − ε1
ν2 + γ2

1

+
ε1 − ε2
ν2 + γ2

2

]
1We denote liquid water and ice particles, either suspended or precipitating, in the air as hydrometeors.
2See Brussaard and Watson [1995], page 81, for details.



82 CLOUD ABSORPTION

ε
′′
r = ν ·

[
γ1 ·

εo − ε1
ν2 + γ2

1

+ γ2 ·
ε1 − ε2
ν2 + γ2

2

]
εo = 77.66 + 103.3 · (Θ− 1) (4.2)

ε1 = 0.0671 · εo
ε2 = 3.52

γ1 = 20.20− 146 · (Θ− 1) + 316 · (Θ− 1)2 GHz (4.3)

γ2 = 39.8 · γ1 GHz

Θ = 300 K / T

• Complex permittivity for ice crystals:

ε
′
r = 3.15

ε
′′
r =

a

ν
+ b · ν

a = (Θ− 0.1871) · exp (17.0− 22.1 ·Θ) (4.4)

b =

[(
0.233

1− 0.993/Θ

)2

+
6.33

Θ
− 1.31

]
· 10−5 (4.5)

Θ = 300 K / T

The absorption is directly proportional to the liquid or ice water content LWC/IWC and
inversely proportional to the density of a single liquid ice particle ρl,i. Like the mean par-
ticle radius, the liquid and ice water content have a high variability. Table 4.1 reflects this
variability by summarizing different literature values for several cloud types. Additional
uncertainty of this absorption term comes from two sides: (1) the difference to the Rayleigh
approximation of the order of 1-6% as reported in Li et al. [1997] and (2) from the fit of
the complex permittivity. Since ε(ν, T ) was fitted to measurements which were mostly per-
formed above 0◦C, the extrapolated values for T <0oC for super-cooled clouds are not well
established. For example in Liebe et al. [1991] itself two different parameterizations for the
so called primary relaxation frequency (γ1 in Equation 4.2) are given, one polynomial in Θ
as presented in Equation 4.2) and an exponential function derived from theory. Although
the polynomial describes the selected data better than the exponential function, this might
not be true for temperatures well below 0oC. The difference in γ1 according to these two
approaches can be more than 2 GHz for very low temperatures [Lipton et al., 1999]. The
resulting consequences from this discrepancy for the absorption calculation at three mi-
crowave frequencies are shown in Figure 4.2. A more detailed discussion about this source
of uncertainty is given in Section 4.2.

4.2 Variability and Uncertainty in Cloud Absorption

In the case of clouds three sources of uncertainties can be considered at first sight: (1)
validity of the Rayleigh approximation (2) the parameterization of the relative dielectric
constants (εr) of water and ice in the microwave region, and (3) the statistical and climato-
logical variability of the cloud liquid water and ice content.

As it was stated above (Section 4.1) the Rayleigh approximation is valid for particle
sizes < 500µm. Figure 4.1 shows a particle size distribution for water clouds and ice



4.2 VARIABILITY AND UNCERTAINTY IN CLOUD ABSORPTION 83

liquid water content (LWC)
cloud class (g/m3) reference
stratus St 0.15 Salby [1996]

0.09-0.9 Seinfeld and Pandis [1998]
0.28-0.3 Hess et al. [1998]
0.29 Kneizys et al. [1996]

nimbostratus Ns 0.4 Salby [1996]
0.65 Kneizys et al. [1996]
0.05-0.3 Berton [2000]

altostratus As <0.01-0.2 Seinfeld and Pandis [1998]
0.41 Kneizys et al. [1996]
0.1-1 Berton [2000]

stratocumulus Sc 0.3 Salby [1996]
<0.1-0.7 Seinfeld and Pandis [1998]
0.15 Kneizys et al. [1996]
<0.5 Pawlowska et al. [2000]
0.05-1 Berton [2000]

cumulus Cu 0.5 Salby [1996]
0.26-0.44 Hess et al. [1998]
1.00 Kneizys et al. [1996]

cumulonimbus Cb 2.5 Salby [1996]
0.1-2 Berton [2000]

cumulus congestus Cg 0.1-3.2 Berton [2000]
FIRE-ACE - <0.7 Shupe et al. [2000]

ice water content (IWC)
cloud class (g/m3) reference
cirrus Ci 0.025 Salby [1996]

0.00193-0.0260 Hess et al. [1998]
3.128·10−4-0.06405 Kneizys et al. [1996]
0.15-0.3 Larsen et al. [1998]
<0.1 Berton [2000]

cirrostratus Cs 0.2 Salby [1996]
0.05-2 Berton [2000]

Table 4.1: Stated values for the liquid and ice water content of several cloud classes from
different sources.

clouds (cirrus) from the OPAC model [Hess et al., 1998]. According to this model only
cirrus clouds will have particles of size larger than 500µm. Nevertheless one has to keep
in mind that the variability of the particle size can be very high so that at certain condi-
tions some cloud types (most probable is the cumulonimbus) a non-negligible large particle
concentration can occur.

The uncertainty in the relative dielectric constant of water (see e. g. Lipton et al. [1999])
is largest below the freezing temperature, since only a few measurements at -4oC con-



84 CLOUD ABSORPTION

tributed to the parameterization of εr in Liebe et al. [1991], which in turn is used in the
cloud liquid water absorption model of MPM93. Figure 4.2 shows a comparison of Liebe
et al. [1991] and Ray [1972]3 parameterizations for the temperature dependence of the ex-
pression =[(εr − 1)/(εr + 2)], which is in the Rayleigh approximation one of the relevant
terms in the absorption calculation (see Equation 4.1). Additionally the same calculations
with the alternative expression of the first relaxation frequency, γ1, as stated in Equation 2b
of Liebe et al. [1991] is shown. The three versions give comparable results for temperatures
warmer than 260 K but show significant differences for temperatures below 240 K. How-
ever, an uncertainty estimation of =[(εr − 1)/(εr + 2)] is due to the lack of measurements
not easy, but it will certainly increase with decreasing temperature.

The largest variability of the involved quantities of cloud absorption is the liquid and
ice water content (LWC and IWC) of the clouds (see Table 4.1). Even within a single
cloud the LWC (IWC) changes with altitude and the distance from the cloud center as can
be seen for example in Figure 10 of Ludlam and Mason [1957] and in the model study of
Costa et al. [2000].

4.3 Water Vapor Saturation Adjustment in the Cloud

The arts method WaterVaporSaturationInClouds assures that the water vapor par-
tial pressure is automatically set to saturation pressure (100 % relative humidity) in the cloud
vertical range. This method sets the water vapor partial pressure to the saturation pressure
over liquid water in case where liquid clouds are present and to the saturation pressure over
ice where ice or water/ice clouds are present. The calculation of the saturation pressure is
calculated according to the Goff-Gratch approximation [Liebe et al., 1993]:

θ = (373.16 K/T ) (4.6)

x = A · (θ − 1) +B · log (θ) +

C ·
(
10d·(1−θ

−1) − 1
)

+ E ·
(
10g·(θ−1) − 1

)
(4.7)

ews = 101324.6 · 10.0x Pa (4.8)

with

A = −7.90298

B = 5.02808

C = −1.3816 · 10−7

d = 11.344

E = 8.1328 · 10−3

g = −3.49149

3The calculations for this parameterizastion are performed with the computer code
of W. Wiscombe, NASA, GSFC
(ftp://climate.gsfc.nasa.gov/pub/wiscombe/Refrac Index/WATER/) For the microwave frequency range this
program uses the Ray [1972] temperature parameterization.



4.4 ARTS WORKSPACE VARIABLES AND METHODS 85

The H2O saturation pressure over ice the Goff-Gratch approximation [Liebe et al., 1993]
is as follows:

θ = (273.16 K/T ) (4.9)

x = A · (θ − 1) +B · log (θ) + C ·
(
1− θ−1

)
(4.10)

eis = 610.71 · 10.0x Pa (4.11)

with

A = −9.09718

B = −3.56654

C = 0.876793

4.4 ARTS Workspace Variables and Methods

This section explains how the above described cloud absorption models are represented in
the structure of the arts source code and how one can invoke them in the arts control file.

The cloud tags needs not necessarily more input information than normal trace gas tags,
since both need only a profile. But to have more flexibility one can run these absorption
models as black boxes or with some user given input. In connection with this input param-
eters we distinguish generally two types, the referenced models which are taken from the
literature (e. g. Liebe et al. [1993]) and the user model, for which the arts user is providing
the necessary parameter values.

Formally the cloud tags are like the continuum or full model tags implemented. There-
fore after selecting the cloud tag with the tagDefine method, the arts user has to
setup the arts internal structure (i. e. the workspace variables cont description names,
cont description models, and cont description parameters) for the selected continuum
tags, which can simply be done by putting the following line into the arts control file:

cont_descriptionInit{}

After this initialization, the cloud tag specific information has to be transfered to arts.
This is possible with the arts method cont descriptionAppend, which has itself three in-
put variables: tagname, model, and userparameters. The user has to specify these in-
put variables in the arts control file for each selected cloud tag. Below is a list of
all the implemented continuum tags and the associated valid range of the input vari-
ables for cont descriptionAppend. For an overview of the possible continuum tags and
their referenced models see Table 4.2 and the online documentation can be found under
arts/doc/doxygen/html/continua cc.html.

One has to note at this place that the two input variables model and userparameters are to
some extend redundant. Therefore one can also produce an ambiguity by giving contradict-
ing values for these two input variables. To avoid such ambiguities the arts user should keep
in mind the general rule that only the user model (model =”user”) needs input parameters
via the input variable userparameters. The referenced models need no input via userparam-
eters. If you try to run the arts control file with a referenced model and input parameters
you will get an error message. Below in the detailed description of cont descriptionAppend
you can find correct examples for all the cloud tags.



86 CLOUD ABSORPTION

Figure 4.1: Cloud particle size distributions according to Equations 3a and 3c and the mi-
crophysical properties are from the Tables 1a and 1b of the OPAC model Hess et al. [1998].
For the liquid water clouds (upper plot) a modified gamma distribution is assumed whereas
for the ice clouds (lower plot) exponential functions are taken.

• The liquid water cloud absorption model of MPM93 [Liebe et al., 1993] has the arts
tag name "liquidcloud-MPM93". The details about this absorption model are
described in Section 4. The standard way to use the MPM93 liquid water cloud ab-



4.4 ARTS WORKSPACE VARIABLES AND METHODS 87

Figure 4.2: Comparison of the imaginary part of the expression (εr − 1)/(εr + 2) for
liquid water at the three frequencies of 32.9, 22.6, and 10,3 GHz. Plotted are the two
common models of Liebe et al. [1991] (a) and Ray [1972] (b). The Ray parameteri-
zation is calculated with the F77 program of W. Wiscombe, NASA, GSFC, take from
ftp://climate.gsfc.nasa.gov/pub/wiscombe/Refrac Index/WATER/. Additionally the Liebe
et al. [1991] parameterization (c) with the alternative expression for the first relaxation fre-
quency, γ1 = 20.1 · exp [7.88 · (1−Θ)], is plotted.

sorption model is to set the input variable model to ”MPM93” and leaving the input
parameter userparameters empty.
To have a minimum possibility of variation one can also run this tag with
model = ”user”. In this case one has to provide three input parameters via userpa-



88 CLOUD ABSORPTION

rameters, e. g. userparameters = [CC, CG, CE]. The first input parameter (CC)
scales the total liquid water cloud absorption (see Eq. 4.1) while CG scales the first
relaxation frequency, γ1, (see Eq. (4.3)) and CE scales εo (see Eq. 4.2)

cont_descriptionAppend{
tagname = "liquidcloud-MPM93"
model = "MPM93"
userparameters = [ ]

}
cont_descriptionAppend{

tagname = "liquidcloud-MPM93"
model = "user"
userparameters = [ 1.0, 1.0, 1.0 ]

}

• The ice water cloud absorption model of MPM93 [Liebe et al., 1993] has the arts tag
name "icecloud-MPM93". The details about this absorption model are described
in Section 4. The standard way to use the MPM93 ice water cloud absorption model
is to set the input variable model to ”MPM93” and leaving the input parameter user-
parameters empty.
To have a minimum possibility of variation one can also run this tag with
model = ”user”. In this case one has to provide three input parameters via userpa-
rameters, e. g. userparameters = [CC, CA, CB]. The first input parameter (CC)
scales the total ice water cloud absorption (see Eq. 4.1) while CA scales a, (see Eq.
(4.4)) and CB scales b (see Eq. 4.5)

# MPM93 model for ice water particle absorption:
cont_descriptionAppend{

tagname = "icecloud-MPM93"
model = "MPM93"
userparameters = [ ]

}
# MPM93 model for ice water particle absorption:
cont_descriptionAppend{

tagname = "icecloud-MPM93"
model = "user"
userparameters = [ 1.0, 1.0, 1.0 ]

}

Another important point is to state in the arts control file which cloud profile should be
read in. Becasue for a single climate zone one can have several different cloud types, it is
not enough to state e. g. just midlatitude-summer or tropical as for trace gases. Therefore
the method raw vmrsReadFromFiles has to be used to read in the trace gas and clooud
profiles. For example the following lines in the control file will read in trace gas profiles
from a midlatitude-summer scenario (this information is provided with the input variable
basename which states the basic scenario) and cumulonimbus and cirrus cloud profiles for
liquid water and ice water clouds, respectively:



4.4 ARTS WORKSPACE VARIABLES AND METHODS 89

# ATTENTION! THE PATH AND FILE NAMES ARE USER SPECIFIC!
raw_vmrsReadFromFiles
{seltags = [ "liquidcloud-MPM93",

"icecloud-MPM93" ]
filenames = [ "cumulonimbus.MPM93droplet.aa",

"cirrus.MPM93ice.aa" ]
basename = "midlatitude-summer"
}

#

The method raw vmrsReadFromFilescan be used for any tag and is not specific for
cloud tags. In general one has to state in the input variable seltags the tags which take their
profile information from the files stated in the input variable filenames, while all the tags
which are not stated in seltags take their profile information, i. e. the atmospheric scenario,
from the input variable basename.

To set the water vapor pressure in the cloud range to the saturation pressure you
can use the method WaterVaporSaturationInClouds after the call of the method
AtmFromRaw. The saturation pressure is calculated over liquid water in liquid water
clouds and over ice in ice water clouds. If both cloud types are present the saturation over
ice is taken.



90 CLOUD ABSORPTION

co
nt

in
uu

m
co

nt
de

sc
ri

pt
io

nA
pp

en
d

in
pu

t
re

fe
re

nc
e/

ar
ts

so
ur

ce
co

de
fu

nc
tio

n
in

pu
tp

ar
am

et
er

ar
ts

ug
ui

de
w

at
er

va
po

r
(H

2
O

)
M

PM
93

ta
gn

am
e

=
"
l
i
q
u
i
d
c
l
o
u
d
-
M
P
M
9
3
"

Li
eb

e
et

al
.[

19
93

]
M

PM
93

W
at

er
D

ro
pl

et
A

bs
m

od
el

=
”M

PM
93

”
us

er
pa

ra
m

et
er

s
=

[]
M

PM
93

ta
gn

am
e

=
"
i
c
e
c
l
o
u
d
-
M
P
M
9
3
"

Li
eb

e
et

al
.[

19
93

]
M

PM
93

Ic
eC

ry
st

al
A

bs
m

od
el

=
”M

PM
93

”
us

er
pa

ra
m

et
er

s
=

[]
Ta

bl
e

4.
2:

T
hi

s
ta

bl
e

gi
ve

s
an

ov
er

vi
ew

of
th

e
im

pl
em

en
te

d
re

fe
re

nc
ed

cl
ou

d
ab

so
rp

tio
n

m
od

el
s

an
d

ho
w

th
ey

ar
e

sp
ec

ifi
ed

in
th

e
ar

ts
m

et
ho

d
co

nt
de

sc
ri

pt
io

nA
pp

en
d.

A
dd

iti
on

al
ly

th
e

re
fe

re
nc

e
an

d
th

e
ar

ts
so

ur
ce

co
de

fu
nc

-
tio

n
na

m
es

(s
ee

fil
e

ar
ts

/s
rc

/c
on

tin
ua

.c
c

ar
e

pr
ov

id
ed

.
T

he
de

ta
ile

d
on

lin
e

do
cu

m
en

ta
tio

n
ca

n
be

fo
un

d
un

de
r

ar
ts

/d
oc

/d
ox

yg
en

/h
tm

l/c
on

tin
ua

cc
.h

tm
l)

.



4.4 ARTS WORKSPACE VARIABLES AND METHODS 91

ARTS Example Control File for the Full Model Tags

Below you will find an example of a control file for all the implemented cloud absorption
models. At the moment only the MPM93 model for water and ice clouds is implemented.
Please note that to run this example control file you have to specify user specific paths
and input file names to run it properly. You can find this example in the arts directory
arts/doc/examples/cloud example.arts

# ########## EXAMPLE CLOUD TAG CONTROL FILE #########
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# define the arts cloud and additional tags of arts
tgsDefine{
      [ 

"H2O−MPM93",
"O2−MPM93",
"N2−SelfContStandardType",
"liquidcloud−MPM93",
"icecloud−MPM93"

      ] 
}
#
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# initialize the continua tag structures
cont_descriptionInit{}
#
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#
#
# −−−−− H2O full models (line+continuum) −−−−−−−−−−−−
#
# MPM93 H2O absorption model (lines + continuum)
cont_descriptionAppend{
    tagname        = "H2O−MPM93"
    model          = "MPM93"
    userparameters = [ ]
}
#
# −−−−− N2 continuum −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#
cont_descriptionAppend{
    tagname        = "N2−SelfContStandardType"
    model          = "Rosenkranz"
    userparameters = [ ]
}
#
# −−−−− O2 full models (line+continuum) −−−−−−−−−−−−−
#
# MPM93 O2 absorption model (lines + continuum)
cont_descriptionAppend{
    tagname        = "O2−MPM93"
    model         = "MPM93Continuum"
    userparameters = [ ]
}
#
# −−−−− liquid water particle −−−−−−−−−−−−−−−−−−−−−−−
#
# MPM93 model for liquid water particle absorption:
cont_descriptionAppend{
    tagname        = "liquidcloud−MPM93"
    model          = "MPM93"
    userparameters = [ ]
}
# −−−−− ice water particle −−−−−−−−−−−−−−−−−−−−−−−−−−
# MPM93 model for ice water particle absorption:
cont_descriptionAppend{
    tagname        = "icecloud−MPM93"
    model          = "MPM93"
    userparameters = [ ]
}
#
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#
# Read the pressure, temperature, and altitude 
# profiles and create the workspace variable ‘raw_ptz’.
# ATTENTION! THE PATH AND FILE NAMES ARE USER SPECIFIC!
MatrixReadAscii (raw_ptz) 
  {"@ac_arts_data@/atmosphere/fascod/midlatitude−summer.tz.aa"}
#

calculation.

cloud tag selection for

This is essential for the later use of
description structure in arts.

the method cont_descriptionAppend.

initialize the cloud tag

description of every cloud tag

also mentioned in the tagDefine
methode above. Each description
has three input variables: 

    * model to select a referenced

    * tag name

       model or the user model

    * user given input parameters

Only in the case where the model

"user" is selected, the user given
input parameters are considered.

All other models neglect these
input parameters.

       (only valid for model "user",

       otherwise leave it blank)



92 CLOUD ABSORPTION

# ATTENTION! THE PATH AND FILE NAMES ARE USER SPECIFIC!
raw_vmrsReadFromFiles
  {seltags   = ["liquidcloud−MPM93", "icecloud−MPM93"]
   filenames = ["@ac_arts_data@/atmosphere/particles/midlatitude−summer.cumuloni
mbus.MPM93droplet.aa",
                "@ac_arts_data@/atmosphere/particles/midlatitude−summer.cirrus.M
PM93ice.aa"]
   basename  =  "@ac_arts_data@/atmosphere/fascod/midlatitude−summer"
  }
#
# Create the pressure grid ‘p_abs’ (just an example)
VectorNLogSpace(p_abs){
        start = 100000.000
        stop  =   1000.000
        n     = 10
}
# Now interpolate all the raw atmospheric input onto the pressure 
# grid and create the atmospheric variables ‘t_abs’,‘z_abs’,‘vmrs’
AtmFromRaw{}
#
# set the H2O VMR in clouds to saturation level 
# (must be called after AtmFromRaw)
WaterVaporSaturationInClouds{}
#
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#
# Set the physical H2O profile from the H2O profile in vmrs:
h2o_absSet{}
#
# Set the physical N2 profile from the N2 profile in vmrs:
n2_absSet{}
#
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#
# Read spectral line data from HITRAN96 catalogue for 
# the frequency range from 1 to 2 GHz.
# This in not essential for the continuum tags but 
# bust be given as input for absCalc below.
# ATTENTION! THE PATH AND FILE NAMES ARE USER SPECIFIC!
#
lines_per_tgReadFromCatalogues{
  filenames = [ "@ac_arts_data@/spectroscopy/hitran96/hitran96_lowfreq.par" ]
  formats   = [ "HITRAN96" ]
  fmin      = [ 1.0e9 ]
  fmax      = [ 2.0e9 ]
}
#
# Create an example frequency grid ‘f_mono’
VectorNLinSpace(f_mono){
        start =    100.0e9
        stop  =    200.0e9
        n     =    100    
}
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#

Information about the 

H2O and N2 have to
be given seperately.

Also the VMR profiles
model atmosphere.

also necessary for the 
method absCalc.

Spectral line data is

Input frequency grid
on which the calculation
is performed.

Water vapor saturation
in the cloud range 



4.4 ARTS WORKSPACE VARIABLES AND METHODS 93

# Set the lineshape function for each continuum tag
lineshape_per_tgDefine{
        shape               = [ "no_shape",

"no_shape",
"no_shape",
"no_shape",

                                "no_shape"]
        normalizationfactor = [ "no_norm", 
                                "no_norm", 
                                "no_norm", 
                                "no_norm", 
                                "no_norm"]
        cutoff              = [ −1,
                                −1,
                                −1,
                                −1,
                                −1]
}
#
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#
# calculate the absorption coefficients, unit=1/meter
absCalc{}
#
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#
# These we definitely want to write to files:
# 1. absorption coefficient per continuum tag
ArrayOfMatrixWriteAscii (abs_per_tg) {""}
# 2. temperature profile
VectorWriteAscii (t_abs)  {""}
# 3. altitude grid
VectorWriteAscii (z_abs)  {""}
# 4. pressure grid
VectorWriteAscii(p_abs)   {""}
# 5. frequency grid
VectorWriteAscii (f_mono) {""}
# 6. cont_descriptionAppend continuum tagnames
ArrayOfStringWriteAscii (cont_description_names) {""}
# 7. cont_descriptionAppend model selections
ArrayOfStringWriteAscii (cont_description_models) {""}
# 8. cont_descriptionAppend user given input parameters
ArrayOfVectorWriteAscii (cont_description_parameters) {""}
#####################################################

The line shape of the 
cloud tags are all
internally set. Therefore
The user has not to specify
the line shape here.

This is the method which
calculates the absorption
coefficients in units of
1/meters.

Here the output is written
into the output files.



94 CLOUD ABSORPTION



Chapter 5

Basic radiative transfer

This section discusses the solution of the atmospheric radiative transfer equation (RTE).
A non-scattering atmosphere in local thermodynamic equilibrium is assumed. The radia-
tive transfer equation gives the monochromatic (infinite frequency resolution) pencil beam
(infinite spatial resolution) spectrum. The main problem here is how to practically and
accurately estimate the (continuous) integral in the discrete forward model.

The discussion treats mainly measurements of atmospheric emission. The forward
model can also handle pure absorption measurements (that is, emission is neglected) and
such observations are discussed last in the section.

The equations of this section are valid for monochromatic pencil beam spectra, no ef-
fects of the sensor are considered. How to incorporate sensor effects in the spectra is dis-
cussed separately (Sec. 7).

5.1 Introduction

Atmospheric radiative transfer can be expressed generally as

I = I1e
−
∫ l2
l1
κ(l)dl

+

∫ l2

l1
κ(l)σ(l)e−

∫ l2
l
κ(l′)dl′dl (5.1)

where I is the monochromatic pencil beam intensity, l distance along the line of sight (LOS),
l1 the point of the considered part of the LOS furthest away from the sensor, l2 the closest
point of the LOS, I1 the intensity at l1, κ the total absorption along the LOS and σ the
source function.1

Equation 5.1 is of general validity if σ and κ consider the relevant effects, for example,
scattering. However, below in this section it is assumed that there is no scattering and the
atmosphere is in local thermodynamic equilibrium.

1The symbols κ and σ are used here for the absorption and the source function along the LOS. The more
commonly used symbols, k and S, respectively, are used below to express the variables as functions of altitude.

History
000307 Started by Patrick Eriksson.
000908 First version finished by Patrick Eriksson.
031205 Cooling rates added by Patrick Eriksson.



96 BASIC RADIATIVE TRANSFER

Note that Eq. 5.1 is valid both for the case when the LOS is determined by geometrical
calculations and when refraction is considered (the refraction changes however the LOS).

