
ARTS Theory

edited by

Patrick Eriksson and Stefan Buehler

October 8, 2020
ARTS Version 2.2.66

The content and usage of ARTS are not only described by this document. An overview
of ARTS documentation and help features is given in ARTS User Guide, Section 1.2.
For continuous reports on changes of the source code and this user guide, subscribe to
the ARTS developers mailing list at http://www.radiativetransfer.org/contact/.

We welcome gladly comments and reports on errors in the document.
Send then an e-mail to: patrick.eriksson (at) chalmers.se or
sbuehler (at) ltu.se.

If you use data generated by ARTS in a scientific publication, then please mention
this and cite the most appropriate of the ARTS publications that are summarized on
http://www.radiativetransfer.org/docs/.

http://www.radiativetransfer.org/contact/
http://www.radiativetransfer.org/docs/


Copyright (C) 2000-2012
Stefan Buehler <sbuehler (at) ltu.se>
Patrick Eriksson <patrick.eriksson (at) chalmers.se>

The ARTS program is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2, or (at your option) any later version.

This program is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more
details.

You should have received a copy of the GNU General Public
License along with the program; if not, write to the Free
Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.



Contributing authors

Author/email Main contribution(s)
Stefan Buehlera Editor, Chapters 2 and 3.
sbuehler (at) ltu.se
Cory Davisd Chapter 8.
cory.davis (at) metservice.com
Claudia Emdec Chapter 6.
claudia.emde (at) dlr.de
Patrick Erikssonb Editor, Chapters 1, 6 and 7.
patrick.eriksson (at) chalmers.se
Nikolay Koulev Section 2.1.
Thomas Kuhn Chapters 2 and 3.
olemke (at) core-dump.info
Oliver Lemkea Latex fixes.
olemke (at) core-dump.info
Christian Melsheimerc Chapter 5.
melsheimer (at) uni-bremen.de

The present address is given for active contributors, while for others the address to the
institute where the work was performed is given:
a Department of Computer Science, Electrical and Space Engineering, Division of Space
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Chapter 1

Theoretical formalism

In this section, a theoretical framework of the forward model is presented. The presentation
follows Rodgers [1990], but some extensions are made, for example, the distinction between
the atmospheric and sensor parts of the forward model is also discussed. After this chapter
was written, C.D. Rodgers published a textbook [Rodgers, 2000] presenting the formalism
in more detail than Rodgers [1990].

1.1 The forward model

The radiative intensity, I , at a point in the atmosphere, r, for frequency ν and traversing in
the direction, ψ, depends on a variety of physical processes and continuous variables such
as the temperature profile, T :

I = F (ν, r, ψ, T, . . .) (1.1)

To detect the spectral radiation some kind of sensor, having a finite spatial and frequency
resolution, is needed, and the observed spectrum becomes a vector, y, instead of a contin-
uous function. The atmospheric radiative transfer is simulated by a computer model using
a limited number of parameters as input (that is, a discrete model), and the forward model,
F , used in practice can be expressed as

y = F(xF ,bF ) + ε(xε,bε) (1.2)

where xF , bF , xε and bε together give a total description of both the atmospheric and
sensor states, and ε is the measurement errors. The parameters are divided in such way that
x, the state vector, contains the parameters to be retrieved, and the remainder is given by b,
the model parameter vector. The total state vector is

x =

[
xF
xε

]
(1.3)

History
110610 Outdated information was removed (Patrick Eriksson).
000306 Written by Patrick Eriksson, partly based on Eriksson [1999] and

Eriksson et al. [2002].



2 THEORETICAL FORMALISM

and the total model parameter vector is

b =

[
bF
bε

]
(1.4)

The actual forward model consists of either empirically determined relationships, or numer-
ical counterparts of the physical relationships needed to describe the radiative transfer and
sensor effects. The forward model described here is mainly of the latter type, but some parts
are more based on empirical investigations, such as the parameterisations of continuum ab-
sorption.