With the assumptions of no scattering and local thermodynamic equilibrium, κ is the
summed gaseous absorption, and the source function equals the Planck function, B:

σ = B(ν, T ) =
2hν3

c2

1

ehν/kBT − 1
(5.2)

giving the blackbody radiation for a temperature T and frequency ν.
If σ is constant along the considered part of the LOS, that is, the temperature is constant

for the case σ = B, the RTE can be solved analytically to give

I = I1e
−τ + σ

(
1− e−τ

)
(5.3)

where τ is the optical thickness

τ =

∫ l2

l1
κ(l)dl (5.4)

The transmission corresponding to τ is

ζ = e−τ (5.5)

5.2 Practical considerations

The LOS can be divided into parts in several ways. As absorption and temperature most
likely are avaliable at some vertical grid, the most natural choice would be to define the
LOS using this vertical grid. This solution is problematic for limb sounding as the ratio
between the distance along LOS and the corresponding vertical distance becomes infinite at
the tangent point. Another solution would be to base the division on τ , but such a division
does not guarantee that T is close to constant inside the slabs as the vertical extension in
some cases could be very large, and each combination of frequency and viewing angle
should require a specific division.

As a practical compromise, it was here decided to divide LOS into equal long geomet-
rical steps. With this scheme the division is identical for all frequency components, but
changes between the viewing angles, and should give relatively fast and straightforward
calculations, maintaining a good accuracy. This approach has been applied successfully in
the Odin sub-mm forward model [Eriksson and Merino, 1997; Eriksson et al., 2000].

The next question is when and how to calculate LOS and the associated variables. As
the determination of weighting functions associated with the absorption needs basically the
same quantities as RTE, it is most efficient to do this procedure only once and in such way
that the values are suitable for both RTE and the weighting functions. Hence, the LOS
calculations shall be a separate part, not included in the RTE functions. The standard use of
the forward model should then be:

1. Calculation of absorption coefficients.

2. Determination of LOS.

3. Calculation of the source function and transmissions along LOS.



5.3 PRACTICAL SOLUTION 97

2 i n-1 ni+11 l∆ l ∆ l ∆ l

σ
2
κ2 κi

κnκ1

1σ iσ nσ

1 i n-1ζζζ
1 i

n-1

n-1
ψψψ

Figure 5.1: Schematic description of the LOS and associated variables. The absorption
and the source function at the LOS points are denoted κi and σi, respectively, while ζi is
the transmission between the points and Ψi is the mean of neighbouring source function
values. Only ζ and Ψ are stored for the later calculations. All the points are separated by
the distance ∆l (along the LOS). The distance between point i and i+ 1 is denoted as step
i of the LOS.

4. Iteration to solve RTE.

5. Calculation of weighting functions.

6. Saving etc.

The determination of LOS is described separately in Section 6.

5.3 Practical solution

The LOS is here assumed to be defined with n points where the distance between the points
is constant (see Fig 5.1). There are at least two definition points of the LOS (n ≥ 1). The
absorption and the source function are determined at the points of the LOS, and these values
are used to calculate the transmission and a mean source function value for the distances
between the LOS points. Only the later two quantities are stored.

5.3.1 Absorption and transmission

The absorption is treated to vary linearly between the LOS points. As mentioned above,
the transmission values shall be valid between the LOS points. With these definitions, the
optical thickness associated with step i is

τi =
∆l

2
(κi + κi+1) , 1 ≤ i < n (5.6)

The relationship between the optical thicknesses and the transmission is

ζi = e−τi (5.7)

Note that

e−(τ1+τ2...τn) = ζ1ζ2 . . . ζn (5.8)

The absorption at the LOS points is determined from the absorption matrix provided by the
absorption module by linear interpolation, using the logarithm of the pressure as altitude
coordinate2.

2The logarithm of the pressure is throughout the basic altitude coordinate in ARTS.



98 BASIC RADIATIVE TRANSFER

5.3.2 The source function

The source function is also basically assumed to vary linearly between the LOS points, but
for simplicity reasons, a single source function value is assigned to the LOS steps:

Ψi =
σi + σi+1

2
, 1 ≤ i < n (5.9)

The source function at the LOS points (σ) is simply by interpolating linearly the temperature
profile, and calculating the Planck function (Eq. 5.2) for the obtained temperatures.

To fully model that the absorption and the source function have a simultanous linear
variation between the LOS points would give much more complicated analytical expres-
sions than presented here (if even possible to derive?). However, the simplified approach
used here should not influence the accuracy in any important way. This as the source func-
tion has, compared to the absorption, a relatively low variation and it can be treated to be
piecewise constant when solving the raqdiative transfer.

If long wavelengths are assumed and the source function equals the Planck function (Eq.
5.2), σ should maximally vary with about a factor of 2 as the minimum and the maximum
temperature in the atmosphere are about 150 and 300 K, respectively, and the relationship
between σ and temperature is close to linear. This should be compared to the absorption
that, even for a single frequency, often varies with many orders of magnitude.

5.3.3 Solving the radiative transfer equation

With the definitions given above, the intensity at point n can be expressed as

I = I1

n−1∏
j=1

ζj +
n−1∑
i=1

Ψi(1− ζi)
n−1∏
j=i+1

ζj

 (5.10)

However, an alternative approach, requiring less computer memory, is to follow the radia-
tion from one slab of the atmosphere to next, and is the method of choice here. Following
Equation 5.3, the following iterative expression can be determined [Eriksson and Merino,
1997]

Ii+1 = Iiζi + Ψi (1− ζi) i = 1, 2, ..., n− 1 (5.11)

where Ii is the intensity reaching point i. The iteration is started by setting I1 to the intensity
at the atmospheric limit, that is, cosmic background radiation or correspondingly.

5.3.4 Considering ground reflection

The effect of a ground reflection is modeled as

Iafter = Ibefore(1− e) + eB(ν, Tground) (5.12)

where e is the ground emission factor and Ibefore and Iafter is the intensity before and after
the reflection, respectively. See further Section 6.6.



5.4 OPTICAL THICKNESSES 99

5.4 Optical thicknesses

The atmospheric emission can be neglected if the observation is performed towards a suffi-
ciently strong source, such as the Sun, and the measurement gives then the total atmospheric
transmission, ζtot. When inverting such observations, the standard approach is to invert the
optical thicknesses (τ) to obtain a more linear inversion problem. For this reason, the out-
put from ARTS when neglecting emission was selected to be optical thicknesses instead of
transmission values. However, as the transmission for each step along the LOS is stored
for the emission calculations, ARTS calculates internally transmission spectra that are con-
verted to optical thicknesses.

This transmission is

ζtot = e
−
∫ l2
l1
κ(l)dl

(5.13)

The corresponding iterative formula used in the forward model is simply (cf. Eq. 5.11)

ζtot =
n−1∏
i=1

ζi (5.14)

It is noteworthy that the multiplication order is of no importance, a fact that can be used for
1D limb sounding where the conditions are assumed to be symmetrical around the tangent
point and only one half of the line of sight is stored.

If there is a ground reflection, it is considered as

ζtot = (1− e)
n−1∏
i=1

ζi (5.15)

where e is the ground emission factor.
The optical thicknesses are finally calculated as

τ tot = − ln(ζtot) (5.16)

5.5 Cooling rates

Cooling rates is an important concept for climate models and studies. The cooling rate gives
the change in temperature due to exchange of radiation, keeping all variables constant.
The typical unit is K/day. There are two balancing (more or less) effects. Absorption of
shortwave (UV – near IR) results in a heating of the air mass. For thermal IR, emission and
absorption are coupled phenomena but exchange of thermal and far IR radiation normally
results in a cooling effect. These two effects give together the heating rate, but are normally
calculated seperately and are then denoted as the heating and cooling rate. In ARTS only
the IR cooling rate is handled, and that only for cloud free conditions. For more details on
heating / cooling rates, see any text book on atmospheric physics.

Cooling rates are calculated by the WSM CoolingRates. The method returns
the spectral cooling rates for the frequencies of f_mono and the pressure levels of
p_coolrates. A positive value here means a cooling effect (that is, the heating rate is
not returned). The unit of values in CoolingRates is K/day/Hz. Directly below follows
a derivation of the expression used in CoolingRates.



100 BASIC RADIATIVE TRANSFER

The heating rate can be expressed as

dT

dt
=
−1

ρcP

dF

dz
, (5.17)

where T is the temperature, t is the time, ρ is the air density, cP is the heat capacitivity (for
pressure work), F is radiative flux and z is vertical altitude. This is the expression normally
used to determine cooling rates.

The idea here is to find an expression that gives the heating rate if the spectral radiance
as a function of zenith angle is known. As a first step, Equation 5.17 is rewritten to include
the spectral flux, Fν :

dT

dt
=
−1

ρcP

∫ ∞
0

[
lim

∆z←0

Fν(z + ∆z)− Fν(z)

∆z

]
dν. (5.18)

The relationship between Fν and spectral radiance, I , is

Fν(z) = 2π

∫ π

0
I(z, φ) cosφ sinφdθ. (5.19)

The assumption below is that the upwelling part of I is known at z and the downwelling
part I is known at z + ∆z.

The upwelling spectral radiance at altitude z + ∆z can be expressed as

I(z + ∆z, φ) = I(z, φ)e−τ(φ) +Bν(1− e−τ(φ)), 0 ≤ φ ≤ π/2, (5.20)

where Bν is the Planck function for blackbody radiation. The fact that ∆z will approach
zero has been used, which mean that Bν and φ can be assumed to be constant between z
and z + ∆z. The downwelling spectral radiance at z is in similar way

I(z, φ) = I(z + ∆z, φ)e−τ(φ) +Bν(1− e−τ(φ)), π/2 < φ ≤ π. (5.21)

Again using the fact that ∆z ≈ 0, the optical depth is

τ(φ) =
∆z

| cosφ|
α (5.22)

and the transmission is

e−τ(φ) = 1− ∆z

| cosφ|
α. (5.23)

We have then that

Fν(z+∆z)−Fν(z)
∆z = 2π

∆z

{ ∫ π/2
0 [I(z, φ)(1− τ(φ)) +Bντ(φ)] cosφ sinφdφ+

+
∫ π
π/2 I(z + ∆z, φ) cosφ sinφdφ−

∫ π/2
0 I(z, φ) cosφ sinφdφ−

−
∫ π
π/2 [I(z + ∆z, φ)(1− τ(φ)) +Bντ(φ)] cosφ sinφdφ

}
. (5.24)

Many of the terms above cancel out and the expression above can be shortened to

Fν(z+∆z)−Fν(z)
∆z = 2π

{ ∫ π/2
0 [Bν − I(z, φ)]α sinφdφ+

+
∫ π
π/2 [Bν − I(z + ∆z, φ)]α sinφdφ

}
. (5.25)



5.6 CONTROL FILE EXAMPLES 101

Putting Equation 5.25 into Equation 5.18, and noting that I(z, φ) = I(z + ∆z, φ) for
∆z = 0, gives finally

dT

dt
=
−2π

ρcP

∫ ∞
0

∫ π

0
[Bν − I(z, φ)]α sinφdφdν. (5.26)

We can already here note that the contribution to the heating rate will be zero for frequencies
where α = 0.

To obtain correct results it is crucial that I converges to Bν when it is expected that I =
Bν , which is the case when the absorption is very high. Considering that radiative transfer
applies a mean value of the Planck function at the end points of the integration step (Eq. 5.9),
it is not a good idea to compare I with the Bν for the position of interest. This would
require an extremly short radiative transfer step length (l_step), a statement verified by
practical calculations. A better solution is to replace (Bν − I(z, φ)) in Equation 5.26 by
(Ψ − I(z, φ)), where Ψ (defined in Eq. 5.9) is the effective source function for radiative
transfer step closest to the point of interest. This modification will balance the radiation
budget perfectly for high values of α and has a small impact on the accuracy. However,
as for all radiative transfer calculations in ARTS, reducing the step length will improve the
calculation accuracy.

5.6 Control file examples

See Section 6.8.



102 BASIC RADIATIVE TRANSFER



Chapter 6

Line of sight, 1D

This section describes how the line of sight (LOS) is determined for situations where the
atmosphere is assumed to be horizontally stratified, a 1D atmosphere. Expressions are given
both for pure geometrical calculations and when considering refraction.

6.1 Definitions

Vertical (geometrical) altitudes are denoted as z, pressures as p and distances along the LOS
are denoted as l. Vertical distances are measured from the geoid and l is the distance from
the lowest point of the LOS.

As a 1D atmosphere is assumed here, the conditions are symmetrical around tangent
points and points of ground reflection, and, for such cases, only one half of the LOS is stored
for efficiency reasons. The points of the LOS are stored by increasing vertical altitude point.
Index 1 corresponds accordingly to either the platform, the tangent point or the ground. The
internal description of the LOS is further described in the file los.h.

The line of sight is defined by two variables, the platform altitude, zp, and the zenith
angle, φ, (see Fig. 6.1):

The platform altitude is the altitude above the geoid of the sensor used to detect the spec-
trum simulated.

The zenith angle is the angle between the zenith direction and the direction of observation.
As an 1D atmosphere is assumed, there is no difference between positive and negative
zenith angles.

The lower limit of the atmosphere is given by the ground altitude, zg. The practical upper
limit of the atmosphere is denoted zlim and is in the forward model determined by the
highest point of the absorption grid. The absorption grid can extend below zg. On the other
hand, it is not allowed that any part of the LOS is between the lowest absorption altitude
and the ground.

History
000307 Started by Patrick Eriksson.
010219 First version finished by Patrick Eriksson.



104 LINE OF SIGHT, 1D

l

l

z

z

z

z

φ

φ

p

lim
p

t

zg

Re

LOS

LOS

Figure 6.1: Schematic description of the main variables of the observation geometry and
the LOS. Re is the Earth radius. Other variables are defined in the text.

If φ > 90◦ the lowest point of the LOS is not the platform altitude, and this point is
denoted as the tangent point, zt. The angle between the LOS and the vector to the Earth
center is at the tangent point 90◦. If the tangent point is below ground level, zt is determined
by an imaginary geometric prolonging of the LOS inside the Earth.

The forward model uses internally three main observation geometries:

Limb sounding covers here all observations from a point outside the atmosphere (zp ≥
zlim). All zenith angles are covered, and, for example, nadir looking observations
(φ = 180) are treated as limb sounding in the forward model. If the LOS does not
pass the atmosphere (ztan ≥ zlim), cosmic background radiation, or correspondingly,
is returned.

Upward looking signifies observation from within the atmosphere in an upward direction
(zp < zlim and φ ≤ 90◦).

Downward looking is observation from within the atmosphere in a downward direction
(zp < zlim and φ > 90◦).

6.2 Outlook towards 2D

So far ARTS is only capable of calculating spectra for 1D cases. It is planned to also handle
satellite measurements with atmospheric horizontal variations, but limited to observations
in the orbit plane, here denoted as 2D observations.

For 2D observations there is no symmetry to be used, each point of the LOS is unique.
This is also the case for 1D upward looking observations, and it is planned that 2D and 1D



6.3 THE STEP LENGTH 105

upward calculations of radiative transfer and weighting functions shall be performed with
the same general functions. The 2D case exhibits however one difference compared to the
1D upward case. For 2D cases there could be a ground reflection along the LOS, which
is never the case for 1D upward looking observations by definition. Note that if the 1D
upward functions are used for 2D simulations, the point of LOS closest to the sensor will
throughout have index 1.

As a first preparation for the 2D calculations, the angular distances between the sensor
and the points of the LOS, ψ, are stored beside the pressure and vertical altitudes of the
points. The variable ψ is defined to be the angle between the vectors going from the Earth’s
center to the sensor and the LOS point, respectively. For cases with symmetry, the angles
are valid for the part of the LOS furthest away from the sensor.

6.3 The step length

As described in Section 5, the LOS is divided into equal long geometrical steps, ∆l. The
user gives an upper limit for this step length. A point of the LOS is always placed at the
sensor (if inside the atmosphere), tangent points and points of ground reflection, but no
adjustment to the upper atmospheric limit is made. This gives a single fixed point for limb
sounding and upward looking observation and ∆l is set to the value given by the user if the
LOS has at least two definition points. If the LOS gets only one point with the user defined
value, for example when the tangent point is just below the atmospheric limit, the step
length is adjusted to the length from the fixed point of the LOS (the sensor or the tangent
point) and the atmospheric limit.

In contrast to upward and limb sounding observations, for downward observations there
are two fixed points inside the atmosphere (the platform and the tangent point, or the point
of ground reflection) and ∆l is here adjusted according to the the distance between these
two points. See further Section 6.4.4.

6.4 Geometrical calculations

6.4.1 General expressions

The relationship between vertical altitude (z) and distance along LOS (l) can be found be
the law of cosines, giving

(Re + z)2 = (Re + z0)2 + l2 + 2l(Re + z0) cos(φ) (6.1)

where z0 is the lowest point of the LOS (where l = 0) and φ is the angle between the LOS
and zenith at z0. This equation gives

z =
√

(Re + z0)2 + l2 + 2l(Re + z0) cos(φ)−Re (6.2)

The distance between the sensor and the limit of the atmosphere is

llim =
√

(Re + zlim)2 − (Re + z0)2 sin2(φ)− (Re + z0) cos(φ) (6.3)

The angle ψ between the point corresponding to z0 and some altitude z is

ψ = cos−1

(
(Re + z0)2 + (Re + z)2 − l2

2(Re + z0)(Re + z)

)
(6.4)



106 LINE OF SIGHT, 1D

6.4.2 Limb sounding

For limb sounding the lowest point of the LOS is (by definition) the tangent point, and it is
given by the expression

zt = (Re + zp) sin(φ)−Re φ ≥ 90◦ (6.5)

This relationship holds even if zt < zg. Note that sin(180◦ − φ) = sin(φ) and it must
be checked that φ ≥ 90◦. Zenith angles < 90◦ correspond to an imaginary tangent point
behind the sensor, and are treated as observations into the space.

The LOS starting at the tangent point is then calculated by Equations 6.2 – 6.4 with
z0 = zt and φ = 90◦. The angle between the vectors going from the Earth’s center and the
sensor and the tangent point, respectively, is

ψ0 = φ− 90◦ (6.6)

The value of ψ0 is added to the angles given by Equation 6.4 as the equation in this case
gives the angles from the tangent point instead from the sensor.

If the tangent point is below ground, z0 is set to zg and φ to φg where

φg = sin−1

(
Re + zt
Re + zg

)
(6.7)

The correction term for ψ is here

ψ0 = φ+ φg − 180◦ (6.8)

6.4.3 Upward looking

The LOS for upward looking observations is given by Equations 6.2 – 6.4 where z0 is set to
the platform altitude and φ to the observation zenith angle.

6.4.4 Downward looking

The altitude of the tangent point is given by Equation 6.5. As both the sensor and the
tangent point (or the ground) are treated to be fixed points of the LOS, the step length must
be adjusted. The distance between the sensor and a tangent point is

lp =
√

(Re + zp)2 − (Re + zt)2 zt ≥ zg (6.9)

and the distance between the sensor and a point of ground reflection is

lp =
√

(Re + zp)2 − (Re + zt)2 −
√

(Re + zg)2 − (Re + zt)2 zt < zg (6.10)

The part of the LOS between the sensor and the tangent or ground point gets the following
number of points:

m = 1 + ceil(llim/∆lmax) (6.11)

where ∆lmax is the upper limit for ∆l specified by the user, and ceil is a function giving
the first integer larger than the argument. The step length is accordingly

∆l =
llim
m− 1

(6.12)



6.5 WITH REFRACTION 107

θ

θ

i

i i+1

n

ni+1

i

(R +z )e i (R +z    )e i+1

LOS

θ́

Figure 6.2: Geometry to derive Snell’s law for a spherical atmosphere. The Earth radius is
Re, the vertical altitude z, the refractive index n and the angle between the LOS and the
vector to the Earth center θ.

The LOS is determined in the same manner as for limb sounding described above, but with
the adjusted value for ∆l. The angular distance between the the tangent point, or the ground.
and the sensor (ψ0) is value m of the angle vector given by Equation 6.4.

6.5 With refraction

Refraction affects the radiative transfer in several ways. The distance through a layer of a
fixed vertical thickness will be changed, and for a limb sounding observation the tangent
point is moved both vertically and horizontally. If the atmosphere is assumed to be hori-
zontally stratified, as done here (1D), a horizontal displacement is of no importance but for
2D calculations this effect must be considered. For limb sounding and a fixed zenith angle,
the tangent point is moved downwards compared to the pure geometrical case, resulting in
that inclusion of refraction in general gives higher intensities. However, the LOS is still
symmetric around tangent and ground points.

6.5.1 General theory

When determining the LOS through the atmosphere geometrical optics can be applied be-
cause the change of the refractive index over a wavelength can be neglected. Applying
Snell’s law to the geometry shown in Figure 6.2 gives

ni sin(θi) = ni+1 sin(θ′i) (6.13)

Using the same figure, the law of sines gives the relationship

sin(θi+1)

Re + zi
=

sin(180◦ − θ′i+1)

Re + zi+1
=

sin(θ′i)

Re + zi+1
(6.14)

By combining the two equations above, the Snell’s law for a spherical atmosphere (i.e. 1D)
is derived [e.g. Kyle, 1991; Balluch and Lary, 1997]:

c = (Re + zi)ni sin(θi) = (Re + zi+1)ni+1 sin(θi+1) (6.15)



108 LINE OF SIGHT, 1D

0 50 100 150 200
0

10

20

30

40

50

60

70

80

90

100

Geometrical factor [−]

A
lti

tu
de

 [k
m

]

Tangent altitude 20 km

Tangent altitude 40 km

Tangent altitude 60 km

Figure 6.3: The geometrical factor, as a function of altitude, for limb sounding and three
tangent altitudes. Taken from Eriksson and Merino [1997]

.

where c is a constant. With other words, the Snell’s law for spherical atmospheres states
that the product of n, (Re + z) and sin(θ) is constant along the LOS.

The radiative transfer is evaluated along the LOS, while Equation 6.15 is expressed for
vertical altitudes. The relationship between a change in vertical altitude and the correspond-
ing change along the LOS is here denoted as the geometrical term and it is

g(z) =
1

cos(θ)
(6.16)

which can be rewritten using trigonometric identities and Equation 6.15:

g(z) =
(Re + z)n(z)√

(Re + z)2n2(z)− c2
(6.17)

6.5.2 Practical solution

A possible solution for calculating the LOS with refraction would be to integrate numeri-
cally the geometrical term [Eriksson et al., 2000] but this approach is problematic for limb
sounding as the geometric factor is singular at the tangent point (Figure 6.3). Further, Equa-
tion 6.17 cannot be solved analytically for the simple reason that no general analytical ex-
pression for n exists. A possible solution would be to assume that n is a piecewise linear
function but the solution of Equation 6.17 is then unfortunately a very lengthy expression
(at least the one provided by Mathematica!). However, for a piecewise constant n it is very
simple to derive a solution of the integral, and thus avoiding the problem with singularities:

∆l =

√
(Re + z2)2 −

(
c

n̄

)2

−

√
(Re + z1)2 −

(
c

n̄

)2

(6.18)



6.5 WITH REFRACTION 109

where z1 and z2 are two vertical altitudes, ∆l the length along the LOS between these two
altitudes and n̄ a mean value of the refractive index between z1 and z2. The calculations are
performed along the LOS and the follwing expression is used in practice

z2 =

√√√√√∆l +

√
(Re + z1)2 −

(
c

n̄

)2
2

+

(
c

n̄

)2

−Re (6.19)

The angular distance between the points corresponding to z1 and z2 is

∆ψ = cos−1

(
(Re + z1)2 + (Re + z2)2 − l2

2(Re + z1)(Re + z2)

)
(6.20)

The practical calculations are performed as follows:

1. The lowest point of the LOS is determined and the “zenith angle” at this point.

2. The ray tracing step length is set to the LOS step length divided by the factor given
by the user (refr_lfac).

3. The ray tracing is performed from the lowest altitude of the LOS until the upper limit
of the atmosphere is reached.

Each ray tracing step is performed as

1. The refractive index (n̄) is set to the value at z1.

2. The altitude of the other end of the ray tracing step is calculated by Equation 6.19.

3. The refractive index at z2 is determined by an interpolation and (n̄) is set to the mean
value of the refractive index at z1 and z2.

4. Step 2 and 3 are repeated two times.

5. The change in the angle ψ is calculated by Equation 6.20.

The number of iterations of step 2 and 3 is hard coded. A practical test showed a clear
improvement when going from 1 to 2 iterations, a small improvement when going from 2 to
3 iterations and no practical improvement when going from 3 to 4 iterations. Accordingly,
3 iterations are needed to reach convergence, but as the estimated accuracy for 2 iterations
was judged to be sufficient 2 iterations was selected as a compremise between speed and
accuracy. However, if the best accuracy possible is wanted, the number of iterations can
easily be changed in the code.

This calculation scheme has the advantage of always starting from the lowest point of
the LOS which should be beneficial for the calculation accuracy. How the tangent altitude
is determined for limb sounding is described below.



110 LINE OF SIGHT, 1D

10
−3

10
−2

10
−1

10
0

0

5

10

15

20

25

30

35

40

Bending angle [deg]

T
an

ge
nt

 a
lti

tu
de

 [k
m

]

Figure 6.4: Bending angle as a function of tangent altitude. The bending angle is the angle
between the line from the tangent point and the sensor and the LOS tangent at the tangent
point (see also Kursinski et al. [1997, Figure 1]). Calculated for the FASCODE mid-latitude
summer atmosphere. The figure can be compared to Kursinski et al. [1997, Figure 3] and
the agreeemnt is as good as expected.



6.6 GROUND INTERSECTIONS 111

6.5.3 Limb sounding

The most important factor for limb sounding is to get a correct tangent altitude. Fortunately,
there is a way to determine the tangent altitude directly for 1D cases, without following the
LOS from the top of the atmosphere.

The tangent altitude is given by the relationship

(Re + zt)n(zt) = (Re + zp) sin(φ) = c (6.21)

as sin(θ) = 1 at tangent points, the refractive index in space is 1 and sin(180◦ − φ) =
sin(φ). The tangent altitude is practically determined by finding the highest altitude
where (Re + z)n(z) exceeds the value of c, followed by an interpolation of the product
(Re+ z)n(z) between the found altitude and the altitude above to find the altitude fulfilling
Equation 6.21.

For cases with ground reflections, a similar relationship,

(Re + zg)n(zg)sin(θg) = (Re + zp) sin(φ) = c, (6.22)

gives the angle between the LOS and the ground normal.
The angular distance between the tangent point and the sensor (ψ0) is calculated as

ψ0 = θzmax + φ− 180◦ + ψzmax (6.23)

where θzmax and ψzmax are the angles for the highest point of the LOS (θ defined in Figure
6.2).

Figure 6.4 gives a good confirmation of the implemented refraction ray tracing scheme.

6.6 Ground intersections

Ground reflections are indicated by a special flag. This flag is zero when there is no ground
intersection or gives the index of the LOS point corresponding to the ground, ig (for 1-based
indexing). For 1D calculations, ig is either 0 or 1, as index 1 is here defined to always be
the lowest altitude of the LOS. However, to pave the way for 2D calculations, cases where
the ground is placed at other positions than index 1 are handled.

For 1D cases, where only half of the total LOS is stored and the ground can only have
index 1 (ig = 1), the effect of a ground reflection (Eq. 5.12) is put in when reversing the
loop order. Accordingly, the calculation order is: ... step2, step 1, ground, step 1, step 2,
... Ground reflections for 1D cases are treated internally in ARTS by the limb sounding
functions.

6.7 Inclusion of hydrostatic equilibrium

The pressure in the atmosphere changes as

∆P = −ρg∆z (6.24)



112 LINE OF SIGHT, 1D

i

i
ig-1

g+1

g e, Tground
Ground

Atmosphere

LOS

Step g

Step g-1

Figure 6.5: Schematic of ground reflections for 2D cases. The index of the point corre-
sponding to the ground is ig. Point 1 of the LOS is the point closest to the sensor.

where ∆P is the change in pressure for an altitude change of ∆z, ρ is the air density and
g the gravitational acceleration. If this expression is combined by the ideal gas law, the
hypsometric equation is obtained:

z2 − z1 =
RdT̄v
g

ln
(P1

P2

)
(6.25)

where the indeces 1 and 2 indicate two close altitudes, Rd is the gas constant for dry air
(287.053 JK−1kg−1) and T̄v the average virtual temperature between the altitudes z1 and
z2. The virtual temperature is introduced to include effects of the variable amount of water
vapor. If no liquid water is present, the virtual temperature can be calculated as

Tv = T
(
1 + 0.379

xH2O

1− xH2O

)
(6.26)

where xH2O is the volume mixing ratio of water vapor.
The practical calculations take into account that the gravitational acceleration and the

average molecular weight changes with altitude. As the exalt altitudes not are known when
starting the calculations, and thus there exists some uncertainty for the gravitational accel-
eration and the average molecular weight, the calculations can be iterated to improve the
accuracy. Type arts -d hseCalc for some more information.

6.8 Control file examples
The practical calculations are performed by a set of functions refrCalc, losCalc,
sourceCalc, transCalc and yCalc. All these functions have no global input/output
or keyword arguments, and the main task is to define the input for the functions. The se-
quence

refrCalc{}
losCalc{}
sourceCalc{}



6.8 CONTROL FILE EXAMPLES 113

transCalc{}
yCalc{}

must always be used as, for example, the variable refr_index must be set when calling
losCalc and source must be set when calculating spectra by yCalc. If refraction is
not considered, refrCalc sets refr_index to be empty and sourceCalc does the
same with source for transmission calculations (emission = 0).

6.8.1 Ground-based observation

The following control file excerpt shows a typical example for simulating a ground-based
observation:

# Set the radius of the geoid to a standard value
r_geoidStd{
}

# Set the platform altitude to 50 m
NumericSet( z_plat ) {

value = 50
}

# Measurement in the zenith direction
VectorSet( za_pencil ) {

length = 1
value = 0

}

# A step length for LOS of 500 m
NumericSet( l_step ) {

500
}

# Here we don’t need to care about the ground and refraction
groundOff{
}
refrOff{
}

# Cosmic radiation
y_spaceStd{ "cbgr" }

# An emission measurement
emissionOn {}

# Do the actual calculations
refrCalc{
}
losCalc{
}
sourceCalc{
}
transCalc{
}
yCalc{



114 LINE OF SIGHT, 1D

}

# Convert to Rayleigh-Jean temperature
yTRJ{}

# Save the spectra
VectorWriteBinary( y ) {

""
}

6.8.2 Limb sounding

The following control file excerpt shows a typical example for limb sounding:

# Set the geoid radius for observation in the S-N direction
# at latitude 45 degrees
r_geoidWGS84{

latitude = 45
obsdirection = 0

}

# Set the platform altitude to 620 km
NumericSet( z_plat ) {

value = 620e3
}

# Five zenith angles between 113.5 and 114.0
VectorNLinSpace (za_pencil) {

start = 113.5
stop = 114.0
n = 5

}

# A step length for LOS of 10 km
NumericSet( l_step ) {

10e3
}

# A blackbody ground at 200 m
groundSet{

z = 200
e = 1

}

# Turn on refraction, select parameterization for refractive
# index and set ray tracing step length to 2.5 km
refrSet{

on = 1
model = "Boudouris"
lfac = 4

}

# An emission measurement
emissionOn {}



6.8 CONTROL FILE EXAMPLES 115

# Cosmic radiation
y_spaceStd{ "cbgr" }

# Do the actual calculations
refrCalc{
}
losCalc{
}
sourceCalc{
}
transCalc{
}
yCalc{
}

# Convert to Rayleigh-Jean temperature
yTRJ{}

# Save the spectra
VectorWriteBinary( y ) {

""
}

6.8.3 Limb transmission calculations
Simulation of transmission measurements is performed in the same way as emission obser-
vations. Compared to the example above, beside that converion to brightness temperatures
shall not be done, the only changes are:

...
# Turn off emission
emissionOff {}

# We don’t need y_space here, set to be empty
VectorSet( y_space ) {

length = 0
value = 0

}
...



116 LINE OF SIGHT, 1D



Chapter 7

Sensor modeling

Modeling of the sensor is not yet part of ARTS. Sensor modeling is so far covered by Qpack
but this chapter is included here for completness. On the other hand, conversion of radiances
to brightness temperatures is part ARTS and this issue is also discussed here.

A sensor model is needed because a practical instrument gives consistently spectra de-
viating from the hypothetical monochromatic pencil beam spectra provided by the atmo-
spheric part of the forward model (that is y 6= i always). For a radio (heterodyne) instru-
ment, the most influential sensor parts are the antenna, the mixer, the sideband filter and
the spectrometer. Limb sounding observations are also affected by Doppler shifts, but this
effect is not considered here, it is assumed to be treated separately. Conversion of radiances
to brightness temperatures is also treated here.

7.1 Implementation strategy

7.1.1 The sensor transfer matrix

The modeling of a sensor part is either a summation of different frequency components
(mixer), or a weighting of the spectra as a function of frequency (spectrometer) or view-
ing direction (antenna) with the instrument response of concern. In all cases it is possible
to describe the sensor influence by an analytical expression. See for example Eriksson
and Merino [1997] for more details. These analytical expressions can be implemented and
solved for each run of the sensor model, but this would be relatively computationally de-
manding for cases when the settings are kept constant, as the calculations are duplicated in
an unnecessary manner, and we want to find a better implementation strategy.

Summation and weighting of the spectral components are both linear operations, and
thus it is possible to model the effect of the different sensor parts as subsequent matrix
multiplications of the monochromatic pencil beam spectrum, as suggested in Eriksson et al.
[2000]:

y = Hn . . .H2H1i + ε (7.1)

History
000321 Started by Patrick Eriksson.
000826 First version finished by Patrick Eriksson.



118 SENSOR MODELING

where n is the number of sensor parts to consider, and this results in that the sensor model
can be expressed as a single matrix multiplication (Eq. 2.9)

y = Hi + ε

Applying Equation 2.9 for the sensor model will clearly give very rapid calculations, and
we must find ways to calculate H.

7.1.2 Normalization of H

It is important that the transfer matrix for each sensor part is normalized in such way that
a unit response is obtained. A unit response signifies here that a constant intensity (as a
function of frequency or zenith angle) is preserved, that is

u2 = Hu1 (7.2)

where u1 and u2 are vectors of appropriate length where each element is 1. This criterion
equals that the sum of the elements of each row of H is 1.

7.2 Integration as vector multiplication

The effect of both the antenna and the spectrometer can be expressed as an integral [e.g.
Eriksson and Merino, 1997, Eq. 86 and 94], and the question is how to transform these
integrals into matrix operations.

The problem at hand is that the antenna and spectrometer responses and the zenith
angle and frequency grids are known, while the spectral values are unknown. This problem
corresponds to determine a (row) vector h that multiplied with an unknown (column) vector,
g, approximates the integral of the product between the functions g and f :

hg =

∫
f(x)g(x)dx (7.3)

where g contains values of g at some discrete points. The functions f is here the response
for some sensor part, and g holds the spectral values. The shape of f and g between the grid
points must be known to solve this problem.

7.2.1 Piecewise linear functions

In this section the problem of Equation 7.3 is solved analytically when both functions are
piecewise linear. The practical solution used Qpack is discussed in next section.

Following Figure 7.1, the function g can between the points x1 and x4 be expressed as
a sum of the two unknown values g1 and g2:

g(x) = g1 + (g2 − g1)
x− x1

x4 − x1
= g1

x4 − x
x4 − x1

+ g2
x− x1

x4 − x1
(7.4)

which can be rewritten as

g(x) = g1(a+ bx) + g2(c− bx), x1 ≤ x ≤ x4 (7.5)



7.2 INTEGRATION AS VECTOR MULTIPLICATION 119

x x
x

g(x)

f(x)

x

f

g

g

1 x 3 4

f

x x52

1

2

1

2

Figure 7.1: The quantities used in Section 7.2.

where

a =
x4

x4 − x1
, b =

−1

x4 − x1
, c =

−x1

x4 − x1

A shorter expression can be obtained for the function f as the values f1 and f2 are known:

f(x) = (d+ ex), x2 ≤ x ≤ x3 (7.6)

where

d = f1 − x2
f2 − f1

x3 − x2
e =

f2 − f1

x3 − x2

The integral in Equation 7.3 can now for ranges between x2 and x3 be calculated analyti-
cally in a straightforward manner:∫ xb

xa
f(x)g(x)dx =

∫ xb

xa
(d+ ex)(g1(a+ bx) + g2(c− bx))dx = . . . =[

g1x
(
ad+

x

2
(bd+ ae) +

x2

3
be
)

+ g2x
(
cd+

x

2
(ce− bd)− x2

3
be
)]xb

xa

(7.7)

For the practical calculations, the integral is solved from one grid point to next, of either
f or g. The functions are assumed to be zero outside their defined ranges (for example,
f = 0 for x < x2). For the case shown in Figure 7.1, the integration order would be
(xa, xb) = (x2, x3), (xa, xb) = (x3, x4), (xa, xb) = (x4, x5) . . .

Using Equation 7.7, we can now determine how to calculate h. For each integration
step, hi and hi+1 are increased as

hi = hi + xb
(
ad+

xb
2

(bd+ ae) +
x2
b

3
be
)
− xa

(
ad+

xa
2

(bd+ ae) +
x2
a

3
be
)

hi+1 = hi+1 + xb
(
cd+

xb
2

(ce− bd)− x2
b

3
be
)
− xa

(
cd+

xa
2

(ce− bd)− x2
a

3
be
)

where i is the index for which xi ≤ xa and xb ≤ xi+1. The vector h is initialized with
zeros before the calculation starts.



120 SENSOR MODELING

7.2.2 Practical solution

The functions f and g can in Qpack be treated to be piecewice linear or cubic functions.
The polynomial order of the two functions is set individually. When a function is assumed
to be piecewise cubic, two points on each side of the range of interest (that is, in total 4
points) are used to determine the polynomial. For the end ranges, a quadratic polynomial is
used as there exists only a single point on one of the sides.

Accordingly, Equation 7.3 must be handled in Qpack for combinations of piecewise
linear, quadratic and cubic functions. Instead of repeating the calculations in Section 7.2.1
for all possible polynomial combinations, a more general solution was implemented. The
polynomial coefficents for f are simply obtained by doing a polynomial fit to the consid-
ered points (by the Matlab function polyfit). The polynomial basis for g (a, b and c
in Equation 7.5) is obtained by Lagrange’s formula (Equation 9.54), which expresses the
polynomial that passes a fixed set of points. The Lagrange’s formula can be written as:

g(x) = (a11 + a12x+ . . .+ a1Nx
N ) ∗ g1 +

(a21 + a22x+ . . .+ a2Nx
N ) ∗ g2 +

. . .

(aN1 + aN2x+ . . .+ aNNx
N ) ∗ gN (7.8)

With the obtained coefficients for f and g, Equation 7.7 can easily be solved analytically in
a general manner. The polynomial pasis is determined by the AMI function pbasis, the
both set of coefficients are multiplicated in the function pbasis_x_pol and the integral
is solved by the function pbasis_integrate.

7.3 Summation as vector multiplication

The influence of the mixer and sideband filter of the sensor correspond to a summation of
pairs of frequency components. The two frequencies of the pair are related as

ν ′ = 2νLO − ν (7.9)

where νLO is the frequence of the local oscillator signal, and ν ′ is denoted as the image
frequency.

The intensity correspondence after the mixer and the sideband filter can be written as

IIF (ν) =
fs(ν)I(ν) + fs(ν

′)I(ν ′)

fs(ν) + fs(ν ′)
(7.10)

where I(ν) is the intensity for frequency ν and fs the response of the sideband filter as a
function of frequency.

The frequency grid after the mixer consists of the frequencies inside the primary band
of the grid before the mixer. To include frequencies from the image band (mirrored to the
primary band) would need an interpolation in the primary band that could cause unexpected
effects.



7.3 SUMMATION AS VECTOR MULTIPLICATION 121

fs (  )ν

ν

ννννν iij j+1 LO´

Figure 7.2: Schematic description of image frequency and sideband filtering.

7.3.1 Piecewise linear functions

If the intensity is assumed to vary linearly between the points of the frequency grid, Equa-
tion 7.10 can be written as

IIF (νi) =
1

fs(νi) + fs(ν ′i)

[
fs(νi)I(νi) +

+
fs(ν

′
i)

νj+1 − νj

(
I(νj)(νj+1 − ν ′i) + I(νj+1)(ν ′i − νj)

)]
(7.11)

where fs for the different frequencies is obtained by linear interpolation, and νj and νj+1

are the two points of the frequency grid surrounding the image frequency, ν ′i. The row of
the H matrix corresponding to νi is then

hi =
fs(νi)

fs(νi) + fs(ν ′i)
(7.12)

hj =
fs(ν

′
i)

fs(νi) + fs(ν ′i)

νj+1 − ν ′i
νj+1 − νj

hj+1 =
fs(ν

′
i)

fs(νi) + fs(ν ′i)

ν ′i − νj
νj+1 − νj

where hi is the value of h for frequency νi etc. Remaining values of H are zero.
For the special case when the image frequency matches perfectly a frequency grid point,

the equations above can be simplified to give

hi =
fs(νi)

fs(νi) + fs(ν ′i)

hj =
fs(ν

′
i)

fs(νi) + fs(ν ′i)

7.3.2 Practical solution

The responses of the sideband filter is determined by linear or cubic interpolation, dependent
on the selected order. As the frequency in the primary band always equals one of the points



122 SENSOR MODELING

of the monochromatic frequency grid, Equation 7.12 can be used throughout. The weights
for the image band are found by evaluating the polynomial basis from Equation 7.8 at ν ′i and
multiplicate with fs(ν ′i)/(fs(νi) + fs(ν

′
i)). These calculations are performed in the AMI

function h_matrix.

7.4 Brightness temperature

Some kind of calibration process, either in absolute or relative units, is always needed.
For mm and sub-mm receivers, the calibration normally presents the measured intensity in
some temperature scale, and conversion to brightness and Rayleigh-Jeans temperatures is
also treated in this section.

7.4.1 Conversion to Planck brightness temperature

The brightness temperature is defined as the temperature a blackbody shall have to give the
same intensity magnitude as observed. The brightness temperature is thus calculated as

Tb =
hν

kB

1

ln
(

2hν3

c2I
+ 1

) (7.13)

where I is the radiative intensity.
It should be noted that the conversion from intensity to brightness temperature is non-

linear. This non-linearity has (at least) two important consequences:

• The conversion from intensity to brightness temperature cannot be included in H.

• Brightness temperature cannot be used for retrievals.
Accordingly, the main reason to convert a spectrum to brightness temperatures is to display
the spectrum in an unit that gives a more intuitive understanding of the emission magnitude.

7.4.2 Conversion to Rayleigh-Jean temperature

For lower frequencies where hν � kBT the Planck function can be approximated by the
Rayleigh-Jean (RJ) formula:

B ≈ 2ν2kBT

c2
(7.14)

This relationship holds rather well in the microwave region. For example, for T = 50 K,
hν = kBT at 1.04 THz. The RJ approximation of the Planck function gives a natural
definition on a “brightness temperature” with that has a linear relationship to the intensity:

Trj =
c2

2ν2kB
I (7.15)

This intensity unit is often referred to as the brightness temperature but to avoid confusion
it is here denoted as the RJ temperature.

As the intensity from intensity to RJ temperature is linear, this conversion can be in-
cluded in H and weighting functions can be converted using 7.15, that is, retrievals are
possible using RJ temperatures. On the other hand, the RJ temperature shall not be mis-
taken for the “physical” brightness temperature (Tb) as the deviation between Tb and Trj is
not negligible [Eriksson and Merino, 1997].



7.5 CONTROL FILE EXAMPLES 123

7.5 Control file examples

The following sequence of ARTS functions can be used to store the spectra in both bright-
ness temperature units:

VectorCopy( y0, y ) {
}
yTRJ{
}
VectorWriteAscii( y ) {

"ytb_rj.aa"
}
VectorCopy( y, y0 ) {
}
yTB{
}
VectorWriteAscii( y ) {

"ytb_planck.aa"
}

A weighting function matrix is converted to Rayleigh-Jean temperature as:

MatrixTRJ( kx, kx ) {
}



124 SENSOR MODELING



Chapter 8

Data reduction

Many observation scenarios give rise to very large measurement vectors, larger than can
be handled practically during the inversions, and some kind of reduction of the data size is
needed. This data reduction can be made part of the sensor transfer matrix. In fact, the data
reduction can be viewed upon as an imaginary second spectrometer. The transfer matrix to
use is then (Eq. 2.10)

H = HdHs

where Hd is the data reduction matrix and Hs the sensor matrix. Data reduction can so far
only be performed in Qpack.

8.1 Averaging of viewing angles

In some cases the spectra from different viewing angles are combined, either as a pure data
reduction or internally in the spectrometer. The rows of Hd for this case have the structure

h = [0, . . . , 0,
1

nv
, 0, . . . , 0,

1

nv
, 0, . . . , 0,

1

nv
, 0, . . . , 0] (8.1)

where nv is the number of viewing angles to combine.

8.2 Data binning

Data binning means that neighboring channels are combined by weighted averaging. If
channels i1 to i2 of y′ are combined to give element j of y, the binning can be expressed as

yj =
1∑i2

i=i1
∆νi

i2∑
i=i1

∆νi(y′)i (8.2)

History
000321 Created and written by Patrick Eriksson.



126 DATA REDUCTION

Row j of Hd is accordingly

hi =
∆νi∑i2
i=i1

∆νi
, i1 ≤ i ≤ i2 (8.3)

Other values of h are zeros. The matrix Hd is for data binning highly sparse.

8.3 Reduction by eigenvectors

A commonly used approach for reducing data sizes is to base the reduction of the eigen-
vectors of the covariance matrix expressing the variability of the measurements. These
empirical eigenvectors fulfills the relationships

Sy = EΛET (8.4)

where Λ is a diagonal matrix holding the eigenvalues corresponding to the eigenvectors, the
columns of E. The eigenvectors form an orthogonal basis:

I = ET
j Ej (8.5)

where Ej signifies the j first columns of the matrix.
The data reduction for this case is performed as

y = ET
j y′ (8.6)

that is

Hd = ET
j (8.7)

By basing the data reduction on the covariance matrix eigenvectors, the reduction main-
taining the maximum possible fraction of the variability of the spectra, for a given j, is
achieved.

Different versions of this scheme are described in Eriksson et al. [2001a]. The existing
options in Qpack are described in the file README.



Chapter 9

Atmospheric weighting functions

This section describes how the calculation of the atmospheric weighting functions (WFs)
matrices is performed in the forward model. For several types of variables (such as species
profiles and fit of absorption continuum) WFs are obtained by semi-analytical expressions,
while for other quantities the WFs are obtained by straightforward perturbation calculations.

9.1 Calculation approaches

9.1.1 Pure numerical calculation

The most straightforward method to determine WFs is by perturbing one parameter at a
time. For example, the WF for the state variable p can always be calculated as

Kp
x =
F(x + ∆xpep,b)−F(x,b)

∆xp
(9.1)

where Kp
x is column p of Kx, (x,b) is the linearization state, ep is a vector of zeros except

for the component p that is unity, and ∆xp is a small disturbance (but sufficiently large to
avoid numerical instabilities).

However, it is normally not needed to make a recalculation using the total forward model
as the variables are in general either part of the atmospheric or the sensor state, but not both.
If xp is an atmospheric variable, the calculation can be performed as (Eq. 2.14)

Kp
x = H

[Fr(xr + ∆xpep,br)−Fr(xr,br)
∆xp

]
(9.2)

where xr is the atmospheric part of the state vector etc (see further Sec. 2).

9.1.2 Analytical expressions

For some atmospheric variables, such as species abundance, it is possible to derive a semi-
analytical expression for the WFs. This is advantageous because it results in faster and more

History
000310 Started by Patrick Eriksson.
000911 First version finished by Patrick Eriksson.



128 ATMOSPHERIC WEIGHTING FUNCTIONS

accurate calculations. By Equation 2.14,

Kx = H
∂i

∂x
,

it can be seen that the core problem of finding these analytical expressions is to determine
∂i/∂x. If xp influences only the conditions at one altitude, the problem can be simplified
as [Eriksson et al., 2000, Eq. 43]

Kp
x = H

∂i

∂xp
= H

[
∂i

∂Sp
∂Sp

∂xp
+

∂i

∂kp
∂kp

∂xp

]
(9.3)

where Sp and kp are the source function and the absorption at the (vertical) altitude p,
respectively.

It is very important to note that the analytical expressions are derived with the assump-
tion that xp influences only the local conditions. For species it is further assumed that the
absorption can be expressed as (see Section 9.6 for definitions and details)

kp = k̄psx
p +

∑
i 6=s

kpi (9.4)

These assumption should be of general validity for species above the tropopause. Two
examples on when the analytical expressions will be approximative are

• The variable of interest can change the line-of-sight (by the refractive index). This is
an example of a non-local effect. This is always valid for temperature.

• The amount of different species must be considered when calculating the pressure
broadening, and not only the total absorption.

If the analytical expressions can be used for such cases must be tested numerically. When it
is found that the analytical approach cannot be used, the WFs must be calculated by pertur-
bations to include the neglected effects (such a function for species is not yet implemented
in ARTS). An important example when these questions must be considered is limb sound-
ing of water vapor in the troposphere where both points above are true. The abundance of
water in the troposphere is sufficient high to have a significant influence on both the refrac-
tive index and the pressure broadening. These questions are discussed somewhat further in
Eriksson et al. [2001b].

The absorption and source function in Equation 9.3 are defined in vertical coordinates
(as we retrieve atmospheric variables as functions of altitude). For different reasons it is
more practical to work with these quantities defined along the LOS. For example, the source
function and transmission along the LOS are already determined when calculating the spec-
tra. To solve this problem, Equation 9.3 is expanded one step further

Kp
x = H

[
∂i

∂σ

∂σ

∂Sp
∂Sp

∂xp
+
∂i

∂κ

∂κ

∂kp
∂kp

∂xp

]
(9.5)

where σ and κ are the source function and the absorption along the LOS, respectively.
The term ∂i/∂σ is here denoted as source line of sight weighting functions (source LOS

WFs) and is discussed in Section 9.4. The term ∂i/∂κ is denoted as absorption LOS WFs



9.2 ABSORPTION LOS WFS WITH EMISSION 129

1

1Θκq

q-1q+1

q-1

q

σq
q+1I

σq-1
κq-1

σ
q+1

κq+1

q
ζ

q-1
ζ

q q-1
ψψ

Figure 9.1: The terms used for the derivation of line of sight weighting functions when the
individual atmospheric parts are passed a single time. The variables are defined in Figure
5.1.

and is discussed in Sections 9.2 and 9.3. These terms are treated separately as they are
common for all variables influencing the source function or the absorption.