Both for the theoretical formalism and the practical implementation, it is suitable to
make a separation of the forward model into two main sections, a first part describing the
atmospheric radiative transfer for pencil beam (infinite spatial resolution) monochromatic
(infinite frequency resolution) signals,

i = Fr(xr,br) (1.5)

and a second part modelling sensor characteristics,

y = Fs(i,xs,bs) + ε(xε,bε) (1.6)

where i is the vector holding the spectral values for the considered set of frequencies and
viewing angles (ii = I(νi, ψi, . . .), where i is the vector index), and xF and bF are sepa-
rated correspondingly, that is, xTF = [xTr ,x

T
s ] and bTF = [bTr ,b

T
s ]. The vectors x and b can

now be expressed as

x =




xr
xs
xε


 (1.7)

and

b =




br
bs
bε


 , (1.8)

respectively. The subscripts of x and b are below omitted as the distinction should be clear
by the context.

1.2 The sensor transfer matrix

The modelling of the different sensor parts can be described by a number of analytical ex-
pressions that together makes the basis for the sensor model. These expressions are through-
out linear operations and it possible, as suggested in Eriksson et al. [2002], to implement
the sensor model as a straightforward matrix multiplication:

y = Hi + ε (1.9)

where H is here denoted as the sensor transfer matrix. Expressions to determine H are
given by Eriksson et al. [2006].

The matrix H can further incorporate effects of a data reduction and the total transfer
matrix is then

H = HdHs (1.10)
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as

y = Hdy
′ = Hd(Hsi + ε′) = Hi + ε (1.11)

where Hd is the data reduction matrix, Hs the sensor matrix, and y′ and ε′ are the measure-
ment vector and the measurement errors, respectively, before data reduction.

1.3 Weighting functions

1.3.1 Basics

A weighting function is the partial derivative of the spectrum vector y with respect to some
variable used by the forward model. As the input of the forward model is divided between
x or b, the weighting functions are divided correspondingly between two matrices, the state
weighting function matrix

Kx =
∂y

∂x
(1.12)

and the model parameter weighting function matrix

Kb =
∂y

∂b
(1.13)

For the practical calculations of the weighting functions, it is important to note that the
atmospheric and sensor parts can be separated. For example, if x only hold atmospheric
and spectroscopic variables, Kx can be expressed as

Kx =
∂y

∂i

∂i

∂x
= H

∂i

∂x
(1.14)

This equation shows that the new parts needed to calculate atmospheric weighting func-
tions, are functions giving ∂i/∂x where x can represent the vertical profile of a species,
atmospheric temperatures, spectroscopic data etc.

1.3.2 Transformation between vector spaces

It could be of interest to transform a weighting function matrix from one vector space to
another1. The new vector, x′, is here assumed to be of length n (x′ ∈ Rn×1), while the
original vector, x is of length p (x ∈ Rp×1). The relationship between the two vector
spaces is described by a transformation matrix B:

x = Bx′ (1.15)

where B∈Rp×n. For example, if x′ is assumed to be piecewise linear, then the columns of
B contain tenth functions, that is, a function that are 1 at the point of interest and decreases
linearly down to zero at the neighbouring points. The matrix can also hold a reduced set of
eigenvectors.

The weighting function matrix corresponding to x′ is

Kx′ =
∂y

∂x′
(1.16)

1This subject is also discussed in Rodgers [2000], published after writing this.
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This matrix is related to the weighting function matrix of x (Eq. 1.12) as

Kx′ =
∂y

∂x

∂x

∂x′
=
∂y

∂x
B = KxB (1.17)

Note that

Kx′x
′ = KxBx′ = Kxx (1.18)

However, it should be noted that this relationship only holds for those x that can be repre-
sented perfectly by some x′ (or vice versa), that is, x = Bx′, and not for all combinations
of x and x′.

If x′ is the vector to be retrieved, we have that [Rodgers, 1990]

x̂′ = I(y, c) = T (x,b, c) (1.19)

where I and T are the inverse and transfer model, respectively.
The contribution function matrix is accordingly

Dy =
∂x̂′

∂y
(1.20)

that is, Dy corresponds to Kx′ , not Kx.
We have now two possible averaging kernel matrices

Ax =
∂x̂′

∂x
=
∂x̂′

∂y

∂y

∂x
= DyKx (1.21)

Ax′ =
∂x̂′

∂x′
=
∂x̂′

∂y

∂y

∂x

∂x

∂x′
= DyKx′ = AxB (1.22)

where Ax ∈ Rp×n and Ax′ ∈ Rp×p, that is, only Ax′ is square. If p > n, Ax gives
more detailed information about the shape of the averaging kernels than the standard matrix
(Ax′). If the retrieval grid used is coarse, it could be the case that Ax′ will not resolve all
the oscillations of the averaging kernels, as shown in Eriksson [1999, Figure 11].