The term ∂Sp/∂xp can often be neglected. When scattering is neglected and local
thermodynamic equilibrium is assumed, the only variable of interest affecting the source
function is the temperature. See further Section 9.8. For other variables, such as species
abundance, ∂Sp/∂xp = 0.

It was decided to allow that the retrieval grids differ between species, temperature etc.
This results in that the terms ∂σ/∂Sp and ∂κ/∂kp are not constant, they change according
to the selected retrieval grid. Accordingly, it is not suitable to include these terms in the
corresponding LOS WFs, they must be treated separately.

9.2 Absorption LOS WFs with emission

The absorption line of sight weighting functions are defined as

Kq
κ =

∂i

∂κq
(9.6)

These weighting functions express how the intensity is affected by changes of the absorption
at the points of the line of sight. Note that κ is the total absorption, not the absorption of a
single species.

For simplicity, the absorption LOS WFs are below derived without using vector no-
tation. The notation used here is identical to the one used in Section 5. The calculation
approach used for the LOS WFs is “inspired” by the corresponding work in Reburn et al.
[2000].

9.2.1 Single pass

This section derives the absorption LOS WFs for cases when each individual part of the
atmosphere is passed only once, as for upward looking measurements, or when each point
in the atmosphere is treated separately (2D simulations). With other words, the conditions
are not assumed to be symmetrical around some point. Accordingly, 1D limb sounding and
1D downward observations are not treated here, and are instead discussed in Section 9.2.2
and 9.2.3, respectively.



130 ATMOSPHERIC WEIGHTING FUNCTIONS

By rewriting Equation 5.10, the monochromatic pencil beam intensity can be expressed
in the following ways (see Fig. 9.1)1

I = I2ζ1 + ψ1(1− ζ1) (q = 1)

I =
[
Iq+1ζqζq−1 + ψq(1− ζq)ζq−1 + ψq−1(1− ζq−1)

]
Θq−1

1 , 1 < q < n (9.7)

I =
[
Inζn−1 + ψn−1(1− ζn−1)

]
Θn−1

1 (q = n)

where it assumed that the LOS has n points, index 1 is the point closest to the sensor,

Iq = InΘn
q +

n−1∑
i=q

ψi(1− ζi)Θi
q, 1 ≤ q < n (9.8)

is the intensity reaching point q along the LOS, In is the radiation at point n (the radiation
entering the atmosphere), and

Θp
q =

p−1∏
i=q

ζi for p > q, and Θp
p = 1 (9.9)

the transmission from point q and p. It should be noted that Iq and Θp
q not are calculated

as indicated by the equations above. These quantities are instead updated when going from
one step of the LOS to the next, as described below. It should also be noted that ground
reflections are here neglected and are discussed separately below.

The transmissions ζq−1 and ζq are separated in Equation 9.7 as they are the only terms
including the absorption at point q. For example

ζq−1 = e−∆l(κq−1+κq)/2 (9.10)

and we have that
∂ζq
∂κq

= −∆l

2
ζq (9.11)

∂ζq−1

∂κq
= −∆l

2
ζq−1 (9.12)

∂ζq−1ζq
∂κq

= −∆lζq−1ζq (9.13)

The derivate of transmission values beside ζq and ζq−1 with respect to κq is zero.
The LOS WFs are now easily determined, using the case 1 < q < n as example

Kq
κ = −∆l

2

[
2Iq+1ζqζq−1 + ψq(1− 2ζq)ζq−1 − ψq−1ζq−1

]
Θq−1

1 , 1 < q < n (9.14)

which can be rewritten as

K1
κ = −∆l

2
[I2 − ψ1]Θ2

1

Kq
κ = −∆l

2
[2(Iq+1 − ψq)ζq + ψq − ψq−1]Θq

1, 1 < q < n (9.15)

Kn
κ = −∆l

2
[In − ψn−1]Θn

1

1The indexing used here is 1-based (starts at 1), while inside ARTS 0-based indexing is used.



9.2 ABSORPTION LOS WFS WITH EMISSION 131

Note that one ζq is incorporated in Θq
q, and that Θ2

1 = ζ1.
These equations are used for the practical calculations, but it could be of interest to note

that Equation 9.15 can be written

Kq
κ = −∆l

2
[(Iq+1 − ψq)ζq + Iq − ψq−1]Θq

1, 1 < q < n, (9.16)

showing that the expressions for q = 1 and q = n are special cases of the general expression
where the terms connected to q − 1 and q, are neglected, respectively.

The iteration starts here at the end closest to the sensor, that is, at index 1 (reversed order
to the RTE part). The iteration is started by setting I1 to the already calculated spectrum
and Θ1

1 to 1. These two variables are updated as

Iq+1 =
Iq − ψq(1− ζq)

ζq
(9.17)

Θq+1
1 = Θq

1ζq (9.18)

For 2D calculations possible ground reflections inside the LOS must be handled. The
ground cannot be found at any of the end points of the LOS, and the correspondence to
Equation 9.7 for a ground point is (c.f. Equations 5.12 and 5.15)

I =
[
Iq+1ζq(1− e)ζq−1 + ψq(1− ζq)(1− e)ζq−1 + eBζq−1 +

+ψq−1(1− ζq−1)
]
Θq−1

1 , 1 < q < n (9.19)

and the corresponding absorption LOS WF for this point is (cf. Eq. 9.15)

Kq
κ = −∆l

2
[2(Iq+1 − ψq)ζq(1− e) + ψq(1− e) + eB − ψq−1]Θq

1 (9.20)

The intensity and the transmission are here updated as

Iq+1 =
Iq − ψq(1− ζq)(1− e)− eB

ζq(1− e)
Θq+1

1 = Θq
1ζq(1− e)

It is noteworthy that the effect of a ground intersection is included in I1 when the iteration
starts.

9.2.2 1D limb sounding

For limb sounding and when the atmosphere is assumed to be consist of homogenous layers
(horizontally stratified), there is a perfect symmetry around the tangent point. This covers
also the case with a ground reflection. For these cases the distance from the sensor is
neglected, the important factor is the vertical altitude. All altitudes above the tangent point
are passed twice (Fig. 9.2) and both crossings of an atmospheric layer are treated to be
identical for the retrievals, and this fact must also be reflected by the WFs.



132 ATMOSPHERIC WEIGHTING FUNCTIONS

� �� �� �� � �����	 
� � ��

0

zlim

1q q+1qq-1

z
I

q-1
q-1 q+1

n

q-1 Θq+1

LOS
n

I

q+1
n

Iq+1

Θ1

qq q

q-1

q-1 q-1ζ

ψ  ,ζ

ψ     ,

Figure 9.2: The terms used for the derivation of line of sight weighting functions for 1D
limb sounding.

Using a nomenclature similar to the one used for Equation 9.7, the intensity of a limb
sounding observations can be expressed as (Fig. 9.2)

I =
(
I2

(
ζ1Θ1

1

)2
+ ψ1(1− ζ1)

(
Θ1

1

)2
ζ1 + I1

1ζ1 + ψ1(1− ζ1)
)
Θn

2 (q = 1)

I =
[(
Iq+1ζqζq−1 + ψq(1− ζq)ζq−1 + ψq−1(1− ζq−1)

)(
Θq−1

1

)2
ζq−1ζq +

+Iq−1
q−1ζq−1ζq + ψq−1(1− ζq−1)ζq + ψq(1− ζq)

]
Θn
q+1, 1 < q < n (9.21)

I =
(
Inζn−1 + ψn−1(1− ζn−1)

)(
Θn−1

1

)2
ζn−1 + In−1

n−1ζn−1 +

+ψn−1(1− ζn−1) (q = n)

where the expression for q = 1 is commented below, index 1 of the LOS is the tangent (or
the ground) point, index n corresponds to the highest altitude,

Iq = InΘn
q +

n−1∑
i=q

ψi(1− ζi)Θi−1
q (9.22)

is the intensity reaching point q from the part of the atmosphere furthest away from the
sensor, In the intensity at point n,

Iqq =
[ q−1∑
i=1

(ψi(1− ζi)Θi−1
1

]
Θq

1 +
q−1∑
i=1

ψi(1− ζi)Θq
i+1, q > 1 (9.23)

is the intensity generated along the LOS (towards the sensor) between the two crossing with
altitude q, I1

1 = 0, Θ is defined by Equation 9.9. The equations defining Iq, Iqq and Θ neglect
ground reflections, but could easily be extended to cover also such cases. However, I1

1 and
Θ1

1 are included for q = 1 to make Equation 9.21 valid for cases with ground reflections.
The treatment of ground reflections are discussed separately last in the section.

If the different combinations of ζq−1 and ζq are grouped, for example, Equation 9.21
becomes

I =
[(

(Iq+1 − ψq)ζ2
q−1ζ

2
q + (ψq − ψq−1)ζ2

q−1ζq + ψq−1ζq−1ζq
)(

Θq−1
1

)2
+

+(Iq−1
q−1 − ψq−1)ζq−1ζq + (ψq−1 − ψq)ζq + ψq

]
Θn
q+1 (9.24)



9.2 ABSORPTION LOS WFS WITH EMISSION 133

This equation has some higher products between ζq−1 and ζq than Equation 9.7, and the
derivatives, with respect to κq, of these product are

∂ζ2
q−1ζq

∂κq
= −3∆l

2
ζ2
q−1ζq (9.25)

∂ζ2
q−1ζ

2
q

∂κq
= −2∆lζ2

q−1ζ
2
q (9.26)

Using Equations 9.11, 9.13, 9.25 and 9.26, the LOS WFs for 1D limb sounding can be
determined to be

K1
κ = −∆l

2

[(
2I2ζ1 + ψ1(1− 2ζ1)

)(
Θ1

1

)2
+ I1

1 − ψ1

]
Θn

1

Kq
κ = −∆l

2

[(
4(Iq+1 − ψq)ζq−1ζq + 3(ψq − ψq−1)ζq−1 + 2ψq−1

)(
Θq−1

1

)2
ζq−1

+2(Iq−1
q−1 − ψq−1)ζq−1 + ψq−1 − ψq

]
Θn
q , 1 < q < n (9.27)

Kn
κ = −∆l

2

[(
2Inζn−1 + ψn−1(1− 2ζn−1)

)(
Θn−1

1

)2
ζn−1 +

+In−1
n−1 − ψn−1

]
ζn−1

The function calculating these LOS WFs takes the total spectrum as input (that is, Inn ) and
it is then most suitable to iterate downwards, starting with point n. For each iteration, the
quantities are updated as

Iq = Iq+1ζq + ψq(1− ζq)

Θq−1
1 =

Θq
1

ζq−1

Iq−1
q−1 =

Iq − ψq−1(1− ζq−1)(1 + (Θq−1
1 )2ζq−1)

ζq−1

The iteration is started by setting In to cosmic background radiation, or correspondingly,
and setting Θn

1 to the square root of the total transmission. As mentioned above, Inn is an
input to the function.

No special attention needs to be given here to possible ground reflections. This as the
effects of a ground reflection are already included in Inn and Θn

1 when starting the iteration.
The procedure of setting Θn

1 to the square root of the total transmission maintains the sym-
metry and makes it possible to treat the ground as an imaginary altitude “below” point 1. If
there is a ground reflection, Θ1

1 and I1
1 equal

√
1− e and eB, respectively, at the end of the

iteration.



134 ATMOSPHERIC WEIGHTING FUNCTIONS

9.2.3 1D downward looking observations

Downward observation from an aircraft or a balloon can mainly be treated as a combina-
tion of limb sounding and upward looking observations. The altitudes below the platform
altitude are covered by the limb sounding expressions with a suitable choice of Iq for the
highest point. The altitudes above the platform altitude are treated by the upward looking
equations, but also considering the transmission through the lower altitudes.

If q is the index for platform altitude, the intensity can be expressed as

I =
(
Iq+1ζqζq−1 + ψq(1− ζq)ζq−1 + ψq−1(1− ζq−1)

)(
Θq−1

1

)2
ζq−1 +

+Iq−1
q−1ζq−1 + ψq−1(1− ζq−1) (9.28)

and the corresponding WF is

Kq
κ = −∆l

2

[(
3(Iq+1 − ψq)ζq−1ζq + 2(ψq − ψq−1)ζq−1 + ψq−1

)(
Θq−1

1

)2
+

+Iq−1
q−1 − ψq−1

]
ζq−1 (9.29)

9.3 Absorption LOS WFs for optical thicknesses

This section treats the absorption LOS WFs for cases when emission can neglected. For
such pure absorption calculations the output of ARTS is optical thicknesses (instead of e.g.
transmissions) and for these conditions the absorption LOS WFs get very simple.

9.3.1 Single pass

The optical thickness (τ) is for single pass cases (cf. Eq. 5.6)

τ = ∆l

(
κ1 + κ2

2
+
κ2 + κ3

2
+ . . .+

κn−2 + κn−1

2
+
κn−1 + κn

2

)
(9.30)

and we have that

K1
κ = ∆l/2

Kq
κ = ∆l, 1 < q < n (9.31)

Kn
κ = ∆l/2

9.3.2 1D limb sounding

For limb sounding each altitude is passed twice and the total optical thickness is double the
optical thickness from the tangent point to the atmospheric limit. This fact results in that
the absorption LOS WFs for 1D limb sounding are just the single pass ones multiplicated
by two:

K1
κ = ∆l

Kq
κ = 2∆l, 1 < q < n (9.32)

Kn
κ = ∆l



9.4 SOURCE LINE OF SIGHT WEIGHTING FUNCTIONS 135

9.3.3 1D downward looking observations

If q is the point where the sensor is placed, the optical thickness is

τ = ∆l

(
κq + κq−1

2
+ . . .+

κ2 + κ1

2
+ . . .+

κq−1 + κq
2

+
κq + κq+1

2
. . .

)
(9.33)

and the absorption LOS WF for this altitude is accordingly

Kq
κ =

3

2
∆l (9.34)

9.4 Source line of sight weighting functions

The source line of sight weighting functions are defined as

Kq
σ =

∂i

∂σq
(9.35)

These weighting functions express how the intensity is affected by changes of the source
function at the points of the line of sight. The source and absorption LOS WFs are tightly
related and this section follows closely Section 9.2.

9.4.1 Single pass

As, for example,

ψq =
σq + σq+1

2
(9.36)

the derivate of the mean source function values with respect to σq is

∂ψq−1

∂σq
=
∂ψq
∂σq

=
1

2
(9.37)

This derivate for other ψ terms is zero.
Using 9.7, the source LOS WFs for upward looking observations can be determined to

be

Kq
σ =

1− ζ1

2
, q = 1

Kq
σ =

1− ζq−1ζq
2

Θq−1
1 , 1 < q < n (9.38)

Kq
σ =

1− ζn−1

2
Θn−1

1 , q = n

For ground points in 2D calculations, the WFs are (cf. Eq. 9.19)

Kq
σ =

(1− ζq)(1− e)ζq−1 + 1− ζq−1

2
Θq−1

1 , 1 < q < n (9.39)

The practical calculations, such as the updating of Θ, follow the absorption LOS WFs (Sec.
9.2.1).



136 ATMOSPHERIC WEIGHTING FUNCTIONS

9.4.2 1D limb sounding

The 1D limb sounding source LOS WFs are (derived using Eq. 9.21)

Kq
σ =

1

2

(
1− ζ1

)(
1 +

(
Θ1

1

)2
ζ1

)
Θn

2 , q = 1

Kq
σ =

1

2

[
(1− ζq−1ζq)

(
Θq−1

1

)2
ζq−1ζq + (1− ζq−1)ζq +

+1− ζq
]
Θn
q+1, 1 < q < n (9.40)

Kq
σ =

1

2

(
(1− ζn−1)

(
Θn−1

1

)2
ζn−1 + 1− ζn−1

)
, q = n

The practical calculations follow the absorption LOS WFs (Sec. 9.2.2).

9.4.3 1D downward looking observations

The source LOS WFs for downward looking observations are determined by the upward
and the limb sounding expressions in the same manner as for the absorption LOS WFs
(Sec. 9.2.3).

The LOS WF for the index corresponding to the platform altitude is (cf. Eq. 9.28)
observations can be determined to be

Kq
σ =

1

2

[
(1− ζq−1ζq)

(
Θq−1

1

)2
ζq−1 + 1− ζq−1

]
(9.41)

9.5 Transformation from vertical altitudes to distances along
LOS

9.5.1 Basis functions

The source function and the absorption, both as a function of vertical altitude (k) and along
the LOS (κ), are assumed to vary linear between the points of the grid of concern. The
functions to express the quantities between grid points are denoted as basis functions. For
piecewise linear functions, the basis functions decline, from the point of interest, linearly
down to zero at neighboring points. Such functions are here denoted as tenth functions (Fig.
9.3).

9.5.2 Transformation from z to l

The forward model uses internally a grid along the line of sight (Sec. 6), while the atmo-
spheric WF matrices are calculated for some user specified vertical grid, and a transforma-
tion between these two grids must be performed. This transformation is achieved by the
terms, ∂κ/∂kp and ∂σ/∂Sp. As the source function and the absorption are assumed to
have the same functional behaviour (piecewise linear), these two terms are identical if the
retrieval grid is the same for both quantities:

∂κ

∂kp
=

∂σ

∂Sp
(9.42)



9.5 TRANSFORMATION FROM VERTICAL ALTITUDES TO DISTANCES ALONG LOS 137

0 0.2 0.4 0.6 0.8 1
29

29.5

30

30.5

31

31.5

32

32.5

33

33.5

Basis function

A
lt

it
u

d
e 

[k
m

]

Figure 9.3: Examples on basis functions for a vertical grid with a 1 km spacing: —— 30 km,
– – – 31 km and – · – 32 km.

For example, the term ∂κ/∂kp gives the relationship between the absorption along the LOS
and a change of the absorption at one altitude. Figure 9.4 exemplifies ∂κ/∂kp for three
altitudes. Ideally, the following relationship should be fulfilled for all z∑

i

kiφik(z(l)) =
∑
j

κjφjκ(l) (9.43)

where φk and φκ are the basis functions for k and κ, respectively. However, as can be seen
in Figure 9.4, φik expressed along the LOS is not a piecewise linear function and cannot be
fitted perfectly by the basis φκ. Hence, some approximation is needed, and the most natural
choice for this approximation is to fulfill Equation 9.43 only for the grid points along the
LOS:

κq =
∑
i

kiφik(z(lq)) (9.44)

where lq is the distance along the LOS for the corresponding to κq. Note that at lq all φjκ
are zero except for φqκ, that is unity.

We have now that
∂κq

∂kp
= φpk(z(lq)) (9.45)

Hence, term ∂κ/∂kp is determined by the values of φpk at the altitudes corresponding to the
grid points of the LOS.

Assuming that the LOS altitude q, zκq , is found between retrieval points p− 1 and p, at
the altitudes zkp−1 and zkp , respectively, we have that

∂κq

∂kp
=
zκq − zkp−1

zkp − zkp−1

(9.46)



138 ATMOSPHERIC WEIGHTING FUNCTIONS

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

B
as

is
 f

u
n

ct
io

n

Distance from z
tan

 [km]

Figure 9.4: The basis functions of Figure 9.3 shown as a function of the distance from the
tangent point, where ztan = 30 km.

If zκq is further away from zkp than the neighboring retrieval points, the derivative is zero.
The derivative is also treated to be zero if zκq is outside the retrieval grid (that is, below or
above all retrieval altitudes).

The basis functions for k change if the retrieval grid is changed, and as the retrieval
grid is individual for the species, temperature etc., the term ∂κ/∂kp must be determined for
each calculation of a WF matrix.

9.6 Species WFs

As it is assumed here that the species have no influence on the source function, species WFs
are calculated as (cf. Eq. 9.5)

Kp
x = H

∂i

∂κ

∂κ

∂kp
∂kp

∂xp
(9.47)

The term ∂i/∂κ is described in Section 9.2, while the term ∂κ/∂kp is treated in Section
9.5, and it remains to determine ∂kp/∂xp. It is assumed below in this section that x only
represents a single species and that the species absorption can be written as

kp = k̄psx
p +

∑
i 6=s

kpi (9.48)

where p is the altitude of concern, k̄s is the absorption of the species of interest, normalized
to the units of the corresponding values of x (or b) and ki the total absorption for other
species. Equation 9.48 assumes that a change for one species does not influence the absorp-
tion of other species, and that the shape of the absorption for one species does not change



9.7 CONTINUUM ABSORPTION WFS 139

with the abundance of that species. This assumption is not valid, for example, when the
amount of different species must be considered when calculating the pressure broadening,
and not only the total absorption. The validity of the analytical expressions for the WFs is
discussed in Section 9.1.2.

If Equation 9.48 is valid, we have then that

∂kp

∂xp
= k̄ps (9.49)

Different units for species retrievals are allowed. The possible units are

1. Fractions of linearization state [-], i.e. x/x0 where x0 is the linearization state

2. Volume mixing ratio [-] (no dimension)

3. Number density [molecules/m3)

Accordingly, for the practical calculations, the absorption of the species of interest is
needed, and a possibility to scale to the absorption from the unit used by the forward model
to the other two units considered.

It is advantageous for the retrieval that the values of x are of similar magnitudes
[Schimpf and Schreier, 1997; Eriksson, 1999] as the numerical precision is limited. This
fact makes WFs in fractions of the linearization state (or rather, the a priori state) interesting
as the values of x are then all around 1. In addition, Equation 9.49 is especially simple for
this case:

∂kp

∂xp
= kps (9.50)

as xp = 1.

9.7 Continuum absorption WFs

These WFs are used to fit unknown absorption that varies smoothly inside the frequency
range covered. This absorption is added to the species absorption:

kp = kps + kpc (9.51)

where kps is the summed species absorption and kps the continuum absorption.
The continuum absorption is represented by a polynomial for each altitude. The polyno-

mials are characterized by the magnitude of the absorption at a number of points inside the
frequency range covered (Fig. 9.5). This approach was selected as it gives the possibility to
impose positive constraints in a straightforward manner. A direct polynomial representation
(k = k0 + k1ν + k2ν

2...) is less favorable regarding this aspect.
The number of points is ncont + 1 where ncont is the polynomial order selected. The

points are equally spaced between the lowest and highest frequency, νmin and νmax, con-
sidered. Figure 9.5 exemplifies this for ncont = 2. The points are accordingly placed at the
following frequencies

νi = νmin +
(νmax − νmin)(i− 1)

ncont
, 1 ≤ i ≤ (ncont + 1) (9.52)



140 ATMOSPHERIC WEIGHTING FUNCTIONS

ν νν1

k

ν

32

Figure 9.5: Fit of continuum absorption with off-sets at three positions (ncont = 2). The
outermost frequencies, here ν1 and ν3, are placed at the end points of the range covered
(νmin and νmax, respectively).

This equation results in that the single point for ncont = 0 is placed at νmin, but the position
of the frequency point is for this case of no importance as the corresponding WF is constant
(as a function of frequency). With other words, if ncont = 0, the WFs are simply

∂kp

∂xp1
= 1 (9.53)

To determine the frequency dependency of the WFs for higher values of ncont, the La-
grange’s formula can be used. This formula gives the polynomial of orderN−1 that passes
through N fixed points [Press et al., 1992, Eq. 3.1.1]:

k(ν) =
(ν − ν2)(ν − ν3) . . . (ν − νN )

(ν1 − ν2)(ν1 − ν3) . . . (ν1 − νN )
x1 +

+
(ν − ν1)(ν − ν3) . . . (ν − νN )

(ν2 − ν1)(ν2 − ν3) . . . (ν2 − νN )
x2 + · · ·+

+
(ν − ν1)(ν − ν2) . . . (ν − νN−1)

(νN − ν1)(νN − ν2) . . . (νN − νN−1)
xN (9.54)

where xi is the absorption at the selected frequency points, νi, that are given by Equation
9.52, and N = ncont + 1.

The frequency dependency of the continuum WFs can be obtained by differentiating
Equation 9.54:

∂kp(ν)

∂xpi
=

(ν − ν1) . . . (ν − νi−1)(ν − νi+1) . . . (ν − νN )

(νi − ν1) . . . (νi − νi−1)(νi − νi+1) . . . (νi − νN )
(9.55)



9.8 TEMPERATURE PROFILE WFS 141

This equation gives, for example, for ncont = 1

∂kp(ν)

∂xp1
=

νmax − ν
νmax − νmin

, νmin ≤ ν ≤ νmax (9.56)

∂kp(ν)

∂xp2
=

ν − νmin
νmax − νmin

, νmin ≤ ν ≤ νmax (9.57)

Note that these WFs have no altitude variation. Or with other words, they are identical for
all p.

9.8 Temperature profile WFs

A critical factor for the calculation of temperature WFs is if hydrostatic equilibrium is as-
sumed or not. If hydrostatic equilibrium is neglected, the WFs can be calculated by semi-
analytical expressions, while if hydrostatic equilibrium is assumed, the WFs are obtained by
perturbations. The analytical version is so far only implemented for emission measurements
(and not for transmission measurements).

9.8.1 Without hydrostatic equilibrium

For some measurement situations it can be questionable to assume that the pressure, tem-
perature and geometrical altitude, valid for the measurement, fulfill the law of hydrostatic
equilibrium. One example is 1D limb sounding when there is a large horizontal distance
between the nadir point of the tangent point for the start and end points of the scan. This
is, for example, the case for the Odin observations where the tangent point will move in the
latitude direction with a speed of about 9 km/s and a scan takes 1 – 2 minutes.

If the constrain of hydrostatic equilibrium is neglected, WFs for the temperature profile
can be calculated following Equation 9.5, that is:

Kp
x = H

[
∂i

∂σ

∂σ

∂Sp
∂Sp

∂tp
+
∂i

∂κ

∂κ

∂kp
∂kp

∂tp

]
(9.58)

where t is the vector describing the vertical temperature profile.
The term ∂i/∂σ, the source LOS WFs, are derived in Section 9.4, while the absorption

LOS WFs (∂i/∂κ) are found in Section 9.2. As a single grid is here of concern, Equation
9.42 is valid, that is, ∂κ/∂kp equals ∂σ/∂Sp. These two terms are discussed in Section
9.5.

It is noteworthy that a change of the temperature inside an atmospheric layer will change
the line-of-sights for beams passing this altitude, but this is here neglected. See further
Section 9.1.2.

Here it is assumed that S equals the Planck function, B (Equation 5.2), and the deriva-
tive of the source function with respect to the temperature is (see also Equation 44 of Eriks-
son et al. [2000])

∂S

∂T
=

hν

kBT 2

(
ehν/kBT − 1

)−1
B(ν, T ) (9.59)

The term ∂Sp/∂tp is calculated using Equation 9.59 where T is replaced by tp.



142 ATMOSPHERIC WEIGHTING FUNCTIONS

The term ∂kp/∂tp cannot easily be determined analytically. Instead, the total absorp-
tion is calculated for a temperature profile that is 1 K higher at all altitudes than the assumed
profile. The difference between the two absorption matrices are then interpolated to the tem-
perature profile retrieval grid, giving an estimation of the derivative of the absorption with
respect to the temperature at the grid altitudes. Schematically

∂kp

∂tp
= Υ(k(T0 + 1)− k(T0))

where Υ is the interpolating function from the vertical absorption grid to the retrieval grid,
k the total absorption, and T0 the assumed temperature profile.

9.8.2 With hydrostatic equilibrium

The gases in the atmosphere behave like an ideal gas, and the pressure, the temperature and
the vertical altitudes above one point are linked by the fact that hydrostatic equilibrium must
be fulfilled (see Section 6.7).

The temperature WFs with hydrostatic equilibrium are calculated by perturbations (Eq.
9.1). See further the on-line information (type arts -d kTemp).

9.9 Spectroscopic Parameters WFs

The spectroscopic parameters weighting functions are calculated semi-analytically as de-
scribed in Section 9.1.2. As it is assumed that the spectroscopic parameters have no influ-
ence on the source function, the spectroscopic parameters weighting functions are calcu-
lated as (cf. Eq. 9.5)

Ks
b = H

∂i

∂κ

∂κ

∂k

∂k

∂b
(9.60)

The term ∂i/∂κ is the LOS weighting function, described in Section 9.2, while the
term ∂κ/∂k gives weights of the absorption calculated for LOS grid points to the absorp-
tion calculated to vertical grid (described in Section 9.5). The vertical grid in this case is
the pressure grid p_abs}used to calculate the absorption coefficients (see Section 3.1).
The above two terms are easy calculated. The only term which remains to be calculated
is ∂k/∂b, where b is the spectroscopic parameter in concern (line intensity, line position,
pressure broadening parameters and their temperature dependence, and pressure shift), spe-
cific to one line. Since the parameter b is characteristic for one single line, specific to one
species, the total absorption can be written as:

k = k̄s +
∑
i 6=s

ki (9.61)

where k̄s is the absorption of the line of interest, and ki is the absorption due to other lines.
Since the parameter of one specific line influence the the absorption of the line itself

then one can write:

∂k/∂b = ∂ks/∂b (9.62)

The term ∂ks/∂b is calculated numerically. For each line, and each parameter the
absorption is calculated once again by increasing the value of the parameter b by δb. The



9.9 SPECTROSCOPIC PARAMETERS WFS 143

difference in the two absorption is then calculated, and divided to the applied perturbation
on the parameter. Schematically we have:

∂k

∂b
=
∂ks

∂b
=
k(b + δb)− k(b)

δb



144 ATMOSPHERIC WEIGHTING FUNCTIONS



Chapter 10

Measurement errors

Following Equation 2.2,

y = F + ε,

measurement errors, ε are here defined as errors that are additive to the spectrum, that is,
not dependent on the actual spectrum. Error sources falling into this category are thermal
noise and baseline ripples (there is a small influence of the magnitude of the spectrum on
the thermal noise but this effect is normally totally negligible).

The term baseline ripple is used here as a common name for all instrumental imperfec-
tions causing a distortion of the spectra, for example, reflections inside the receiver, adding
theoretically a sinusoidal term to the spectrum.

The content of this chapter is so far only handled by Qpack.

10.1 General

The sensor transfer matrix can be neglected when treating measurement errors as these
errors are assumed to be additive to the spectra. On the other hand, a possible data reduction
must be considered. This fact can also be understood by Equation 2.11:

y = Hdy
′ = Hd(Hsi + ε′) = Hi + ε

Using this equation, a measurement error WF can be written as

Kp
x =

∂y

∂xp
=

∂ε

∂xp
= Hd

∂ε′

∂xp
(10.1)

Accordingly, quantities connected with the measurement errors shall be multiplicated with
the data reduction matrix Hd, this in contrast to the atmospheric WFs where the total reduc-
tion sensor matrix must be applied (Eq. 2.14).

History
000315 Created and written by Patrick Eriksson.



146 MEASUREMENT ERRORS

10.2 Thermal noise

The nature of the thermal noise differs from all other variables and error sources. The
most distinct feature of the thermal noise is the low correlation between the measurements
channels, in fact, the thermal noise is normally assumed to be totally uncorrelated. Such an
assumption results in that a variable for each channel would be needed to model, or to fit, the
measurement noise, and this is not a practical solution. In addition, it is not even of interest
to know the actual magnitude of the thermal noise for each single measurement, we are
instead interested in the statistical characteristics of the thermal noise. The special nature
of the thermal noise has the consequence that this term is treated differently than the other
variables, no weighting functions are calculated, only the covariance matrix is produced.

Thermal noise is introduced in two ways, by the observation of the atmosphere, and
by the calibration process. The first part is here denoted as measurement thermal noise,
while the latter is denoted as calibration thermal noise. In many cases, there is no practical
difference between the two terms and they can together be treated as measurement thermal
noise. However, if a single calibration measurement is used for a number of atmospheric
spectra that are inverted jointly, as is the normal case for limb sounding, the error introduced
by the calibration is totally correlated between the different viewing angles and it could be
of importance to consider this fact.

10.2.1 Measurement thermal noise

The thermal noise is often assumed to be uncorrelated between the measurement channels,
and the corresponding covariance matrix, S is then diagonal, where the diagonal elements
are

Siitn =
(
σitn

)2
(10.2)

where Sii is element (i, i) of the matrix.
However, for most spectrometer types there exist in fact some correlation of the noise

between the channels as there is an overlap of the channel frequency responses. The inter-
channel correlation of the thermal noise can be modeled by three different correlation func-
tions:
(1) gaussian

cij = exp

(
−
(
νi − νj
fc

)2
)

(10.3)

(2) exponential

cij = exp

(
−|νi − νj |

fc

)
(10.4)

and (3) tenth

cij = 1− |νi − νj |(1− e
−1)

νc
, |νi − νj | <

νc
(1− e−1)

cij = 0, |νi − νj | ≥
νc

(1− e−1)
(10.5)



10.3 POLYNOMIAL BASELINE RIPPLE 147

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o

rr
el

at
io

n

Scaled frequency

Figure 10.1: The frequency
correlation functions. The
frequency is scaled to the
correlation length as (νi −
νj)/νc.

where νc is the frequency distance where the correlation has declined to e−1, the frequency
correlation length, and νi the middle frequency of channel i (Fig. 10.1). The numbers given
above are used to select the correlation function when specifying the the covariance matrix
for thermal noise. A diagonal matrix is flagged as correlation function 0. It is also possible
to apply a threshold for the correlation, where all cij below the threshold value are set to 0.

The covariance matrix for one viewing angle with inter-channel correlation is

Sijtn = cijσitnσ
j
tn (10.6)

The correlation between different viewing angles is set to 0.
To include the effect of data reduction, the covariance matrix is multiplicated with Hd

as

Stn = HdS
′
tnH

T
d (10.7)

where S′tn is the covariance matrix before data reduction.

10.2.2 Calibration thermal noise

In contrast to the measurement thermal noise, the calibration thermal noise is assumed to be
totally correlated between the different viewing angles. This latter noise as assumed to be
identical between the channels. The correlation functions used for the measurement thermal
noise can also be applied for the calibration thermal noise. Data reduction is considered by
Equation 10.7.

10.3 Polynomial baseline ripple

A polynomial representation of the baseline ripple can be suitable at many occasions. One
example is when a sinusoidal baseline ripple has a period that exceeds significantly the total
frequency coverage of the receiver and the exact period length is not known. A baseline



148 MEASUREMENT ERRORS

1

-1

1-1

p=1

p=2

p=0

f’
Figure 10.2: Polynomial WFs
of order 0, 1 and 2. The scaled
frequency is f ′ = (ν − ν̄)/∆ν.

polynomial can also be used to fit continuum absorption for linear situations, e.g. to fit the
unknown emission from the troposphere for ground-based observations.

The polynomial measurement error is modeled as

εpol = x0 +

npol∑
i=1

xi

(
ν − ν̄
∆ν

)i
(10.8)

where npol is the polynomial order selected, xi are the polynomial coefficients to be deter-
mined, and ν̄ and ∆ν normalization factors. The part of x corresponding to the polynomial
fit of the baseline is accordingly

x =



...
x0

x1
...

xnpol
...


(10.9)

The normalization factors are needed to avoid extreme values (without the factors the quan-
tity νi would have been calculated), resulting in that the magnitudes of the coefficients xi
will not deviate too strongly. The factors are calculated as

ν̄ =
νmin + νmax

2
(10.10)

∆ν =
νmax − νmin

2
(10.11)

where νmin and νmax are the minimum and maximum value, respectively, of the frequency
grid given by the spectrometer. These definitions of the normalization factors give a scaled
frequency grid extending from -1 to 1.



10.4 PIECEWISE POLYNOMIAL BASELINE RIPPLE 149

The polynomial WFs are

Kp
x = Hdap (10.12)

where the elements of ap are

aip =

(
νi − ν̄

∆ν

)p
(10.13)

Note that for p = 0, ap = 1.
Examples on polynomial weighting functions are shown is Figure 10.2.

10.4 Piecewise polynomial baseline ripple

If the spectrum is recorded with a number of spectrometers (or individual spectrometer
parts) there could be a difference in the level between the different parts of the spectrum.
Figure 10.3 shows an example on such a spectrum.

The baseline for such cases can be retrieved by piecewise polynomials where an indi-
vidual polynomial is applied for each part of the spectrum. For frequencies inside the part
of concern the WFs are given by Equation 10.13, while for remaining frequencies the WFs
are 0.



150 MEASUREMENT ERRORS

22.19 22.2 22.21 22.22 22.23 22.24 22.25 22.26
−0.2

0

0.2

0.4

0.6

T
b
 [

K
]

22.19 22.2 22.21 22.22 22.23 22.24 22.25 22.26
0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
b
 [

K
]

22.19 22.2 22.21 22.22 22.23 22.24 22.25 22.26
−0.04

−0.02

0

0.02

0.04

Frequency [GHz]

T
b
 [

K
]

Figure 10.3: Example on fit of baseline with piecewise polynomials. The top figure shows
a (poor!) test measurement with the 22.2 GHz water vapor radiometer at Onsala Space Ob-
servatory, Sweden. The spectrum was recorded by an auto-correlator spectrometer having
four 20 MHz wide individual parts, clearly seen in the spectrum. The middle figure shows
the measurement spectrum after a correction based on the retrieved baseline variables, and
the simulated spectrum corresponding to the retrieved profile. The baseline is fitted by 3:rd
order polynomial over the whole frequency range, and a 2:nd oder polynomial inside each
20 MHz range. The lower figure shows the difference between the spectra in the middle
figure, the residual.



Part II

Implementation Issues





Chapter 11

The art of developing ARTS

This section is supposed to become the ARTS developers manual one day. Its aim is to
describe how the program is organized and to give detailed instructions how to make exten-
sions.

11.1 Organization

ARTS is written in C++ with the help of the GNU development tools (Autoconf, Automake,
etc.). It is organized in a similar manner as most GNU packages. The top-level ARTS
directory is either called arts or arts-x.y, where x.y is the release number. It contains
various sub-directories, notably doc for documentation, src for the C++ source code,
ami for the MATLAB interface, and aii for the IDL interface. The document that you are
reading right now, the ARTS User Guide, is located in doc/uguide.

There are two different versions of the ARTS package: The developers version and
the end-user version. Both contain the complete source code, the only difference is that
the developers version also includes the CVS housekeeping data. If you want to join in the
ARTS development (which we of course encourage you to do), you should write an email to
the authors to obtain access to the developers version, which makes it easier to merge your
changes with the ‘official’ ARTS program. Furthermore, for serious development work
you need a computer running Unix, the GNU development tools, LaTeX, and the Doxygen
program. All this is freely and easily available on the Internet, and, what is more, all these
tools are included in the Suse linux distribution. (Most likely they are also included in the
Redhat distribution, but I did not check.)

The end-user version contains everything that you need in order to compile and in-
stall ARTS in a fairly automatic manner. The only thing you should need is an ANSI-
C++ compiler and the standard Unix make utility. Please see files arts/README and

History
011005 Stefan Buehler: Fixed TeX warnings, updated.
000728 Stefan Buehler: Added stuff about build system and howto cut a release.
000615 Created by Stefan Buehler. For now, this is basically the former content

of the file notes.txt.



154 THE ART OF DEVELOPING ARTS

arts/INSTALL for installation instructions. We are developing with the GNU C++ com-
piler, no other compilers have been tried so far.

11.2 The ARTS build system

As mentionend above, GNU tools are used to construct the ARTS build system. A good
introduction to the GNU build system can be found in:

http://www.amath.washington.edu/˜lf/tutorials/autoconf/

Using these tools makes a lot of things very easy, but also some things slightly more com-
plicated.

The most important thing to keep in mind is that an ARTS release is not just a copy
of the ARTS development tree. Instead there is a special make target ‘dist’ that you can
use to cut a release. How this is done in detail is described in Section 11.5.4. Mostly, the
GNU tools are smart enough to figure out automatically what should go into the release.
However, this can be controlled by editing the Makefile.am files which can be found in
almost all directories.

The support for documentation other than info and man pages is not very good in the
GNU system, so we had to use some tricks to make sure that the Doxygen automatic docu-
mentation and the User Guide work as they should.

If you add directories or just files, you have to make sure that they also go into
the distribution. For program source code files, this is done automatically. But if you
add any other kind of file, for example a data or a documentation file, you have to
edit the Makefile.am file in that directory to make sure that your stuff goes into the
distribution. It is a good idea to always check the release in order to see if the things you
added are really there.

11.3 Conventions

Here are some general rules for ARTS programming:

11.3.1

Never use float or double explicitly, use the type Numeric instead. This is set by
configure (to double by default). Thus, it is possible to compile the program for
float by simply running configure with a different option. In the same way, use Index for
all integers. It can take on positive or negative values.

11.3.2

Use Vector and Matrix for mathematical vectors and matrices (with elements of type
Numeric). Use Array<something> to create an array of somethings. Com-
monly used Arrays have been predefined, they have names like ArrayOfString,
ArrayOfMatrix, and so forth.



11.3 CONVENTIONS 155

11.3.3 Terminology

Calculations are carried out in the so called workspace (WS), on workspace variables
(WSVs). A WSV is for example the variable containing the absorption coefficients. The
WSVs are manipulated by workspace methods (WSMs). The WSMs to use are specified in
the controlfile in the same order in which they will be executed.

11.3.4 Global variables

Are not visible by default. To use them you have to declare them like this:

extern const Numeric PI;

which will make the global constant PI=3.14... available. Other important globals are:

full_name Full name of the program, including version.
parameters All command line parameters.
basename Used to construct output file names.
out_path Output path.
messages Controls the verbosity level.
wsv_data WSV lookup data.
wsv_group_names Lookup table for the names of types of WSVs.
WsvMap The map associated with wsv_data.
md_data WSM lookup data.
MdMap The map associated with md_data.
workspace The workspace itself.
species_data Lookup information for spectroscopic species.
SpeciesMap The map associated with species_data.

The only exception from this rule are the output streams out0 to out3, which are visible
by default.

11.3.5 Files

Always use the open_output_file and open_input_file functions to open files.
This switches on exceptions, so that any error occurring later on with this file will result
in an exception. (Currently not really implemented in the GNU compiler, but please use it
anyway.)

11.3.6 Version numbers

The package version number is set in file configure.in in the top level ARTS directory.
Always increase this when you do a CVS commit, even for small changes. in such cases
increase the last digit by one. If you make a new distribution, increase the middle digit by
one and omit the last digit. If you make a bug-fix distribution, you can add the last digit to
indicate this.



156 THE ART OF DEVELOPING ARTS

11.3.7 Header files

The global header file arts.h must be included by every file. Apart from that you have to
see yourself what header files you need. If you use functions from the C or C++ standard
library, you have to also include the apropriate header file.

11.3.8 Documentation

Doxygen is used to generate automatic sourec code documentation. See

http://www.stack.nl/˜dimitri/doxygen/

for information. There is a complete User manual there. At the moment we only generate
the output as HTML, although latex, man-page, and rtf format is also possible. The HTML
version is particularly useful for source code browsing, since it includes the complete source
code! You should add doxygen headers to the following:

1. Files

2. Classes (Including all private and public members)

3. Functions

4. Global Variables

The documentation headers are comment blocks that look like the examples below.
They should be put above the definition of a function, i.e., in the .cc file. Some functions
are defined in the .h file (e.g., inline member functions). In that case the comment can be
put in the .h file. The first sentence will be used as a short description for the entity, so
it should be explanatory.

There are some emacs macros that insert these comment blocks automatically. You can
find them in the ARTS distribution in doc/emacs. Documentation on the macros can be
found in doc/index.html.

File comment:

/**
\file dummy.cc

A dummy file.
This file has no purpose at all,
it just servers as an example...

\author Stefan Buehler
\date 2000-09-13

*/



11.4 EXTENDING ARTS 157

Function comment:

The emacs macro here inserts only \param for all arguments. If arguments are modified
by the function you should change this to \retval.

/**
A dummy function.
This function has no purpose at all,
it just serves as an example...

\retval a This parameter is modified by the function.
\param b This is the other input parameter.
\return A dummy value computed from a and b.

\author Stefan Buehler
\date 2000-09-13

*/
int dummy(int& a, int b);

Generic comment:

/**
This is a dummy comment. You can
write as much as you want here...

*/

11.4 Extending ARTS

11.4.1 How to add a workspace variable

1. Create a record entry in file workspace.cc. (Just add another one of the
wsv_data.push_back blocks.) Take the already existing entries as templates.
The ARTS concept works best if WSVs are only of a rather limited number of differ-
ent types, so that generic WSMs can be used extensively, for example for IO.

The name must be exactly like you use it in the source code, because this is used to
generate interface functions.

Make sure that the documentation string you give explains the variable and its purpose
well. In particular, state the dimensions (in the case of matrices) and the units!
This string is used for the online documentation. Please take some time to write it
carefully.

2. That’s it!

11.4.2 How to add a workspace variable group

1. Add a wsv_group_names.push_back("your_type") function to the func-
tion define_wsv_group_names() in groups.cc. The name must be exactly



158 THE ART OF DEVELOPING ARTS

like you use it in the source code, because this is used to generate interface functions.

2. That’s it! (But as stated above, use this feature wisely)

11.4.3 How to add a workspace method

1. Create an entry in the function define_md_data in file methods.cc. (Make
a copy of an existing entry (one of the md_data.push_back(...) blocks) and
edit it to fit your new method.) Don’t forget the documentation string! Please refer to
the example at the beginning of the file to see how to format it.

2. Run: make.

3. Look in auto_md.h. There is a new function prototype

void <YourNewMethod>(...)

4. Add your function to one of the .cc files which contain method functions. Such files
must have names starting with m_. (See separate HowTo if you want to create a new
source file.) The header of your function must be compatible with the prototype in
md.h.

5. Check that everything looks nice by running

arts -d YourNewMethod

If necessary, change the documentation string.

6. Thats it!

11.4.4 How to add a source code file

1. Create your file. Names of files containing workspace methods should start with m_.

2. You have to register your file in the file src/Makefile.am. This file states which
source files are needed for arts. Should be self-explanatory where you have to add
your file. The above goes for source (.cc) and header (.h) files likewise.

3. Then go to the top level arts directory and run: autogen.sh.

4. Go to src and run: cvs add <my_file> to make your file known to CVS.

11.4.5 How to add an example file

1. Create your own example file. The filename should end with _example.arts.in.

2. If your example uses files from the arts-data package, replace the path to the data
package (e.g. /pool/lookup2/arts-data) with @ac_arts_data@. Con-
figure will replace this with the correct path.

3. Add your file to the variable arts_examples in the file
doc/examples/Makefile.am.



11.5 CVS ISSUES 159

4. Add your file to the AC OUTPUT list near the end of configure.in.

5. The next time when you call make the .arts.in file will be automatically con-
verted to .arts.

11.5 CVS issues

The arts project is controlled by CVS. This section describes some basic CVS commands.
For more information see the extensive CVS documentation or our own CVS Howto on:

http://www.sat.uni-bremen.de/docs/

11.5.1 How to check out arts

1. Go to a temporary directory.

2. Run: cvs co -P arts.

11.5.2 How to update (if you already have a copy)

1. Go to the top ARTS directory (called simply arts).

2. Run: cvs update -P

IMPORTANT! Always update, before you start to make changes to the program,
especially after a longer pause. If you edit an outdated copy, it will be a lot more
work to bring your changes into the current copy of the program.

11.5.3 How to commit your changes

1. You should make sure that the program compiles and runs without obvious errors
before you commit.

2. If you have created a new source file, make it known to CVS by running the command
cvs add <my_file> in the directory where the file resides.

In general, when you run cvs update, it will warn you about any files it doesn’t
know by marking them with a ?. Files that are created during the compilation process,
but should not be part of the package are listed in the .cvsignore files in each
directory.

3. Have you added the documentation for your new features?

4. Increase the subversion number in file configure.in in the top level ARTS direc-
tory.

5. Open the file ChangeLog in the top level ARTS directory with your favorite editor.

With Emacs, you can very easily add an entry by typing either

M-x add-change-log-entry



160 THE ART OF DEVELOPING ARTS

or C-x 4 a.

Specify the new version number and describe your changes.

These keystrokes work also while you are editing some other file in Emacs. Thus
it is best to write your ChangeLog entry already while you work on a file. When-
ever you make a change to a file, there should be a Changelog Entry!

6. Make sure that you have saved all your files. Go to the top level ARTS directory and
run: cvs commit.

7. This will pop up an editor. Use the mouse to cut and paste the Change-Log message
also to this editor window. Safe the file and exit the editor. If you made changes
in different directories, another editor will pop up, already containing your message.
Save again and exit. Do this until no more editors come up. (Note: This works well
if you set

export EDITOR=xedit

in you shell startup file.

With smarter editors there might be problems, because they might refuse to safe your
file if you haven’t made changes to it. So you would have to add a blank to the
message each time a new directory is commited.)

8. You have to give your version of the program a symbolic name, so that it can be
retrieved later on if necessary. Do this by running: cvs tag arts-x-y-z where
x,y,z must be replace by the version numbers. You have to use dashes to separate the
numbers, a point (.) will not work.

9. Tell the other developers about it. The best way to do this is to send an email to
arts-dev@sat.physik.uni-bremen.de.

11.5.4 How to cut a release

1. Change the release number in the file configure.in in the top-level ARTS direc-
tory. (The line that you have to change is the one with AM_INIT_AUTOMAKE.) Omit
the subversion number (last digit).

2. Commit your changes (see other howto).

3. In the top-level ARTS directory, run autogen.sh.

4. In the top-level ARTS directory, run make distcheck. This will not only cut the
release, but also immediately try to build it, to see if it works. Unless you are on a
very fast machine, this may take a while. Maybe you should go and have a cup of
coffee.

5. If all goes well, you can find the release inside the top-level ARTS directory as a file
arts-x.y.tar.gz, where x.y is the release number.

6. Check the release carefully by trying to build and install the program.



11.6 DEBUGGING (USE OF ASSERT) 161

11.5.5 How to move your arts working directory

Never try to move CVS directories! Instead:

1. Commit your changes.

2. Go above the top level ARTS directory.

3. Run: cvs release -d arts.

This will ask for confirmation, and if you say y delete your working copy of arts.

4. Go to the directory where you want to have your ARTS copy in the future.

5. Check out a new copy (see other howto above).

11.6 Debugging (use of assert)

This section is taken more or less literally from the GNU tools manual of Eleftherios
Gkioulekas:

http://www.amath.washington.edu/˜lf/tutorials/autoconf/

The idea behind assert is simple. Suppose that at a certain point in your code, you expect
two variables to be equal. If this expectation is a precondition that must be satisfied in order
for the subsequent code to execute correctly, you must assert it with a statement like this:

assert(var1 == var2);

In general assert takes as argument a boolean expression. If the boolean expression is
true, execution continues. Otherwise the abort system call is invoked and the program
execution is stopped. If a bug prevents the precondition from being true, then you can
trace the bug at the point where the precondition breaks down instead of further down in
execution or not at all. The assert call is implemented as a C preprocessor macro, so it
can be enabled or disabled at will. One way to enable assertions is to include assert.h.