Chapter 2

Gas absorption

This chapter contains theoretical background and scientific details for gas absorption cal-
culations in ARTS. A more practical overview, with focus on how to set up calculations, is
given in ARTS User Guide, Chapter 6.

Gas absorption generally consists of a superposition of spectral lines and continua. De-
pending on the gas species, the continua either have a real physical meaning, or they are
more or less empirical corrections for deficits in the explicit line-by-line calculation. In the
latter case the magnitude of the continuum term will depend strongly on the exact setup
of the line-by-line calculation. Combining continua and line-by-line calculation therefore
requires expertise.

This chapter is structured in three main parts: Line absorption, continuum absorption,
and complete absorption models. It should be noted that the three topics are tightly related.
In particular, complete absorption models will normally include a line part and a contin-
uum part. Some absorption models, notably those by Rosenkranz and Liebe will show up
under both continua and complete absorption models. The continuum section then treats
specifically the continuum parameterization of these model, the complete absorption model
section puts more focus on the line part and the model as a whole.

Each of the main parts first introduces the theoretical background to the topic, then
presents aspects of the specific implementation in ARTS.

2.1 Line absorption

2.1.1 Theoretical background

We will introduce here the main concepts concerning line absorption. The aim is to give
some overview and show some key equations, not to give a full treatment of the theory. To
really understand line absorption, you should refer to one of the cited books, or some other
book on spectroscopy.

History
2012-09-21 Added pressure broadening and shift documentation, Stefan Buehler.
2011-07-05 Revised for ARTS2 by Stefan Buehler.
2001-11-21 Continuum absorption part written, Thomas Kuhn.
2001-10-05 Line absorption part written, Nikolay Koulev.
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Basic expressions

An absorption line is described by the corresponding absorption coefficient as a function of
frequency α(ν), which can be written as [Goody and Yung, 1989]:

α(ν) = nS(T )F (ν) (2.1)

where S(T ) is called the line strength, T is the temperature, F (ν) is called the line shape
function, and n is the number density of the absorber. The line shape function is normalized
as:

∫
F (ν)dν = 1 (2.2)

The values of S(T ) at reference temperature T0 are contained in spectroscopic databases
(more on this below). The conversion to different temperatures is done by

S(T ) = S(T0)
Q(T0)

Q(T )

e−Ef/(kT ) − e−Ei/(kT )

e−Ef/(kT0) − e−Ei/(kT0)
(2.3)

given the energies Ef and Ei of the two levels between which the transition occurs as well
as the partition function Q(T ) [Rothman et al., 1998]. The databases contain the lower
state energy El tabulated along with the S and the transition frequency ν, so that the upper
state energy can be computed by Eu=El+hν. Partition functions for the different molecular
species are commonly available along with the spectroscopic databases, given in the form of
tabulated values for a set temperatures (e.g., for JPL catalogue) or through some computer
code (e.g., the TIPS program coming with the HITRAN catalogue).

As absorption is additive, the total absorption coefficient is derived by adding up the
absorption contributions of all spectral lines of all molecular species.

The following subsections discuss common descriptions of the line shape function,
present partition functions and their calculation formalism more in depth, and introduce
the Zeeman effect.

Line shape functions

So far, there exists no complete analytical function that accurately describes the line shape
in all atmospheric conditions and for all frequencies. But for most cases very accurate
approximations are available. Which approximation is appropriate depends mostly on the
atmospheric pressure, and on whether the frequencies of interest are close to the line center,
or far out in the line wing.

There are three phenomena which contribute to the line shape. These are, in increas-
ing order of importance, the finite lifetime of an excited state in an isolated molecule, the
thermal movement of the gas molecules, and their collisions with each other. They result in
corresponding effects to the line shape: natural broadening, Doppler, and pressure broad-
ening. Of these, the first one is completely negligible compared to the other two for typical
atmospheric conditions. Nevertheless, we will pay a special attention to the natural broad-
ening because its implications are of a conceptual importance for the broadening processes.

The spectral line shape can be derived in the case of natural broadening from basic
physical considerations and a well-known Fourier transform theorem from the time to the
frequency domain [Thorne et al., 1999]. If we consider classically the spontaneous decay
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of the excited state of a two-level system in the absence of external radiation, then the
population n of the upper level decreases according to

dn(t)

dt
= −An(t) (2.4)

where A is Einstein A coefficient. This equation can also be interpreted as the rate of the
spontaneously emitted photons because of decay. The integral form of this relation is

n(t) = n(0) e−At = n(0)e−t/τ (2.5)

where τ is the mean lifetime of the excited state. Thus, the number of spontaneously emitted
photons and in this way the flux of the emitted radiation then will be proportional to n.
Therefore we can write for the flux L that

L(t) = L(0) e−t/τ = L(0) e−γt (2.6)

By the afore mentioned theorem, multiplying in the time domain by e−γt is equivalent to
convolving in the frequency domain with a function 1/[ν2 − (γ/4π)2]. Accordingly, the
line profile of a spectral line at frequency ν0 as a normalized line shape function will be, as
defined in Thorne et al. [1999],

F (ν) =
1

π

γ/4π

(ν − ν0)2 + (γ/4π)2
(2.7)

This gives a bell-shaped profile and the function itself is called Lorentzian. The dependence
on the position of the line is apparent through ν0, that is why some authors prefer to denote
the function by F (ν, ν0). The result is important because of two major reasons. Firstly,
without the natural broadening the line would be the delta function δ(ν − νo), as pointed
out in Bernath [1995]. So the spontaneous decay of the excited state is responsible for the
finite width and the certain shape of the line shape function. Secondly, the Lorentzian type
of function comes significantly into play when explaining some of the other broadening
effects or the complete picture of the broadened line [Thorne et al., 1999].

The second effect, Doppler broadening, is important for the upper stratosphere and
mesosphere for microwave frequencies. The line shape follows the velocity distribution
of the particles. Under the conditions of thermodynamic equilibrium, we have a proba-
bility distribution for the relative velocity u between the gas molecule and the observer of
Maxwell type

p(u) =

√
m

2πkT
exp

[
−mu

2

2kT

]
(2.8)

where m is the mass of the molecule. Using then the formula for the Doppler shift for
the non-relativistic region ν- ν0 = ν0u / c , one can easily derive the line shape function
[Bernath, 1995],

FD(ν) =
1

γD
√
π
exp

[
−
(
ν − ν0

γD

)2
]

(2.9)

where the quantity γD is called Doppler line width and equals

γD =
ν

c

√
2kT

m
(2.10)
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In contrast to the line shape function for the natural broadening, the Doppler broadening
leads to a Gaussian line shape function F (ν). The Doppler line width γD is so defined that
it is equal to the half width at half of the maximum (HWWM) of the line shape function. A
similar notation is used for all other width parameters γxy below.

The third broadening mechanism is pressure broadening. It is the most complicated
broadening mechanism, and still subject to theoretical and experimental research. So far,
there is no way to derive the exact shape of a pressure-broadened line from first principles,
at least not for the far wing region. The various approximations, which are therefore used,
are immanently limited to the certain line regions they deal with. The most popular among
these approximations is the impact approximation which postulates that the duration of
the collisions of the gas particles is very small compared to the average time between the
collisions. Due to the Fourier-pair relationship between time and frequency, the line shape
that follows from the impact approximation can only be expected to be accurate near the
line center, not in the far wings of the line.

Lorentz was the first to achieve a result exploiting the impact approximation, the Lorentz
line shape function:

FL(ν) =
γL
π

1

(ν − ν0)2 + γ2
L

(2.11)

where γL is the Lorentz line width [Thorne et al., 1999]. As one can see, the result Eq. 2.11
is pretty similar to Eq. 2.7 but the specific line parameters γ and γL make them differ sig-
nificantly in the corresponding frequency regions of interest. For atmospheric pressures γL
is much greater and because of that, of experimental significance in contrast to γ.
Elaborating the model of Lorentz, van Vleck and Weisskopf made a correction to it [Van
Vleck and Weisskopf , 1945], particularly for the microwave region:

FV VW (ν) =

(
ν

ν0

)2 γL
π

[
1

(ν − ν0)2 + γ2
L

+
1

(ν + ν0)2 + γ2
L

]
(2.12)

which can be reduced to a Lorentzian for (ν − ν0) << ν0 and 0 << ν0. Except for the
additional factor (ν/ν0)2 , FV VW can be regarded as the sum of two FL lines, one with its
center frequency at ν0, the other at −νo.