#include <assert.h>

Then it’s possible to disable them by defining the ‘NDEBUG’ macro.
During debugging and testing it is a good idea to leave assertions enabled. However, for

production runs it’s best to disable them. If your program crashes at an assertion, then the
first thing you should do is to find out where the error happens. To do this, run the program
under the gdb debugger. First invoke the debugger:

gdb

Then load the executable and set a breakpoint at the exit system call:

(gdb) file arts
(gdb) break exit (or break __assert_fail)

Now run the program:



162 THE ART OF DEVELOPING ARTS

(gdb) run

Instead of crashing, under the debugger the program will be paused when the exit
system call is invoked, and you will get back the debugger prompt. Now type:

(gdb) where

to see where the crash happened. You can use the print command to look at the contents
of variables and you can use the up and down commands to navigate the stack. For more
information, see the GDB documentation or type help at the prompt of gdb.

For ARTS, the assertion failures mostly happen inside the Matrix / Vector package (usu-
ally because you triggered a range check error, i.e., you tried to read or write beyond array
bounds). In this case the up command of GDB is particularly useful. If you give this a
couple of times you will finally end up in the part of your code that caused the error.

Recommendation: In Emacs there is a special GDB mode. With this you can very
conveniently step through your code.



Chapter 12

Vectors, matrices, and arrays

This section describes how vectors and matrices are implemented in ARTS and how they
are used. Furthermore it describes how arrays of arbitrary type can be constructed and used.

12.1 Implementation files

The Matrix and Vector classes described below reside in the files:

• matpackI.h

• make_vector.h

• matpackI.cc

• make_vector.cc

There is also a file matpackII.h, which contains the draft of a sparse matrix class,
but this is at the moment not used. The template class Array (also described below) is
implemented in the files:

• array.h

• make_array.h

The file test_matpack.cc contains test cases and usage examples.

12.2 Vectors

The class Vector implements the mathematical concept of a vector. (Surprise, surprise.)
This means that:

• A Vector contains a list of floating point values of type Numeric.

History
011018 Created and written by Stefan Buehler.



164 VECTORS, MATRICES, AND ARRAYS

• A Vector can be multiplied with another Vector (scalar product), or with a Matrix.

• Sub-ranges of a Vector can easily be accessed, and used as if they were Vectors.

• Resizing a Vector is expensive and should be avoided.

12.2.1 Constructing a Vector

You can construct an object of class Vector in any of these ways:

Vector a; // Create empty Vector.
Vector b(3); // Create Vector of length 3, if

// created like this it will contain
// arbitrary values.

Vector c(3,0.0); // Create Vector of length 3, and
// fill it with 0.

Vector d=c; // Make d a copy of c.

Vector e(1,5,1); // 1, 2, 3, 4, 5
Vector f(1,5,.5); // 1, 1.5, 2, 2.5, 3
Vector g(5,5,-1); // 5, 4, 3, 2, 1

The last three examples all use the same constructor, which takes the three arguments
‘start’, ‘extent’, and ‘stride’. It will create a Vector containing ‘extent’ elements, starting
with ‘start’, with a step of ‘stride’.

There also exists a special sub-class of Vector that can be initialized explicitly. This
must be a special class in order to avoid ambiguities with the standard constructors. Usage:

MakeVector a(1.0,2.0,3.0); // Creates a vector of length 3
// containing the values
// 1.0, 2.0, and 3.0.

You can use MakeVectors just like Vectors, except that the constructors are different.
Otherwise you can mix them freely with Vectors.

12.2.2 VectorViews

An object of class VectorView is, like the name says, just another view on an existing
Vector. It does not have its own data. This has the important consequence that it cannot be
resized, since that would mess up the original Vector that the view is referring to. You can
create VectorViews from Vectors using the index operator ‘[]’, the class Range, and the
special joker object. Examples:

MakeVector x(1,2,3,4,5,6,7);
VectorView a = x; // Now a refers to the

// whole of x;
VectorView b = x[Range(joker)]; // Same effect.



12.2 VECTORS 165

VectorView c = x[Range(0,2)]; // Take 2 elements of x,
// starting at the
// beginning,
// in this case: 1,2.

VectorView d = x[Range(0,3,2)]; // In this case: 1,3,5.
VectorView e = x[Range(3,joker)]; // In this case: 4,5,6,7.

As you can see, most useful ways to create VectorViews involve the Range class. The
general constructor to this class takes three arguments, ‘start’, ‘extent’, and ‘stride’. This
means that you will select ‘extent’ elements from the Vector, starting with index ‘start’, with
a step-width of stride. Note that indices are 0-based, so 0 refers to the first element. The last
argument, ‘stride’, can be omitted, in that case the default of 1 is assumed. As a special case,
‘extent’==joker means ‘to the end’, and calling Range with only one argument joker
means ‘all elements’.

Usually, you will not have to use VectorView explicitly, because you can use expressions
like:

Vector a(1,5,1); // a = 1,2,3,4,5
Vector b = a[Range(1,3)]; // b = 2,3,4

However, VectorView and the related class ConstVectorView are extremely use-
ful as the argument types of functions operating on Vectors. You should define your func-
tions like this:

void silly_function(VectorView a, // Output argument
ConstVectorView b // Input argument

// (read only)
)

{
// Do some silly stuff with a and b.

}

Note that there must not be any ‘&’ after VectorView or ConstVectorView. In other
words they have to be passed by value, not by reference. This is ok, since they do not contain
the actual data, so that passing by value is efficient. Passing VectorViews by reference is
forbidden.

You should use these kind of arguments for all input Vectors, and also for the output if
you have a function that does not resize the output Vector. This has the great advantage that
you can call the function with Vector sub-ranges, e.g.,

Vector a(1,5,1); // a = 1,2,3,4,5
Vector b(3); // Set size of b.
silly_function(b,a[Range(0,3)]); // Call fuction with

// sub-range of a.

An exception to this rule are workspace methods, which use conventional argument
types const Vector& for input and Vector& for output.



166 VECTORS, MATRICES, AND ARRAYS

12.2.3 What you can do with a Vector (or VectorView)

All examples below (except for the first) assume that a is a Vector, MakeVector, or Vec-
torView.

Resize (only for Vector, not for VectorView!):

a.resize(5);

This makes a a 5 element vector. The new Vector is not initialized (i.e., the contents will be
unpredictable). Also, note that the previous content will be completely lost. Appending to
a Vector is not possible.

Get the number of elements:

cout << a.nelem();

Sum up all elements:

cout << a.sum();

Element access:

cout << a[3]; // Print 4th element.
a[0] = 3.5; // Assign 3.5 to first element.

Note that we use 0-based indexing! Furthermore note that the operator ‘[]’ can be also
used with Range, as explained above.

Copying Vectors:

Vector b;
b.resize(a.nelem());
b = a;

This one is a bit tricky. The ‘=’ operator always copies the contents, so the sizes of the
left-hand and right-hand argument must match. Vector internally uses assertions to make
sure of this. So, if you get an assertion failure one reason could be that you forgot to make
b the correct size.

The reason for this behavior is to preserve computational efficiency. Resizing Vectors
is expensive, so it is never done automatically. Another reason is, that this way sub-ranges
can be used to full advantage, e.g.:

b[Range(5,5,-1)] = a[Range(3,5)]; // Copy 5 elements from
// a to b, reversing
// the order and starting
// with index 3 in a.



12.2 VECTORS 167

Maybe you have noticed that there is a way to formulate the first example above in a
much shorter fashion:

Vector b = a;

The result is exactly the same. Note, though, that in this case b is constructed from a,
not copied (see section about constructing Vectors above). The Vector b is just generated in
this case, therefore its size can be adjusted to that of a automatically.

Assigning a scalar:

a = 1.0; // Assign 1 to all elements.

Mathematical operators:

Vector a(1,3,1), b(3,1); // a = 1,2,3; b = 1,1,1
a *= 2; // a = 2,4,6

// Similarly, /=, +=, -=
a += b; // a = 3,5,7

// Similarly, -=, *=, /=
a += a; // a = 6,10,14

// So a can appear on both sides.

All these operate element-wise. Note, that there are no return versions of these operators
(i.e., expressions like b = a+1 are not possible). This is again for efficiency reasons. It
is currently an active area of research in programming techniques how to make this kind of
expression efficient. None of the available solutions works, so ARTS has to live without it.

Maximum and minimum:

cout << max(a);
cout << min(a);

Scalar product:

cout << a*a;

This is an exception to the rule not to have return versions of operators. The reason is
quite obvious: The return value is only a scalar.

Arbitrary single-argument math functions:

Vector b(a.nelem());
transform(b,sin,a); // b = sin(a)
transform(b,cos,b); // b = sin(b)

// So b can appear on both sides.

The transform function operates on each element of a with the function you specify and
puts the result in b. Note that the order of the arguments is swapped compared to the old
function trans that we had in the pre-Matpack era.



168 VECTORS, MATRICES, AND ARRAYS

12.3 Matrices

The class Matrix implements the mathematical concept of a matrix. (Who would have
guessed this?) This means that:

• A Matrix contains floating point values of type Numeric.

• The values are arranged in rows and columns and can be accessed by indices. The
first index is the row, the second the column. In other words, we use row-major order,
similar to C, Matlab, and most math textbooks. Note, however, that some languages
like FORTRAN and IDL use column-major order.

• A Matrix can be multiplied with a Vector, or with another Matrix.

• A sub-range of a Matrix in both dimensions (submatrix) can easily be accessed, and
used as if it was just a normal matrix.

• Resizing a Matrix is expensive and should be avoided.

12.3.1 Constructing a Matrix

You can construct an object of class Matrix in any of these ways:

Matrix a; // Create empty Matrix.
Matrix b(3,4); // Create Matrix with 3 rows

// and 4 columns. When
// created like this it will contain
// arbitrary values.

Matrix c(3,4,0.0); // Similar, but
// fill it with 0.

Matrix d=c; // Make d a copy of c.

That is all. More fancy constructors, like for Vector, do not exist for Matrix. There is
also no equivalent to the MakeVector class.

12.3.2 MatrixViews

A MatrixView is a view on an existing Matrix, in the same way as a VectorView is a
view on an existing Vector. Like a VectorView, a MatrixView cannot be resized and does
not contain the actual data. A view is generated by using Ranges:

Matrix x(10,20); // Create 10x20 matrix.
MatrixView a = x; // Now a refers to the

// whole of x;
MatrixView b = x(Range(joker),Range(joker));

// Same effect.
MatrixView c = x[Range(0,2),Range(0,2)];

// 2x2 sub-matrix.



12.3 MATRICES 169

I think you get the idea. Note that the second argument of Range gives the number of
elements to take, not the index of the last element. See the section about Vectors for more
examples how to use Range. You can use joker, and also the third argument of Range to
select only every nth row, or column, or reverse the order of the rows or columns.

In analogy to the Vector case, you should use the two classes MatrixView and
ConstMatrixView as function arguments. Please refer to the discussion in the Vec-
tor section for details. As in the case of VectorViews, all arguments of these types should be
passed by value, not by reference. Also, similar to the Vector case, workspace methods are
the exception, because they have to use the conventional const Matrix& or Matrix&
as input/output arguments.

12.3.3 What you can do with a Matrix (or MatrixView)

All examples below (except for the first) assume that a is a Matrix or MatrixView.

Resize (only for Matrix, not for MatrixView!):

a.resize(5,10);

This makes a a 5x10 Matrix (5 rows, 10 columns). The new Matrix is not initialized (i.e.,
the contents will be unpredictable). Also, note that the previous content will be completely
lost.

Get the number of rows or columns:

cout << a.nrows();
cout << a.ncols();

Refer to a row or column:

Vector x = a(0,Range(joker)); // First row.
Vector y = a(Range(joker),a.ncols()-1); // Last column.

Of course, you can use more complicated Range expressions to refer to only parts of a
row or column. Technically, expressions of this kind return the type VectorView. This
means, they can be used in all cases where an object of that type is expected, for example
with the function defined in Section 12.2.2:

silly_function(a(0,Range(joker)),
a(1,Range(joker))); // Call silly_function

// with first and
// second row of a.

Element access:

cout << a(3,4); // Print that element.
a(0,0) = 3.5; // Assign 3.5 to the top-left element



170 VECTORS, MATRICES, AND ARRAYS

Note that we use 0-based indexing! Furthermore note that the operator ‘()’ can be also
used with one or two Range arguments, as explained above. To summarize:

• (Index,Index) returns Numeric (element access).

• (Index,Range) or (Range,Index) returns VectorView (row or column access).

• (Range,Range) returns MatrixView (sub-matrix access).

You may find it unlogical, that Matrix uses ‘()’ for indexing, whereas Vector uses ‘[]’.
However, using ‘[]’ for Matrix is not possible, since it can have only one argument. On the
other hand, using ‘()’ for Vector element access seemed not a good idea, since that would
break with the established use of ‘[]’ for element access in C and C++.

Copying Matrices:

Matrix b;
b.resize(a.nrows(),a.ncols());
b = a;

As in the case of Vectors, the ‘=’ operator copies only the contents, so the dimensions
must match. An attempt to justify this behavior has been made above in the Section about
Vector. As for Vector, you can use ‘=’ with complicated expressions. Here is a more
elaborate example:

b(Range(0,3),Range(0,4)) =
a(Range(10,3),Range(3,4,-1)); // Copy a row 10-12,

// column 0-3
// to b row 0-2,
// column 0-3, reversing
// the order of columns.

If you do not understand the use of Range here, refer to Section 12.2.2. Also, please
keep in mind what has been said there about the difference between using ‘=’ for copying,
and using it for constructing something. In the first case the dimensions of the left operand
must match the right operand, in the second case the left operand is created to match the
right operand.

Assigning a scalar:

a = 1.0; // Assign 1 to all elements.

Mathematical operators:

You can use the operators ‘+=’, ‘-=’, ‘*/’, and ‘/=’, which operate element-vise, just as for
Vector.



12.4 ARRAYS 171

Maximum and minimum:

cout << max(a);
cout << min(a);

Arbitrary single-argument math functions:

The function transform works just like for Vector.

Transpose:

Matrix b = transpose(a); // Make b the transpose of a.

The function transpose creates a MatrixView, for which rows and columns are in-
terchanged. Note, that only the way the data is accessed is changed, not the data itself. So
Matrix a in the example above is not changed. For this reason, transposing is very efficient.
You can use transpose(a) instead of a in any matrix expression practically without
additional cost. (This is not strictly true, after all, the view has to be generated and passed.
But that cost should be negligible except for very small matrices.)

Matrix multiplication:

// Matrix-Vector:
Vector b(a.nrows()), c(a.ncols());
mult(b,a,c); // b = a * c

// Matrix-Matrix:
Matrix d(a.nrows(),5), e(a.ncols(),5);
mult(d,a,e); // d = a * e

Note, that the result is put in the first argument, consistent with the general ARTS policy,
but different from the old MTL based multiplication function. Furthermore note, that as you
can see from the first example, a Vector is always considered to be a 1-column Matrix. You
can use transpose, of course:

// Define b and c as in first example above.
mult(c,transpose(a),b); // c = a’ * b

// Vector-Matrix:
mult(transpose(c),transpose(b),a); // c’ = b’ * a

These two last examples should obviously give the same result.

12.4 Arrays

The template class Array can be used to make arrays out of anything. I do not know a
good definition for ‘array’, but I guess anybody who has written a computer program in



172 VECTORS, MATRICES, AND ARRAYS

any programming language is familiar with the concept. Of course, it is rather similar to
the concept of a Vector, just missing all the mathematical functionality like Matrix-Vector
multiplication and sub-range access.

The implementation of our Array class is based on the STL class std::vector,
whereas the implementation of our Vector class is done from scratch. So the two im-
plementations are completely independent. Nevertheless, I tried to make Array behave
consistently with Vector, as much as possible. There are a number of important differ-
ences, though, hopefully sufficiently explained in this part. A short summary of important
differences:

• An Array can contain elements of any type, whereas a Vector always contains ele-
ments of type Numeric.

• No mathematical functionality for Array (no sub-ranges (nothing like VectorView);
no +=, -=, *=, /=; no scalar product; no transform function; no mult function; no
transpose function).

• On the other hand, resizing (for example adding to the end) of an Array is ok. (See
the push_back method below.) It is still rather expensive, though, at least for large
Arrays.

12.4.1 Constructing an Array

You can construct an object of an Array class like this:

Array<Index> a; // Empty Array of class Index.

Array<String> b(5); // String Array with 5
// elements. Without initialization,
// elements contain random values.

Array<String> c(5,"x"); // The same, but fill with "x".

Array<Index> d=a; // Make d a copy of a;

There are already a lot of predefined Array classes. The naming convention for them
is: ArrayOfIndex, ArrayOfString, etc.. Normally you should use these predefined
classes. But if you want to define an Array of some uncommon type, you can do it with
‘<>’, as in the above examples.

As for Vector, there is a special sub-class of Array that can be initialized explicitly.
Usage:

MakeArray<String> a("ARTS",
"is",
"great"); // Creates an array of String

// with these 3 elements.

12.4.2 What you can do with an Array

All examples below assume that a is an ArrayOfString.



12.4 ARRAYS 173

Resize:

a.resize(5);

This adjusts the size of a to 5. Resizing is more efficiently implemented than for Vector,
but still expensive.

Get the number of elements:

cout << a.nelem(); // Just as for Vector.

In particular, note that the return type of this method is Index, just as for Vector. This
is an extension compared to std::vector, which just has a method size() that returns the
positive integer type size_t.

Element access:

cout << a[3]; // Print 4th element.
a[0] = "Hello"; // Assign string "Hello" to first element.

In other words, this works just like for Vector.

Copying Arrays:

This works also the same as for Vector. The size of the target must match! In this respect,
I have modified the behavior with respect to the underlying std::vector, which has different
copy semantics.

Assigning a scalar of the base type:

a = "Hello"; // Assign string "Hello" to all elements.

Append to the end:

a.push_back("Hello"); // Adds this new element at the
// end of a.

This can be an expensive operation, especially for large Arrays. Therefore, use it with
care. Actually, the push_back method comes from the std::vector class that Array
is based on. You can do a lot more with std::vector, all of which also works with
Array. However, to explain the Standard Template Library is beyond the scope of this
text. You can read about it in C++ or even dedicated STL textbooks.



174 VECTORS, MATRICES, AND ARRAYS



Chapter 13

Workspace variable groups and file
formats

This section defines the data types, basic mathematical operations and file formats supported
by ARTS. The implementation of vectors, matrices, and sparse matrices is based on the
handmade MATPACK package, which is part of the ARTS source code (files matpackI.h,
matpackII.h, matpackI.cc, and matpackII.cc). The implementation of arrays is based on the
Standard Template Library (STL).

You can read ARTS variables from Ascii or Binary files, and also write them to Ascii
or Binary files. The Ascii file format is very simple and explained in the online help
(arts -d ArrayOfMatrixWriteAscii). Binary files are created and read by us-
ing the Hierarchical Data Format (HDF). Some information and help how to install HDF is
given below.

ARTS workspace variables are organized in groups. Such a group is similar to a type in
C or C++. For example, String and Vector are both groups. To get a complete list of
workspace variable groups, call ARTS like this: arts -g.

13.1 Important workspace variable groups

13.1.1 Atomic groups

The most basic, the atomic, groups of ARTS are:

• Index

• Numeric

• String

A variable of group Index is a positive or negative integer. Index is the general purpose
integer type of ARTS. Internally this type is set to the C data type long int. Index

History
001027 Started by Patrick Eriksson.
010904 Started new text about handmade matrix/vector package. Stefan Bühler.



176 WORKSPACE VARIABLE GROUPS AND FILE FORMATS

is used for indexing vectors, matrices, and arrays. The type is also used for all function
flags, i.e., to make a selction among a limited number of choices. Accordingly, characters
or strings shall not be used as flags.

A variable of group Numeric is a floating point number. Internally, it is either set to be
double or float by configure. If Numeric is set to be double, the calculations will be
more accurate and there is a smaller risk to encounter numerical problems in, e.g., matrix
inversions. On the other hand, when Numeric is set to be float the calculations will be
more rapid (about twice as fast), and the program will need only half as much memory. The
type selected for Numeric is also reflected in the size of output files.

A variable of group String is not a true ‘atomic’ variable, as it consists of a number
of characters, but as characters are not used in ARTS, strings are the most basic text type in
ARTS.

13.1.2 Numeric groups

Numeric values can be stored in vectors or matrices for which mathematical operations like
computing a matrix/vector product are possible. ARTS uses the following types:

• Vector

• Matrix

Both of these use 0-based indexing, i.e., a[0] is the first element of the Vector a. Be-
cause these types are quite powerfull, they are described in more detail in a separate section,
which you should read if you want to do ARTS development (to be written).

13.1.3 Arrays based on atomic and numeric groups

Arrays correspond to vectors but are not treated as mathematical objects, they are only
used as containers to hold different data. The arrays (as vectors and matrices) have 0-based
indexing, that is, the first element has index 0 (not 1). Some examples for Arrays are:

• ArrayOfIndex

• ArrayOfString

• ArrayOfVector

• ArrayOfMatrix

13.1.4 Structures based on atomic and numeric groups

The Los is a structure to describe the line of sight (LOS). The structure holds for example
the pressures along the LOS. To make the calculations more efficient for 1D calulations,
only one half of the LOS is stored. For this reason, the LOS structure includes indecies to
describe the iteration order. The structure also contains the index for ground reflections and
the geometrical step length along the LOS. The structure is defined in los.h. The LOS
calculations are further described in Section 6.



13.2 FILE FORMATS 177

Numeric Vector Matrix
ArrayOfVector ArrayOfMatrix
Index ArrayOfIndex
String ArrayOfString

Table 13.1: ARTS data types that can be stored using the ASCII file formats (.aa).

13.2 File formats

All ARTS data, beside the spectroscopic variables, can be stored to, or loaded from, binary
files using HDF. For some data types an ASCII file format also exists (Table 13.1). The
default extension for ASCCI files is .aa (ARTS ASCII) and for binary files it is .ab
(ARTS binary).

13.2.1 ASCII

All data types based on Numeric and Index that can be represented by an
ArrayOfMatrix are stored using a common ASCII file format. Table 13.1 con-
tains the data types that fulfills this criteria. Numeric ASCII files have the following
structure:

# The file can start with an arbitrary number of comment lines.
# These lines starts with the hash symbol (#)
# The first row after the comment lines give the number of matrices
# in the array. After this follows, for each matrix, a row giving
# the matrix size followed by the data in row order.
2
2 3
1.1 2.2 3.3
4.4 5.5 6.6
1 1
3.1415

Index arrays (ArrayOfIndex) are stored as integer vectors to make the files easier to
inspect.

The sizes given in the file must be compatible with the data type of the variable that is
read. Vectors can be given both as columns or row matrices.

The types STRING and ArrayOfSTRING are stored using a similar file format. String
ASCII files have the following structure:

# The file can start with an arbitrary number of comment lines.
# These lines starts with the hash symbol (#)
# The first row after the comment lines give the number of strings
# in the array, followed by the strings (one on each row).
3
String 1
String 2
String 3



178 WORKSPACE VARIABLE GROUPS AND FILE FORMATS

13.2.2 Binary

Binary files are created and read by using HDF 4 (Sec. 13.3). Hence, HDF must be installed
to use binary files. The Vdata format is applied. Most data types are stored using a common
approach but for some data types a special format is used. The existing solution is temporary
and the file format file will be changed.

General binary file format

The binary files for data types that can be treated as special cases of a matrix or can be
broken down to a number of matrices have a common layout. In this context strings are
treated as vectors of characters and scalars as 1x1 matrices. For example, the data types in
Table 13.1 meat this criteria.

A Vdata contains only a single scalar, vector or matrix. The file for an array contains
thus a number of Vdatas. The fields of a Vdata contains a single number or character. The
field order for the common format is thus throughout 1. Matrices are in row order, that is,
the data order is (1,1), (1,2), (1,3),. . . ,(2,1),(2,2),. . . .

The matrix dimensions are stored as an attribute to each Vdata. The name of the attribute
is SIZE. The order of SIZE is 2 where the first value is the number of rows and the second
value is the number of columns. The data type of SIZE is unsigned 4 byte integers (= HDF
type DFNT_UINT32). Vectors and strings are treated as column objects (i.e. 1 column).

The data type of the file data is indicated by the class name of the Vdata. Index data
are stored as 4 byte unsigned integers and the class name is set to UINT (= HDF type
DFNT_UINT32). The class name for characters of strings is CHAR and the file data type is
1 byte characters (= HDF type DFNT_CHAR).

The record size for floating point values can either be 4 or 8 bytes. The cor-
rresponding class names are FLOAT and DOUBLE (= HDF type DFNT_FLOAT32 and
DFNT_FLOAT64, respectively). The type of Numeric determines the file type when writ-
ing from ARTS. Data is automatically converted to the type of Numeric when reading file
data.