The van Vleck and Huber lineshape [Van Vleck and Huber, 1977] is similar to Eq. 2.12,
except for the factor (ν/ν0)2 which is replaced by (ν ∗ tanh(h ∗ ν/(2kT )))/(ν0 ∗ tanh(h ∗
ν0/(2kT ))), with k the Boltzmann constant, h the Planck constant, and T the atmospheric
temperature (the denominator is actually a consequence of the line strength definition in the
spectroscopic catalogs). The lineshape Eq. 2.12 with this factor can be used for the entire
frequency range, since the microwave approximation: tanh(x) = x, that leads to the factor
(ν/ν0)2, is not made.

The combined picture of a simultaneously Doppler and pressure broadened line is the
next step of the approximations development. The line shape function has to approximated
in this case by the Voigt line shape function

FV oigt(ν, ν0) =

∫
FL(ν, ν ′) FD(ν ′, ν0) dν ′ (2.13)

though there’s no strict justification for its use - the two processes are assumed to act inde-
pendently, which in reality is not the fact. Regardless of this flaw, it is the only way up to
now to model the combination of the broadening processes. The integral in Eq. 2.13 can not
be computed analytically, so certain approximation algorithms must be used.
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Another possibility would be the combination of the last two equations Eq. 2.12 and
Eq. 2.13. The respective result then will be

FS =

(
ν

ν0

)2

[FV oigt(ν, ν0) + FV oigt(ν,−ν0)] (2.14)

The advantage of such a model is that it behaves like a van Vleck-Weisskopf line shape
function in the high pressure limit and like a Voigt one in the low pressure limit. There
is one important caveat to the equation Eq. 2.14: it has to be made sure that the algorithm
that is used to compute the Voigt function really produces a Lorentz line in the high pres-
sure limit. Another point of significance is the demand that the model yields meaningful
results far from the line center, since the line center from the “mirror” line at -ν0 is situ-
ated approximately 2ν0 away from the frequency ν0 of computation. We explicitly verified
that the algorithms of Drayson [1976], Oliveiro and Longbothum [1977], and Kuntz and
Höpfner [1999] satisfy both requirements, while this was found to be not true for some
other algorithms commonly used for Voigt-shape computation. In particular, it is not true
for the Hui-Armstrong-Wray Formula, as defined in Hui et al. [1978] and in Equation 2.60
of Rosenkranz [1993]. Provided the condition above is fulfilled, the FS line shape gives a
smooth transition from high tropospheric pressures to low stratospheric ones, and should
be valid near the line centers throughout the microwave region. With a Van Vleck / Huber
forefactor instead of the Van Vleck / Weisskopf forefactor, it should be valid throughout the
thermal infrared spectral range, but there the mirror line at negative frequency is negligible
anyway, because it is so far away.

Partition functions

Partition functions are needed to compute the temperature dependence of the line intensities
(Equation 2.3 on page 6). They are related to the molecular energy states and their statistical
distribution during the radiation process.

In any case of spectroscopic interest the free molecules of a gas are not optically thick
at all frequencies, so the radiation energy is not represented by blackbody radiation. The
most common assumption made, which is sufficient in the case of tropospheric and low
stratospheric research, is the local thermodynamic equilibrium or LTE. According to it, it’s
possible to find a common temperature, which may vary from place to place, that fits the
Boltzmann energy population distribution and the Maxwell velocities distribution. This
practically means, that under LTE the collisional processes must be of greater importance
than radiative ones. In other words, an excited state must have a higher probability of de-
excitation by collision than by spontaneous radiation. This is the important factor which
makes natural broadening differ quantitatively so much from the pressure (collisional) one,
though both are described qualitatively almost identically by Lorentzian line shape func-
tions.