The field name of a Vdata (remember that a Vdata has here only a singel field) describe
the structure of the data. Treated structure types are SCALAR, VECTOR, Matrix and
STRING. The following combinations of data structure and data type are allowed:

SCALAR: UINT, FLOAT, DOUBLE
VECTOR: UINT, FLOAT, DOUBLE
MATRIX: FLOAT, DOUBLE
STRING: CHAR

The Vdata name is used to handle arrays. However, for simplicity reasons and for consis-
tency with the ASCII format, index arrays (ArrayOfIndex) are stored as index vectors
(field name VECTOR and Vdata class UINT). For other type of arrays, the Vdata name is
set to the data structure name followed by a sequential number (starting at 1). The length of
the array is given by a seperate Vdata holding an index number (SCALAR, UINT), named
as N_string type. An example should clarify this. A file holding a matrix array of length 3
has the the Vdatas N_MATRIX, MATRIX1, MATRIX2 and MATRIX3.



13.3 HDF 179

The described approach to store binary data results in that each ARTS data type has a
corresponding format for binary files. This gives an automatic check that a file matches the
data type of an ARTS variable when reading from a binary file. The drawback is that, for
example, a file holding a matrix cannot be read to create an matrix array of length 1, which is
possible for the ASCII format, but consistency was emphasized when designing the binary
format. In addition, the size attribute is used to check that the data have the expected size,
for example, vectors are expected to only have one column.

Display tools

The content of the binary files can be displayed using some command line HDF utilities. A
first utility is vshow. The syntax is

vshow filename +

where filename is the binary file of interest. The final + indicates that the values of the
stored data shall be displayed. Without the + symbol, only the data structure is reported.

Another utility is hdp. Type hdp -h for some on-line help. To display the values of
the stored data, type

hdp dumpvd filename

13.3 HDF

The HDF home page is found at

http://hdf.ncsa.uiuc.edu/

The HDF 4 data format is used. The present version of ARTS has been tested with HDF
4.1r3. The precompiled binaries were used.

HDF is not supplied with ARTS, it must be installed seperately as a library. For example,
to install HDF on a Linux system, try the following:

1 Download the precompiled version for your system. Unpack.

2 Copy the contents of /bin, /include, /man and /lib to the corresponding sub-directories
of /usr/local. You need to be superuser to do this.



180 WORKSPACE VARIABLE GROUPS AND FILE FORMATS



Part III

Utilities





Chapter 14

Utilities

This section will describe the utility programs and functions that are distributed along with
ARTS. So far only the IDl interface is described. However, the described read and write
functions also exist for Matlab. Type help function name (in Matlab) to get some infor-
mation about the functions.

14.1 The ARTS-IDL interface: AII

14.1.1 Introduction

The following sections show the usage of the IDL reading and writing routines.

14.1.2 IDL reading routines

read datafile

This function reads data from a file in ARTS ASCII data format.

Calling Sequence x = read datafile(filename)
Argument filename full file name
Keyword check flag to check the data
Output x the data

Depending on the number of stored matrices the data are returned as an array or a structure
of arrays.

If there is only one matrix in the file, just type print, x at the IDL prompt to get
it. If there are several matrices in the file, type print, x.matn to get the matrix with
the number n+ 1 (n = 0, 1, 2, . . .) or make an assignment like mat = x.matn.

In order to make a check of consistency of the stored data, i. e. the correctness of the
indicated dimension of each matrix in reference to the number of actually available matrix

History
001101 Started by Stefan Buehler.
000228 Wolfram Haas



184 UTILITIES

values, you can set the keyword ’check’. In this case the reading process will be consider-
ably slower.
Example Reading the file test.dat (see 14.1.3)

IDL> x = read_datafile(’test.dat’)

The variable x is a structure of matrices. The first matrix is x.mat0. In order to get the
first three matrices, enter

IDL> print, x.mat0
1.2340000 2.3450000 3.4560000
4.5670000 5.6780000 6.7890000

IDL> print, x.mat1
3.1415930

IDL> print, x.mat2
-1.3467120 2.4578230
3.5689340 -4.6790450

Error messages

• Blank lines are not allowed.

1. The message appears if there are blank lines at the beginning of the file or blank
lines between the number of matrices and the size of the following matrix or
between a matrix and the size of the following matrix in case of several matrices.

2. The number of matrices is greater than the actually available number of matrices
and there are blanks or blank lines at the end of the file.

• Missing number of matrices.

• Could not read number of matrices.
The number of matrices is less than one.

• Wrong number of matrices.
The number of matrices is greater than the number of matrices in the file.

• Could not read matrix size.
The line in which the size of the matrix should be contains more than two numbers.
Possibly the size of the matrix is completely missing.

• There is some garbage at the end of the file.

1. There are additional numbers and symbols at the end of the file.

2. The number of matrices is less than the number of matrices in the file.

3. The size of the matrix can be wrong if there is only one matrix in the file and if
you use the keyword ’optimize’.

If the ’check’-keyword is set, the following error messages can occur:

• One or more rows are missing.



14.1 THE ARTS-IDL INTERFACE: AII 185

• Blank lines are not allowed within a matrix.

1. The message appears if there are blank lines between the size of a matrix and
the following rows. Possibly matrix values are missing.

2. If it is only one matrix stored in the file one or more rows can miss and instead
of these rows one or more blank lines are there.

• Wrong number of column elements.
The number of columns indicated in the file is larger or smaller than the actually
available number of columns.

read artsvar

This function reads an ARTS variable.

Calling Sequence x = read artsvar(basename, varname)
Arguments basename the ARTS basename

varname variable name
Keyword check flag to check the data
Output x the data

The data is read from the file ’basename.varname.am’. For details see ’read datafile’.

14.1.3 IDL writing routines

write datafile

This procedure writes data to a file in ARTS format.

Calling Sequence write datafile, filename, x, heading [, prec]
Arguments filename full file name

x the data to store
heading heading text

Optional prec number of decimals to use, default 6

The data can be transferred to the procedure in form of an array or a structure of arrays. See
also ’read datafile’.

You can create a structure in this way:

VariableName = {Tag Name1 : Tag Definition1, . . . ,Tag Namen : Tag Definitionn}

If prec is equal to zero, integer values are assumed.
Example Creating a file of matrices, vectors and scalars.

IDL> m = {a: dblarr(3, 2), b: dblarr(1, 1), c: dblarr(2, 2),
d: 0., e: dblarr(3, 1), f: dblarr(1, 3)}
IDL> m.a = [[1.234, 2.345, 3.456], [4.567, 5.678, 6.789]]
IDL> m.b = [3.1415926536]
IDL> m.c = [[-1.346712, 2.457823], [3.568934, -4.679045]]
IDL> m.d = 2.718281828
IDL> m.e = [1, 5, 8]
IDL> m.f = [[1.2], [2.3], [3.4]]



186 UTILITIES

In order to write the structure m to the file ’test.dat’, type at the IDL prompt

IDL> write_datafile, ’test.dat’, m, ’File test.dat’

An empty heading text is made by typing ” instead of ’File test.dat’.
The result is:

# File test.dat
#
# This file is created by IDL.
6
2 3
1.234000e+00 2.345000e+00 3.456000e+00
4.567000e+00 5.678000e+00 6.789000e+00
1 1
3.141593e+00
2 2
-1.346712e+00 2.457823e+00
3.568934e+00 -4.679045e+00
1 1
2.718282e+00
1 3
1.000000e+00 5.000000e+00 8.000000e+00
3 1
1.200000e+00
2.300000e+00
3.400000e+00

write artsvar

This procedure writes an ARTS variable to a file in ARTS format.

Calling Sequence write artsvar, basename, varname, x [, prec]
Arguments basename the ARTS basename

varname variable name
x the data to store

Optional prec number of digits to use, default 6

The data is written to a file called ’basename.varname.am’. See also ’write datafile’.



Part IV

Bibliography and Appendices





Bibliography

Balluch, M., and D. Lary, Refraction and atmospheric photochemistry, J. of Geophys. Res.,
102, 8845–8854, 1997.

Bauer, A., M. Godon, M. Kheddar, and J. M. Hartmann, Temperature and perturber de-
pendence of water vapor line broadening: Experiments at 183 GHz; calculations be-
low 1000 GHz, Journal of Quantitative Spectroscopy and Radiative Transfer, 41, 49–54,
1989.

Bauer, A., M. Godon, J. Carlier, Q. Ma, and R. H. Tipping, Absorption by H2O and H2O-N2

mixtures at 153 GHz, Journal of Quantitative Spectroscopy and Radiative Transfer, 50,
463–475, 1993.

Bauer, A., M. Godon, J. Carlier, and Q. Ma, Water vapor absorption in the atmospheric
window at 239 GHz, Journal of Quantitative Spectroscopy and Radiative Transfer, 53,
411–423, 1995.

Becker, G. E., and S. H. Autler, Water vapor absorption of electromagnetic radiation in the
centimeter wavelength range, Phys. Rev., 70, 300–307, 1946.

Bernath, P., Spectra of Atoms and Molecules, Oxford University Press, 1995, ISBN 0-195-
07598-6.

Berton, R. P. H., Statistical distribution of water content and sizes for clouds above Europe,
Ann. Geophys., 18, 385–397, 2000.

Borysow, A., and L. Frommhold, Collision induced rototranslational absorption spectra of
N2–N2 pairs for temperatures from 50 to 300 K, Astrophysical Journal, 311, 1043–1057,
1986.

Brussaard, G., and P. A. Watson, Atmospheric Modelling and Millimetre Wave Propagation,
Chapman & Hall, 1995, ISBN 0-412-56230-8.

Chase, M. W., C. A. Davies, J. R. Downey, D. J. Frurip, and R. A. McDonald, Janaf ther-
mochemical tables, third edition, JPCRD, 14, 1274, 1985.

Clough, S. A., F. X. Kneizys, and R. W. Davis, Line shape and water vapor continuum,
Atmospheric Research, 23, 229–241, 1989.

Costa, A. A., G. P. Almeida, and A. J. C. Sampaio, A bin-microphysics cloud model with
high-order, positive-definite advection, Atmospheric Research, 55, 225–255, 2000.



190 BIBLIOGRAPHY

Cruz Pol, S. L., C. S. Ruf, and S. J. Keihm, Improved 20– to 32–GHz atmospheric absorp-
tion model, Radio Science, 33, 1319–1333, 1998, updated version can be downloaded
from http://ece.uprm.edu/˜pol/Atmosphere.html.

Dagg, I. R., G. E. Reesor, and J. L. Urbaniak, Collision induced absorption in N2, CO2, and
H2 at 2 cm−1, Canadian Journal of Physics, 53, 1764–1776, 1975.

Dagg, I. R., G. E. Reesor, and M. Wong, A microwave cavity measurement of collision-
induced absorption in N2 and CO2 at 4.6 cm−1, Can. J. Phys., 56, 1037–1045, 1978.

Drayson, S. R., Rapid computation of the Voigt profile, Journal of Quantitative Spec-
troscopy and Radiative Transfer, 16, 611, 1976.

English, S. J., C. Guillou, C. Prigent, and D. C. Jones, Aircraft measurements of water
vapor continuum absorption at millimeter wavelengths, Quarterly Journal of the Royal
Meteorological Society, 120, 603–625, 1994.

Eriksson, P., Microwave radiometric observations of the middle atmosphere: Simulations
and inversions, Ph.D. thesis, School of Electrical and Computer Engineering, Chalmers
University of Technology, Sweden, 1999.

Eriksson, P., and F. Merino, On simulating passive observations of the middle atmosphere
in the range 1 - 1000 GHz, Tech. Rep. 179, Department of Radio and Space Science,
Chalmers University of Technology, Sweden, 1997.

Eriksson, P., F. Merino, D. Murtagh, P. Baron, P. Ricaud, and J. de la Nöe, Studies for
the Odin sub-millimetre radiometer: 1. Radiative transfer and instrument simulation, to
appear in Canadian Journal of Physics, 2000.

Eriksson, P., C. Jiménez, S. Bühler, and D. Murtagh, A Hotelling transformation approach
for rapid inversion of atmospheric spectra, J. Quant. Spectrosc. Radiat. Transfer, in press,
2001a.

Eriksson, P., C. Jiménez, D. Murtagh, G. Elgered, T. Kuhn, and S. Bühler, As-
sessment of uncertainties in LEO-LEO transmission observations through the tropo-
sphere/stratosphere, Tech. rep., ESTEC / Contract No ???, 2001b.

Godon, M., J. Carlier, and A. Bauer, Laboratory studies of water vapor absorption in the
atmospheric window at 213 GHz, Journal of Quantitative Spectroscopy and Radiative
Transfer, 47, 275–285, 1992.

Goody, R. M., Principles of atmospheric physics and chemistry, Oxford University Press,
1995.

Goody, R. M., and Y. L. Yung, Atmospheric radiation, theoretical basis, Oxford University
Press, 1989, second edition.

Gordy, W., and R. Cook, Microwave Molecular Spectra, Interscience Publishers, 1970,
SBN 471 93161 6.



BIBLIOGRAPHY 191

Herzberg, G., Infrared and Raman Spectra of Polyatomic Mollecules, Van Nostrand Rein-
hold Company, 1945, ISBN 0-442-03386-9.

Hess, M., P. Koepke, and I. Schult, Optical properties of aerosols and clouds: The software
package OPAC, Bulletin of the American Meteorological Society, 79, 831–844, 1998.

Ho, W., I. A. Kaufman, and P. Thaddeus, Laboratory measurement of microwave absorption
in models of the atmosphere of Venus, J. of Geophys. Res., 71, 5091–5108, 1966.

Hufford, G. A., A model for the complex permittivity of ice at frequencies below 1 thz,
Interntl. J. Infrared & Millimeter Waves, 12, 677–682, 1991.

Hui, A. K., B. H.Armstrong, and A. A. Wray, Rapid computation of the voigt and complex
error functions, Journal of Quantitative Spectroscopy and Radiative Transfer, 19, 509–
516, 1978.

Kneizys, F. X., et al., The MODTRAN2/3 report and LOWTRAN7 model laboratory studies
and propagation modelling, Tech. Rep. 1/11/96, Phillips Laboratory, Geophysical Direc-
torate, PL/GPOS, 1996, editors: L. W. Abreu and G. P. Anderson.

Kursinski, E. R., G. A. Hajj, J. T. Schofield, R. P. Linfield, and K. R. Hardy, Observing
Earth’s atmosphere with radio occultation measurements using the Global Positioning
System, J. of Geophys. Res., 102, 23429–23465, 1997.

Kyle, T., Atmospheric transmission, emission and scaterring, Pergamon Press, 1991.

Larsen, H., J.-F. Gayet, G. Febvre, H. Chepfer, and G. Brogniez, Measurement errors in
cirrus cloud microphysical properties, Ann. Geophys., 16, 266–276, 1998.

Li, L., J. Vivekanandan, C. H. Chan, and L. Tsang, Microwave radiometric technique to
retrieve vapor; liquid and ice; part I – developement of a neural network-based inversion
method, IEEE Transactions on Geoscience and Remote Sensing, 35, 224–235, 1997.

Liebe, H. J., Modelling attenuation and phase of radio waves in air at frequencies below
1000 ghz, Radio Science, 16, 1183–1199, 1981.

Liebe, H. J., The atmospheric water vapor continuum below 300 GHz, Interntl. J. Infrared
& Millimeter Waves, 5(2), 207–227, 1984.

Liebe, H. J., MPM – an atmospheric millimeter–wave propagation model, Interntl. J. In-
frared & Millimeter Waves, 10, 631–650, 1989.

Liebe, H. J., and D. H. Layton, Millimeter-wave properties of the atmosphere: Laboratory
studies and propagation modelling, Tech. Rep. 87224, U.S. Dept. of Commerce, National
Telecommunications and Information Administration, Institute for Communication Sci-
ences, 1987, 80p.

Liebe, H. J., T. Manabe, and G. A. Hufford, Millimeter–wave attenuation and delay rates
due to fog/cloud conditions, IEEE Trans. Antennas Propag., 37, 1617–1623, 1989.

Liebe, H. J., G. A. Hufford, and T. Manabe, A model for the complex permittivity of water
at frequencies below 1 thz, Interntl. J. Infrared & Millimeter Waves, 12, 659–675, 1991.



192 BIBLIOGRAPHY

Liebe, H. J., P. W. Rosenkranz, and G. A. Hufford, Atmospheric 60-GHz oxygen spectrum:
new laboratory measurements and line parameters, Journal of Quantitative Spectroscopy
and Radiative Transfer, 48, 629–643, 1992.

Liebe, H. J., G. A. Hufford, and M. G. Cotton, Propagation modeling of moist air and
suspended water/ice particles at frequencies below 1000 GHz., in AGARD 52nd Special-
ists Meeting of the Electromagnetic Wave Propagation Panel, Palma de Mallorca, Spain,
1993, ftp://ftp.its.bldrdoc.gov/pub/mpm93/.

Lipton, A. E., M. K. Griffin, and A. G. Ling, Microwave transfer model differences in
remote sensing of cloud liquid water at low temperatures, IEEE Transactions on Geo-
science and Remote Sensing, 37, 620–623, 1999.

Ludlam, F. H., and B. J. Mason, The physics of clouds, in Encyclopedia of Physics, edited
by S. Flg̈ge, vol. 48, Springer, Berlin, 1957.

Ma, Q., and R. H. Tipping, Water vapor continuum in the millimeter spectral region, Journal
of Chemical Physics, 93, 6127–6139, 1990.

Oliveiro, J. J., and R. L. Longbothum, Empirical fits to voight line width: A brief review,
Journal of Quantitative Spectroscopy and Radiative Transfer, 17, 233–236, 1977.

Pawlowska, H., J. L. Brenguier, and F. Burnet, Microphysical properties of stratocumulus
clouds, Atmospheric Research, 55, 15–33, 2000.

Press, W., S. Teukolsky, W. Vetterling, and B. Flannery, Numerical recipes in FORTRAN,
2nd ed., Cambridge University Press, 1992.

Ray, P., Broadband complex refractive indices of ice and water, Appl. Opt., 11, 1836–1844,
1972.

Reburn, W. J., R. Siddans, B. J. Kerridge, S. Bühler, A. von Engeln, P. Erikson, T. Kuhn-
Sander, C. Verdes, and K. Künzi, Critical assessments in millimetre-wave atmospheric
limb sounding, final report, Tech. rep., ESTEC / Contract No 13348 / 98 / NL / GD,
2000.

Rodgers, C., Inverse methods for atmospheric sounding: Theory and practise, 1st ed.,
World Scientific Publishing, 2000.

Rodgers, C. D., Characterization and error analysis of profiles retrieved from remote sound-
ing measurements, J. of Geophys. Res., 95, 5587–5595, 1990.

Rosenkranz, P. W., Absorption of microwaves by atmospheric gases, in Atmospheric remote
sensing by microwave radiometry, edited by M. A. Janssen, pp. 37–90, John Wiley &
Sons, Inc., 1993, ftp://mesa.mit.edu/phil/lbl_rt.

Rosenkranz, P. W., Water vapor microwave continuum absorption: A comparison of mea-
surements and models, Radio Science, 33, 919–928, 1998, (correction in 34, 1025, 1999),
ftp://mesa.mit.edu/phil/lbl_rt.



BIBLIOGRAPHY 193

Rothman, L. S., et al., The HITRAN molecular database: editions of 1991 and 1992, Jour-
nal of Quantitative Spectroscopy and Radiative Transfer, 48, 469–507, 1992.

Rothman, L. S., et al., The HITRAN molecular spectroscopic database and HAWKS (HI-
TRAN atmospheric workstation): 1996 edition, Journal of Quantitative Spectroscopy
and Radiative Transfer, 60, 665–710, 1998.

Salby, M. L., Fundamentals of Atmospheric Physics, vol. 61 of International Geophysics
Series, Academic Press, 1996, ISBN 0-12-615160-1.

Schimpf, B., and F. Schreier, Robust and efficient inversion of vertical sounding atmo-
spheric high-resolution spectra by means of regularization, J. of Geophys. Res., 102,
16037–16055, 1997.

Seinfeld, J. H., and S. N. Pandis, Atmospheric Chemistry and Physics : from Air Pollution
to Climate Change, Wiley, 1998, ISBN 0-471-17816-0.

Shupe, M. D., T. Uttal, S. Y. Matrosov, and A. S. Frisch, Cloud water content and hy-
drometeor sizes during the FIRE-Arctic Clouds Experiment, J. of Geophys. Res., 106,
15015–15028, 2000.

Stankevich, K. S., Absorption of sub–millimeter–range radio waves in a dry atmosphere,
Radiophys. Quantum Electron. (Engl. Transl.), 17, 579–581, 1974.

Stone, N. W., W. G. Read, A. Anderson, I. R. Dagg, and W. Smith, Temperature-dependent
collision-induced absorption in nitrogen, Can. J. Phys., 62, 338–347, 1984.

Thorne, A., U. Litzen, and S. Johansson, Spectrophysics : principles and applications,
Springer, 1999, 1999, ISBN 3-540-65117-9.

Townes, C. H., and A. L. Schawlow, Microwave Spectroscopy, Mc Graw-Hill, 1955.

Van Vleck, J. H., The relation between absorption and dispersion, in Propagation of Short
Radio Waves, edited by D. E. Kerr, pp. 641–664, Peter Peregrinus Ltd, 1987, first pub-
lished in 1951 by McGraw-Hill Book Comp. Inc.

Van Vleck, J. H., and D. L. Huber, Absoption, emission, and linebreadths: a semihistorical
perspective, Reviews of Modern Physics, 49, 939–959, 1977.

Van Vleck, J. H., and V. F. Weisskopf, On the shape of collision–broadening lines, Reviews
of Modern Physics, 17, 227—236, 1945.

Westwater, E. R., J. B. Snider, and M. J. Falls, Ground-based microwave radiometric re-
trieval of precipitable water vapor in the presence of clouds with high liquid content,
Radio Science, 15, 947–957, 1980.



194 BIBLIOGRAPHY



Appendix A

Workspace variables

This appendix reports the existing ARTS workspace variables. The data type of the
variables and the on-line text description are also given. For an on-line list of all workspace
variables, type

arts -w all

To get a description of a specific workspace variable, type

arts -d variable

where variable is the name of the variable of interest. To list all methods that can be used
to create or calculate a workspace variable, type

arts -m variable

To list all methods that need a given workspace variable as input, type

arts -i variable

For a complete list of online help options, type

arts -h

VARIABLE : lines
DATA TYPE: ArrayOfLineRecord
DESCRIPTION:
A list of spectral line data.

VARIABLE : lines_per_tg
DATA TYPE: ArrayOfArrayOfLineRecord

History
001110 Created by Patrick Eriksson.



196 WORKSPACE VARIABLES

DESCRIPTION:
A list of spectral line data for each tag.
Dimensions: (tag_groups.nelem()) (# of lines for this tag)

VARIABLE : tgs
DATA TYPE: TagGroups
DESCRIPTION:
This is an array of arrays of OneTag tag definitions.
It defines the available tag groups for the calculation
of absorption coefficients and weighting functions.
Contrary to the original Bredbeck definition, tags within a
group must belong to the same species, because one VMR profile
is associated with each tag group.

VARIABLE : wfs_tgs
DATA TYPE: TagGroups
DESCRIPTION:
This is an array of arrays of tag group definitions.
It defines the tag groups for the calculation of weighting
functions. The selected tag groups must be a subgroup of the
tag groups defined for the absorption coefficient calculation.

VARIABLE : wfss_tgs
DATA TYPE: TagGroups
DESCRIPTION:
This is an array of arrays of tag group definitions.
It defines the tag groups for the calculation of weighting
functions. The selected tag groups must be a subgroup of the
tag groups defined for the absorption coefficient calculation.

VARIABLE : lineshape
DATA TYPE: ArrayOfLineshapeSpec
DESCRIPTION:
Lineshape specification: function, norm, cutoff. There is one entry for
each abs_tag, not for each species. This means if you have several
abs_tags for different isotopes or transitions of a species, you
may use different lineshapes.

VARIABLE : cont_description_names
DATA TYPE: ArrayOfString
DESCRIPTION:
Continuum / full model absorption tag names. This variable should
contain a list of tag names of continuum and full models, respectively.
Associated with this WSV is the WSV
‘cont_description_models’ which contains the specific model version of
each continuum / full model absorption tag and the WSV
‘cont_description_parameters’ which should contain the continuum / full model
user defined parameters. The user defined parameters are only used when
the specified model is ’user’. See also the online documentation in
arts/doc/doxygen/html/continua_cc.html.

The following full water vapor models are implemented:
’H2O-MPM87’: absorption model (line and continuum) according to

H. J. Liebe,
A contribution to modeling atmospheric millimeter-wave properties,
Frequenz, 41, 1987, 31-36



197

and
H. J. Liebe and D. H. Layton,
Millimeter-wave properties of the atmosphere:
Laboratory studies and propagation modeling,
U.S. Dept. of Commerce, National Telecommunications and Information
Administration, Institute for Communication Sciences,
325 Broadway, Boulder, CO 80303-3328, report 87224.

’H2O-MPM89’: absorption model (line and continuum) according to
H. J. Liebe,

Int. J. Infrared and Millimeter Waves, 10(6), 1989, 631
’H2O-MPM93’: absorption model (line and continuum) according to

H. J. Liebe and G. A. Hufford and M. G. Cotton,
Propagation modeling of moist air and suspended water/ice
particles at frequencies below 1000 GHz,
AGARD 52nd Specialists Meeting of the Electromagnetic Wave
Propagation Panel,

Palma de Mallorca, Spain, 1993, May 17-21
(ftp.its.bldrdoc.gov/pub/mpm93/)

’H2O-CP98’: absorption model (line and continuum) according to
S. L. Cruz-Pol et al.,

Radio Science, 33(5), 1319, 1998 (ece.uprm.edu/˜pol/Atmosphere.html)
’H2O-PWR98’: absorption model (line and continuum) according to

P. W. Rosenkranz,
Radio Science, 33(4), 919, 1998, Radio Science, 34(4), 1025, 1999

(ftp: mesa.mit.edu/phil/lbl_rt).

The following full oxygen models are implemented:
’O2-MPM93’: absorption model (line and continuum) according to

H. J. Liebe and G. A. Hufford and M. G. Cotton,
Propagation modeling of moist air and suspended water/ice
particles at frequencies below 1000 GHz,
AGARD 52nd Specialists Meeting of the Electromagnetic Wave
Propagation Panel,

Palma de Mallorca, Spain, 1993, May 17-21
(ftp.its.bldrdoc.gov/pub/mpm93/)

’O2-PWR93’: absorption model (line and continuum) according to
P. W. Rosenkranz,

Chapter 2, in M. A. Janssen,
Atmospheric Remote Sensing by Microwave Radiometry
John Wiley & Sons, Inc., 1993 (mesa.mit.edu/phil/lbl_rt)

The following continuum parameterizations are implemented:
H2O-H2O (’H2O-SelfContStandardType’):

P. W. Rosenkranz,
Radio Science, Vol. 33, No 4, Pages 919-928, 1998 and
Radio Science, Vol. 34, No 4, Page 1025, 1999 (mesa.mit.edu/phil/lbl_rt)

H2O-air (’H2O-ForeignContStandardType’):
P. W. Rosenkranz,
Radio Science, Vol. 33, No 4, Pages 919-928, 1998 and
Radio Science, Vol. 34, No 4, Page 1025, 1999 (mesa.mit.edu/phil/lbl_rt)

H2O-air (’H2O-ContMPM93’):
H. J. Liebe and G. A. Hufford and M. G. Cotton,
Propagation modeling of moist air and suspended water/ice
particles at frequencies below 1000 GHz,
AGARD 52nd Specialists Meeting of the Electromagnetic Wave
Propagation Panel,



198 WORKSPACE VARIABLES

Palma de Mallorca, Spain, 1993, May 17-21
(ftp.its.bldrdoc.gov/pub/mpm93/)

O2-air (’O2-SelfContStandardType’):
P. W. Rosenkranz,
Chapter 2, in M. A. Janssen,
Atmospheric Remote Sensing by Microwave Radiometry,
John Wiley & Sons, Inc., 1993
(mesa.mit.edu/phil/lbl_rt)
and also described in
H. J. Liebe and G. A. Hufford and M. G. Cotton,
Propagation modeling of moist air and suspended water/ice
particles at frequencies below 1000 GHz,
AGARD 52nd Specialists Meeting of the Electromagnetic Wave
Propagation Panel,

Palma de Mallorca, Spain, 1993, May 17-21
(ftp.its.bldrdoc.gov/pub/mpm93/)

N2-N2 (’N2-SelfContStandardType’):
The functional form of Rosenkranz but with more input parameters.
P. W. Rosenkranz,
Chapter 2, in M. A. Janssen,
Atmospheric Remote Sensing by Microwave Radiometry,
John Wiley & Sons, Inc., 1993 (mesa.mit.edu/phil/lbl_rt)

N2-N2 (’N2-SelfContMPM93’):
H. J. Liebe and G. A. Hufford and M. G. Cotton,
Propagation modeling of moist air and suspended water/ice
particles at frequencies below 1000 GHz,
AGARD 52nd Specialists Meeting of the Electromagnetic Wave
Propagation Panel, Palma de Mallorca, Spain, 1993, May 17-21
(ftp.its.bldrdoc.gov/pub/mpm93/)

CO2-CO2 (’CO2-SelfContPWR93’):
P. W. Rosenkranz,
Chapter 2, in M. A. Janssen,
Atmospheric Remote Sensing by Microwave Radiometry,
John Wiley & Sons, Inc., 1993 (mesa.mit.edu/phil/lbl_rt)

CO2-N2 (’CO2-ForeignContPWR93’):
P. W. Rosenkranz,
Chapter 2, in M. A. Janssen,
Atmospheric Remote Sensing by Microwave Radiometry,
John Wiley & Sons, Inc., 1993 (mesa.mit.edu/phil/lbl_rt)

The following cloud absorption models are implemented:
Suspended water droplet (’liquidcloud-MPM93’)

absorption parameterization from the MPM93 model:
H. J. Liebe and G. A. Hufford and M. G. Cotton,
Propagation modeling of moist air and suspended water/ice
particles at frequencies below 1000 GHz,
AGARD 52nd Specialists Meeting of the Electromagnetic Wave
Propagation Panel,

Palma de Mallorca, Spain, 1993, May 17-21
(ftp.its.bldrdoc.gov/pub/mpm93/)

Ice water droplet absorption (’icecloud-MPM93’)
parameterization from MPM93 model:
H. J. Liebe and G. A. Hufford and M. G. Cotton,
Propagation modeling of moist air and suspended water/ice
particles at frequencies below 1000 GHz,
AGARD 52nd Specialists Meeting of the Electromagnetic Wave



199

Propagation Panel,
Palma de Mallorca, Spain, 1993, May 17-21

(ftp.its.bldrdoc.gov/pub/mpm93/)

The following rain extinction model is implemented:
Rain extinction parameterization (’rain-MPM93’) from the

MPM93 model, described in:
H. J. Liebe,
MPM - An Atmospheric Millimeter-Wave Propagation Model,
Int. J. Infrared and Millimeter Waves, vol. 10(6),
pp. 631-650, 1989;
and based on:
Olsen, R.L., D.V. Rogers, and D. B. Hodge,
The aRˆb relation in the calculation of rain attenuation,
IEEE Trans. Antennas Propagat., vol. AP-26, pp. 318-329, 1978.
IMPORTANT NOTE: rain-MPM93 parameterizes the EXTINCTION by rain,
not just the absorption. Therefore it is not suitable for
calculating thermal emission by rain!
Please use rain-MPM93 only for calculation of attenuation.

VARIABLE : cont_description_models
DATA TYPE: ArrayOfString
DESCRIPTION:
Continuum / full model absorption model description parameter.
See the WSV ‘cont_description_names’ for a detailed description
of the allowed continuum models. There should be one string here
for each entry in ‘cont_description_names’.See also the onlinedocumentation in arts/doc/doxygen/html/continua_cc.html.

VARIABLE : cont_description_parameters
DATA TYPE: ArrayOfVector
DESCRIPTION:
Continuum model parameters. See the WSV ‘cont_description_names’
for a detailed description of the allowed continuum models. There
should be one parameter vector here for each entry in
‘cont_description_names’. See also the online documentation in
arts/doc/doxygen/html/continua_cc.html.

VARIABLE : raw_ptz
DATA TYPE: Matrix
DESCRIPTION:
Matrix has rows:
1. Pressure in Pa
2. Temperature in K
3. Altitude in m

VARIABLE : raw_vmrs
DATA TYPE: ArrayOfMatrix
DESCRIPTION:
The individual VMR profiles. Each species VMR profile comes with a
pressure profile. The different species can hence be on different
grids.
The matrix has rows:



200 WORKSPACE VARIABLES

1. Pressure in Pa
2. VMR profile (absolute number)
The array dimension is determined by the number of tag groups.

VARIABLE : p_abs
DATA TYPE: Vector
DESCRIPTION:
The pressure grid for the absorption coefficients [Pa]. This
is the basic independent grid for the absorption calculation, both
in the 1D and 2D case. Therefore it remains a vector, even in 2D.
The "raw" atmospheric data shall be interpolated to p_abs before
the absorption calculations starts.

VARIABLE : f_mono
DATA TYPE: Vector
DESCRIPTION:
The monochromatic frequency grid [Hz].

VARIABLE : t_abs
DATA TYPE: Vector
DESCRIPTION:
Temperature associated with the pressures in p_abs [K]

VARIABLE : z_abs
DATA TYPE: Vector
DESCRIPTION:
Vertical altitudes associated with the pressures in p_abs [m]

VARIABLE : h2o_abs
DATA TYPE: Vector
DESCRIPTION:
The total water profile associated with the pressures in p_abs [-]

VARIABLE : n2_abs
DATA TYPE: Vector
DESCRIPTION:
The total nitrogen profile associated with the pressures in p_abs [-]

VARIABLE : vmrs
DATA TYPE: Matrix
DESCRIPTION:
The VMRs (unit: absolute number) on the p_abs grid.
Dimensions: [tag_groups.nelem(), p_abs.nelem()]

VARIABLE : abs
DATA TYPE: Matrix
DESCRIPTION:
The matrix of absorption coefficients (in units of [1/m]).
Dimensions: [f_mono.nelem(), p_abs.nelem()]

VARIABLE : abs0
DATA TYPE: Matrix
DESCRIPTION:
A second absoprtion matrix. This matrix can be used, for example,
to store absorption read from a file that shall be added to *abs*.



201

VARIABLE : abs_per_tg
DATA TYPE: ArrayOfMatrix
DESCRIPTION:
These are the absorption coefficients individually for each
tag group. The Array contains one matrix for each tag group,
the matrix format is the same as that of abs

VARIABLE : xsec_per_tg
DATA TYPE: ArrayOfMatrix
DESCRIPTION:
These are the cross sections individually for each tag
group. The Array contains one matrix for each tag group,
the matrix format is the same as that of abs

VARIABLE : hse
DATA TYPE: Vector
DESCRIPTION:
This vector holds the parameters for calculating hydrostatic
equilibrium (HSE). The length of the vector is either 1 or 5, where
the values are:

1: On/off flag. 0 = ignore HSE, 1 = consider HSE.
2: The pressure of the reference point [Pa].
3: The altitude of the reference point [m].
4: Gravitational acceleration at the geoid surface [m/s2].
5: Number of iterations of the calculations.

If the on/off flag is set to 1, the length of the vector must be 5,
while if the flag is 0 a length of 1 is OK.
See the function hseCalc for some more details.

VARIABLE : emission
DATA TYPE: Index
DESCRIPTION:
Boolean to include emssion in the calculation of spectra.
If this variable is set to 0 (zero) pure transmission calculations
will be simulated and, for example, yCalc will give optical
thicknesses instead of radiation intensities.

VARIABLE : za_pencil
DATA TYPE: Vector
DESCRIPTION:
Pencil beam zenith angle grid [deg].
The observation direction is specified by the angle between zenith
and the LOS.

VARIABLE : z_tan
DATA TYPE: Vector
DESCRIPTION:
Tangent altitude for each spectrum [m].
These tangent altitudes include the effect of refraction (if set).
In the case of a ground intersection, a geometrical prolongation
below the ground is applied to determine the tangent altitude.
For upward observations where there are no tangent altitudes,

*z_tan* is set to 999 km.
It should be noted that the LOS calculations take *za_pencil* as
input, not *z_tan*. However, *za_pencil* can be calculated from

*z_tan* by the function *zaFromZtan*.



202 WORKSPACE VARIABLES

VARIABLE : z_plat
DATA TYPE: Numeric
DESCRIPTION:
Vertical altitude, above the geoid, of the observation platform [m].

VARIABLE : l_step
DATA TYPE: Numeric
DESCRIPTION:
The maximum length, along the LOS, between the points of LOS [m].
The final step length will in most cases equal the selected length.
There are two rare exceptions:

1. Downward observations from within the atmosphere, where the step
length is adjusted downwards to get an integer number of steps
between the sensor and the tangent or ground point.

2. Limb sounding and the distance from the tangent point to the
atmospheric limit (the highest absorption altitude) is smaller
than the selected length. The length is then adjusted to this
distance

VARIABLE : refr
DATA TYPE: Index
DESCRIPTION:
Boolean for inclusion of refraction (0=no refraction, 1=refraction).

VARIABLE : refr_lfac
DATA TYPE: Index
DESCRIPTION:
This factor determines the step length used during the ray tracing
performed when considering refraction.
The step length applied is *l_step* divided by *refr_lfac*.
Accordingly, this factor gives how many ray tracing steps that are
performed for each step of the LOS.

VARIABLE : refr_model
DATA TYPE: String
DESCRIPTION:
A string giving what parameterization to use for the calculation of
refractive index. See *refrCalc* for existing choices.

VARIABLE : refr_index
DATA TYPE: Vector
DESCRIPTION:
The refractive index at the pressure levels in p_abs [-].

VARIABLE : r_geoid
DATA TYPE: Numeric
DESCRIPTION:
The local curvature radius of the geoid along the LOS [m].

VARIABLE : z_ground
DATA TYPE: Numeric
DESCRIPTION:
The vertical altitude above the geoid of the ground [m].



203

VARIABLE : t_ground
DATA TYPE: Numeric
DESCRIPTION:
The physical temperature of the ground [K].

VARIABLE : e_ground
DATA TYPE: Vector
DESCRIPTION:
The ground emission factor for the frequencies in f_mono [0-1].

VARIABLE : los
DATA TYPE: Los
DESCRIPTION:
Structure to define the line of sight (LOS). See los.h for
definition of the structure.

VARIABLE : source
DATA TYPE: ArrayOfMatrix
DESCRIPTION:
Mean source function between the points of the LOS.

VARIABLE : trans
DATA TYPE: ArrayOfMatrix
DESCRIPTION:
The transmissions between the points of the LOS [-].

VARIABLE : y_space
DATA TYPE: Vector
DESCRIPTION:
Radiation entering the atmosphere at the top of the atmosphere,
typically cosmic background radiation. This variable is most easily
set by the function *y_spaceStd*.

VARIABLE : y
DATA TYPE: Vector
DESCRIPTION:
The working set of spectra.
The spectra from the different zenith angles are appended to form *y*.

VARIABLE : y0
DATA TYPE: Vector
DESCRIPTION:
A reference spectrum. This variable can be used e.g. to save a copy
of *y* or to compare the spectra before and after some operation(s).

VARIABLE : h
DATA TYPE: Matrix
DESCRIPTION:
The H matrix.

Can be used to apply the sensor model to monochromatic pencil beam
spectra and weighting functions.

VARIABLE : absloswfs
DATA TYPE: ArrayOfMatrix



204 WORKSPACE VARIABLES

DESCRIPTION:
Line of sight weighting functions.
See AUG for definition of this quantity.

VARIABLE : k_grid
DATA TYPE: Vector
DESCRIPTION:
Retrieval grid to be used in calculation of weighting functions (WFs)
For example, *k_grid* is the pressure altitude grid for species WFs.
Not all WFs need ’k_grid* as input.

VARIABLE : k
DATA TYPE: Matrix
DESCRIPTION:
The weighting functions (WFs) for a single retrieval/error group.

VARIABLE : k_names
DATA TYPE: ArrayOfString
DESCRIPTION:
Names of the retrieval identies in *k*.

VARIABLE : k_aux
DATA TYPE: Matrix
DESCRIPTION:
Auxiliary data for *k*. The number of rows of this matrix equals the
length of the state vector for the retrieval group (the number of
columns of k).
The columns hold different quantities:

Col 1: retrieval grid (or correspondingly)
Col 2: a priori values

VARIABLE : kx
DATA TYPE: Matrix
DESCRIPTION:
The state weighting function matrix.

VARIABLE : kx_names
DATA TYPE: ArrayOfString
DESCRIPTION:
Names of the retrieval identities in *kx*.

VARIABLE : kx_lengths
DATA TYPE: ArrayOfIndex
DESCRIPTION:
The length of the state vector for each retrieval identity in *kx*.

VARIABLE : kx_aux
DATA TYPE: Matrix
DESCRIPTION:
Auxiliary data for *kx*. As *k_aux* but with the data of the
different retrieval groups appended vertically.

VARIABLE : kb
DATA TYPE: Matrix
DESCRIPTION:
The model parameters weighting function matrix.



205

VARIABLE : kb_names
DATA TYPE: ArrayOfString
DESCRIPTION:
Names of the model parameter identities in *kb*.

VARIABLE : kb_lengths
DATA TYPE: ArrayOfIndex
DESCRIPTION:
The length of the model vector for each retrieval identity in *kb*.

VARIABLE : kb_aux
DATA TYPE: Matrix
DESCRIPTION:
Auxiliary data for *kb*. As *k_aux* but with the data of the
different forward model groups appended vertically.

VARIABLE : S_S
DATA TYPE: Matrix
DESCRIPTION:
Stores the accuracy of the spectroscopic parameters read from catalog
This are necessary for the the spectroscopic error analysis
number columns = 2; first keeps the absolute error, second the error in percents
number lines equal of spectroscopic parameters investigated (the number of
columns of k).

VARIABLE : batchname
DATA TYPE: String
DESCRIPTION:
Default basename for batch data.

VARIABLE : ybatch
DATA TYPE: Matrix
DESCRIPTION:
A batch of spectra.
The spectra are stored as columns in a matrix

VARIABLE : absbatch
DATA TYPE: ArrayOfMatrix
DESCRIPTION:
A batch of absorption coefficients.
FIXME

VARIABLE : jacbatch
DATA TYPE: ArrayOfMatrix
DESCRIPTION:
A batch of jacobian matrices.
FIXME

VARIABLE : radiosonde_data
DATA TYPE: ArrayOfMatrix
DESCRIPTION:
An array of Matrix holding data for many radiosonde launches. The
dimension of the Array is the number of radiosonde launches. Each
Matrix within the Array has dimension nx4, where n is the number of
pressure levels. The columns of the Matrix are:



206 WORKSPACE VARIABLES

pressure [Pa] temperature [K] altitude [m] VMR [1]

VARIABLE : coolrate
DATA TYPE: Matrix
DESCRIPTION:
Cooling rate matrix, in unit of K/s/Hz.Dimensions: [f_mono.nelem(), z_crates.nelem()]

VARIABLE : p_coolrate
DATA TYPE: Vector
DESCRIPTION:
Pressures for which to calculate cooling rates.

VARIABLE : method_list
DATA TYPE: ArrayOfIndex
DESCRIPTION:
A list of methods. See "arts -d MethodListDefine"
for an explanation what a method list is.



Appendix B

ARTS Units and Conversion Factors

This appendix gives an overview of the arts physical units and how they can be converted
to other common unit systems. The internal physical units of arts for frequencies is [Hz],
for pressure [Pa] and for the absorption coefficient [1/m]. Table B.1 gives some common
conversion coefficients to arts units.

Especially for the MPM model versions [Liebe and Layton, 1987; Liebe, 1989; Liebe
et al., 1993] we get for the pre-factor:

4 · π
c
· 10 · log(e) = 0.1820 · 106 dB/km/GHz (B.1)

= 0.1820 · 10−6 dB/m/Hz (B.2)

where c is the speed of light (c = 2.9979 · 108m/s).

History
2001-21-05 Created by Thomas Kuhn.

x g/cm3 = y kg/m3 ⇔ y = x × 103

x g/m3 = y kg/m3 ⇔ y = x × 10−3

x GHz = y Hz ⇔ y = x × 109

x 1/GHz = y 1/Hz ⇔ y = x × 10−9

x hPa = y Pa ⇔ y = x × 102

x 1/hPa = y 1/Pa ⇔ y = x × 10−2

x 1/cm = y 1/m ⇔ y = x × 102

x 1/km = y 1/m ⇔ y = x × 10−3

x dB = y Np ⇔ y = x / [10 · log (e)]
x dB/km = y 1/m ⇔ y = x × 10−3/[10 · log (e)]
x Np/km = y 1/m ⇔ y = x × 10−3

Table B.1: Conversion factors for the physical units used in arts.


	The ARTS concept
	Introduction
	The scope of ARTS
	Enter: ARTS
	Generic Workspace Methods
	Practical hints

	Theoretical formalism
	The forward model
	The sensor transfer matrix
	Weighting functions
	Basics
	Transformation between vector spaces


	I Algorithm Descriptions
	Gas Absorption
	Line Absorption
	Line Shape Functions
	Partition Functions
	Line Catalogs
	Species specific data
	ARTS Workspace Variables and Methods

	Continuum Absorption
	Water Vapor Continuum Models
	The MPM93 Continuum Parameterization

	Oxygen Continuum Absorption
	Nitrogen Continuum Absorption
	Carbon dioxide Continuum Absorption
	ARTS Workspace Variables and Methods
	ARTS Example Control File for the Continuum Tags


	Complete Absorption Models
	Complete Water Vapor Models
	MPM87 Water Vapor Absorption Model
	MPM89 Water Vapor Absorption Model
	MPM93 Water Vapor Absorption Model
	CP98 Water Vapor Absorption Model
	PWR98 Water Vapor Absorption Model

	Complete Oxygen Models
	PWR93 Oxygen Absorption Model
	MPM93 Oxygen Absorption Model

	ARTS Workspace Variables and Methods
	ARTS Example Control File for the Full Model Tags



	Cloud Absorption
	Liquid water and ice particle absorption
	Variability and Uncertainty in Cloud Absorption
	Water Vapor Saturation Adjustment in the Cloud
	ARTS Workspace Variables and Methods
	ARTS Example Control File for the Full Model Tags


	Basic radiative transfer
	Introduction
	Practical considerations
	Practical solution
	Absorption and transmission
	The source function
	Solving the radiative transfer equation
	Considering ground reflection

	Optical thicknesses
	Cooling rates
	Control file examples

	Line of sight, 1D
	Definitions
	Outlook towards 2D
	The step length
	Geometrical calculations
	General expressions
	Limb sounding
	Upward looking
	Downward looking

	With refraction
	General theory
	Practical solution
	Limb sounding

	Ground intersections
	Inclusion of hydrostatic equilibrium
	Control file examples
	Ground-based observation
	Limb sounding
	Limb transmission calculations


	Sensor modeling
	Implementation strategy
	The sensor transfer matrix
	Normalization of H

	Integration as vector multiplication
	Piecewise linear functions
	Practical solution

	Summation as vector multiplication
	Piecewise linear functions
	Practical solution

	Brightness temperature
	Conversion to Planck brightness temperature
	Conversion to Rayleigh-Jean temperature

	Control file examples

	Data reduction
	Averaging of viewing angles
	Data binning
	Reduction by eigenvectors

	Atmospheric weighting functions
	Calculation approaches
	Pure numerical calculation
	Analytical expressions

	Absorption LOS WFs with emission
	Single pass
	1D limb sounding
	1D downward looking observations

	Absorption LOS WFs for optical thicknesses
	Single pass
	1D limb sounding
	1D downward looking observations

	Source line of sight weighting functions
	Single pass
	1D limb sounding
	1D downward looking observations

	Transformation from vertical altitudes to distances along LOS
	Basis functions
	Transformation from z to l

	Species WFs
	Continuum absorption WFs
	Temperature profile WFs
	Without hydrostatic equilibrium
	With hydrostatic equilibrium

	Spectroscopic Parameters WFs

	Measurement errors
	General
	Thermal noise
	Measurement thermal noise
	Calibration thermal noise

	Polynomial baseline ripple
	Piecewise polynomial baseline ripple


	II Implementation Issues
	The art of developing ARTS
	Organization
	The ARTS build system
	Conventions
	
	
	Terminology
	Global variables
	Files
	Version numbers
	Header files
	Documentation
	File comment:
	Function comment:
	Generic comment:


	Extending ARTS
	How to add a workspace variable
	How to add a workspace variable group
	How to add a workspace method
	How to add a source code file
	How to add an example file

	CVS issues
	How to check out arts
	How to update (if you already have a copy)
	How to commit your changes
	How to cut a release
	How to move your arts working directory

	Debugging (use of assert)

	Vectors, matrices, and arrays
	Implementation files
	Vectors
	Constructing a Vector
	VectorViews
	What you can do with a Vector (or VectorView)
	Resize (only for Vector, not for VectorView!):
	Get the number of elements:
	Sum up all elements:
	Element access:
	Copying Vectors:
	Assigning a scalar:
	Mathematical operators:
	Maximum and minimum:
	Scalar product:
	Arbitrary single-argument math functions:


	Matrices
	Constructing a Matrix
	MatrixViews
	What you can do with a Matrix (or MatrixView)
	Resize (only for Matrix, not for MatrixView!):
	Get the number of rows or columns:
	Refer to a row or column:
	Element access:
	Copying Matrices:
	Assigning a scalar:
	Mathematical operators:
	Maximum and minimum:
	Arbitrary single-argument math functions:
	Transpose:
	Matrix multiplication:


	Arrays
	Constructing an Array
	What you can do with an Array
	Resize:
	Get the number of elements:
	Element access:
	Copying Arrays:
	Assigning a scalar of the base type:
	Append to the end:



	Workspace variable groups and file formats
	Important workspace variable groups
	Atomic groups
	Numeric groups
	Arrays based on atomic and numeric groups
	Structures based on atomic and numeric groups

	File formats
	ASCII
	Binary
	General binary file format
	Display tools


	HDF


	III Utilities
	Utilities
	The ARTS-IDL interface: AII
	Introduction
	IDL reading routines
	read_datafile
	read_artsvar

	IDL writing routines
	write_datafile
	write_artsvar




	IV Bibliography and Appendices
	Workspace variables
	ARTS Units and Conversion Factors