According to the Maxwell-Boltzmann distribution law, in LTE the total number of gas
particles Nn in a state En is given by

Nn = N0
gn
g0
e−En/kT (2.15)

where N0 is particle number in the ground state, and gn, go are the statistical weights (de-
generacies) of the n−state and the ground state [Gordy and Cook, 1970]. Thus the total
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particle number N is given by

N =
N0

g0

∞∑

n=0

gn e
−En/kT =

N0

g0
Q(T ) (2.16)

The quantity Q(T ) is the partition function of the gas, which generally speaking describes
the energy states distribution of the gas particles.

The partition function for a perfect gas molecule can be represented by the product of
the translational and the internal partition functions, as defined in Herzberg [1945],

Q = Qtr Qint (2.17)

bearing in mind that the respective energies, translational and internal, are independent of
each other. The first quantity Qtr accounts for the distribution of the translational energy of
the gas particles - it takes into account that the translational velocities of the particles fulfill
the Maxwell distribution. However, for Equation 2.3, the quantity we are interested in is the
internal partition function (or the total internal partition function) because the transitions
between the discrete internal energy states are responsible for the absorption or emittance of
radiation. Accordingly Qint describes the distribution of energy among the internal energy
states of the gas particles.

The internal partition function for free gaseous molecules is a function of the electronic,
the vibrational, the rotational, and the nuclear spin states. An approximation is used in
Gordy and Cook [1970] in order to display the individual contributions explicitly

Qint = Qe Qv Qr Qn (2.18)

and thus the interaction between these various states is neglected. For practically all poly-
atomic molecules the excited electronic states are entirely negligible to those of the ground
states, i.e. Qe = 1 . Only for the very few polyatomic molecules with a multiplet ground
state (NO2 , ClO2 , and free radicals) the electronic contribution has to be considered.
If we neglect the anharmonicities, the vibrational partition function, with vibrational energy
levels measured with respect to the ground state for the harmonic oscillator, is according to
Herzberg [1945]

Qv =

(∑

ν1

e−ν1hω1/kT

)(∑

ν2

e−ν2hω2/kT

)
... (2.19)

where ν1, ν2,..., the vibrational quantum numbers, can each have the values 0,1,2,... and ω1,
ω2,..are the frequencies of the fundamental modes of vibration. The summation is taken over
all values of ν1, ν2,..., and each fundamental mode is counted separately. This result is valid
for non-degenerate vibrations. If we use the simple expression for geometric progression

∑

νi

e−νihωi/kT =
1

1− ehωi/kT (2.20)

and the degeneracies d1, d2,... of the fundamental modes, we get finally for the vibrational
partition function

Qv =
(
1− ehω1/kT

)−d1 (
1− ehω2/kT

)−d2
... (2.21)
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The rotational partition function looks differently for the different symmetry types of
molecules. For diatomic and linear polyatomic molecules with no center of symmetry the
corresponding expression is, as defined in Gordy and Cook [1970]

Qr =
∞∑

J=0

(2J + 1)e−hBJ(J+1)/kT

=
kT

hB
+

1

3
+

1

15

hB

kT
+

4

315

(
hB

kT

)2

+ ...

∼= kT

hB
(2.22)

For rigid symmetric-, asymmetric-, and spherical top molecules there are also other factors
to be taken into consideration, such as the spatial structure of the molecules, nuclear spin,
inversion and internal rotation. The general expression in the case of a rigid symmetric- top
molecule according to Herzberg [1945] is

Qr =
1

σ

∞∑

J=0

J∑

K=−J
(2J + 1) e−h[BJ(J+1)+(A−B)K2]/kT (2.23)

where σ is a measure of the degree of symmetry. The usual symmetric top has C3 or C3ν

symmetry, therefore σ = 3. To a good approximation, the summation above can expressed
as in Gordy and Cook [1970]

Qr =
1

σ

[(
π

B2A

)(
kT

h

)3
]1/2

=
5.34× 106

σ

(
T 3

B2A

)1/2

(2.24)

For an asymmetric top the formula would then be

Qr =
5.34× 106

σ

(
T 3

ABC

)1/2

(2.25)

and for a spherical top, using the current notation of Gordy and Cook [1970] in the respec-
tive expression in Herzberg [1945],

Qr =
5.34× 106

σ

(
T 3

A3

)1/2

(2.26)

The Zeeman Effect for O2

The Zeeman effect implementation in ARTS is described by Larsson et al. [2014].

2.1.2 Line-specific data and line catalogue data in ARTS

ARTS has an internal representation of spectral line data that maps naturally to a native
catalogue format, which we will discuss below. This internal catalogue data exists and can
be handled in two variants, the so-called ARTSCAT-3 and ARTSCAT-4 – versions 3 and 4
of the ARTS catalogue format. The spectroscopic databases commonly used in Earth atmo-
spheric research contain the spectroscopic parameters representative for Earth conditions.
This regards particular the foreign broadened width, often called the air broadened width
as it considerers the contribution from nitrogen and oxygen that make up for the vast ma-
jority of gases in the Earth atmosphere, and the pressure shift. ARTSCAT-3 contains these
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“classical” spectroscopic parameters. ARTSCAT-4 on the other hand has been developed
with view on planetary science. That is, it holds these parameters separately for the dif-
ferent molecular species. Theoretically this has to list all cross-combinations of species.
However, most species show only very low abundances and can safely be neglected. For
now, the main atmospheric constituents of Earth, Mars, Venus, and Jupiter, namely N2, O2,
H2O, CO2, H2, and He are considered in the database. It should be noted, that both line
data formats can behandled simultaneously within one calculation (writing to file of mixed
format data, however, is not possible).

Besides its own internal format, ARTS can also read several other catalogue formats,
in particular HITRAN and JPL format. If these other catalogues are used, line data are
converted to the internal ARTSCAT-3 representation during reading. In other words, all
unit conversions are done by the reading routines.

The ARTS internal spectral line data files (both ARTSCAT-3 and -4) contain an XML
header and footer, and between them one entry for each spectral line. Each entry starts with
with an ‘@’ character. It then contains the different line parameters, separated by one or
more blank characters. Scientific notation is allowed, e.g. 501.12345e9.

In contrast to other catalogues that are optimized for processing with programs written
in the FORTRAN language, ARTS does not use fixed column widths. The advantage of this
is that the precision of the parameters is not limited by the format.

The first column of each entry contains the species and isotopologue, following the nam-
ing scheme described below. Note that the intensity is per molecule, i.e., it does not contain
the isotopologue ratio. This is similar to JPL, but different to HITRAN. The definition of
the further entries differ between the two ARTSCAT representations.

The ARTSCAT-3 line format is:

Col Variable Label Unit
-----------------------------------------------
0 ‘@’ ENTRY -
1 molecule & isotopologue tag NAME -
2 center frequency F Hz
3 pressure shift of F PSF Hz/Pa
4 line intensity per molecule I0 mˆ2/Hz
5 reference temp. for I0 T_I0 K
6 lower state energy ELOW J
7 air broadened width AGAM Hz/Pa
8 self broadened width SGAM Hz/Pa
9 AGAM temp. exponent NAIR -

10 SGAM temp. exponent NSELF -
11 ref. temp. for AGAM, SGAM T_GAM K
12 number of aux. parameters N_AUX -
13 auxiliary parameter AUX1 -
14 ...
15 error for F DF Hz
16 error for I0 DI0 %
17 error for AGAM DAGAM %
18 error for SGAM DSGAM %
19 error for NAIR DNAIR %
20 error for NSELF DNSELF %
21 error for PSF DPSF %
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The parameters 0-12 must be present, the others can be missing, since they are not needed
for the calculation. For the error fields (15-21), a −1 means that no value exists.

Some species may need special parameters that are not needed by other species (for
example overlap coefficients for O2). In the case of oxygen two parameters are sufficient
to describe the overlap, but other species, e.g., methane, may need more coefficients. The
default for N AUX is zero. In that case, no further AUX fields are present.

The ARTSCAT-4 line format is:

Col Variable Label Unit
--------------------------------------------------
0 ‘@’ ENTRY -
1 molecule & isotopologue tag NAME -
2 center frequency F Hz
3 line intensity I0 Hz*mˆ2
4 reference temperature T_I0 K
5 lower state energy ELOW J
6 Einstein A-coefficient A 1/s
7 Upper state stat. weight G_upper -
8 Lower state stat. weight G_lower -
9 broadening parameter self SGAM Hz/Pa
10 broadening parameter N2 GAMMA_N2 Hz/Pa
11 broadening parameter O2 GAMMA_O2 Hz/Pa
12 broadening parameter H2O GAMMA_H2O Hz/Pa
13 broadening parameter CO2 GAMMA_CO2 Hz/Pa
14 broadening parameter H2 GAMMA_H2 Hz/Pa
15 broadening parameter He GAMMA_He Hz/Pa
16 GAM temp. exponent self NSELF -
17 GAM temp. exponent N2 N_N2 -
18 GAM temp. exponent O2 N_O2 -
19 GAM temp. exponent H2O N_H2O -
20 GAM temp. exponent CO2 N_CO2 -
21 GAM temp. exponent H2 N_H2 -
22 GAM temp. exponent He N_He -
23 F pressure shift N2 DELTA_N2 Hz/Pa
24 F pressure shift O2 DELTA_O2 Hz/Pa
25 F pressure shift H2O DELTA_H2O Hz/Pa
26 F pressure shift CO2 DELTA_CO2 Hz/Pa
27 F pressure shift H2 DELTA_H2 Hz/Pa
28 F pressure shift He DELTA_He Hz/Pa
29 Vib. & rotational assignments VRA -

Parameters 0-28 must be present. Parameter 29 contains coded quantum num-
bers. The coding conventions are species specific. The definitions are given in file
ARTSCAT-4 Col29 Conventions.txt, which is available along with the first incar-
nation of an ARTSCAT-4 type spectroscopic catalog from the arts-xml-data package.
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ARTSCAT-3 ARTSCAT-4
Atmospheric variables pressure p

temperature T
VMR of current species xself

pressure p
temperature T
VMR of current species xself

broadening species VMRs xi
(where i is the index of the
gas species)

Spectral line parameters T GAM, AGAM, SGAM,
NAIR, NSELF, PSF (see Sec-
tion 2.1.2 for definitions)

T I0,
SGAM, GAMMA N2,
GAMMA O2,
GAMMA H2O,
GAMMA CO2,
GAMMA H2, GAMMA He,
NSELF, N N2, N O2,
N H2O, N CO2, N H2,
N He,
DELTA N2, DELTA O2,
DELTA H2O, DELTA CO2,
DELTA H2, DELTA He (see
Section 2.1.2 for definitions)

Table 2.1: Pressure broadening and pressure shift input variables for different ARTSCAT
versions.

2.1.3 Pressure broadening and shift calculation

The pressure broadened line width γL (see Equations 2.11 and 2.12) is calculated from
spectral line parameters and atmospheric state variables. At the same time, a pressure shift
∆ν is also calculated. The calculations are different for ARTSCAT-3 and ARTSCAT-4
lines. Table 2.1 lists the input variables for the two different cases.

ARTSCAT-3

With ARTSCAT-3, the pressure broadened line width is calculate as

γL = xself p SGAM

(
T GAM

T

)NSELF

+ (1− xself) p AGAM

(
T GAM

T

)NAIR

, (2.27)

and the pressure shift is calculated as

∆ν = p PSF

(
T GAM

T

)(0.25+1.5∗NAIR)

, (2.28)

where all variables are defined as in Table 2.1.

ARTSCAT-4

With ARTSCAT-4, the pressure broadened line width is calculate as

γL = xself p SGAM

(
T I0

T

)NSELF
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+ (1− xself) p

∑
i

[
xi GAMMAi

(
T I0
T

)Ni
]

∑
i xi

, (2.29)

where index i runs over the six different broadening species N2, O2, H2O, CO2, H2, and He,
and all other variables are defined as in Table 2.1. Note that there is no separate reference
temperature for the broadening and shift parameters in ARTSCAT-4. Instead we use T I0
the same reference temperature as for the line intensity.

Similarly, the pressure shift is calculated as

∆ν = p

∑
i

[
xi DELTAi

(
T I0
T

)(0.25+1.5∗Ni)
]

∑
i xi

. (2.30)

The normalisation by
∑
i xi in both formulas accounts for the fact that the sum of the for-

eign broadening species usually will not exactly add up to 1. With this normalisation, the
ARTSCAT-4 broadening and shift reproduce the ARTSCAT-3 results if all foreign parame-
ters are filled with the ARTSCAT-3 value. To make sure that the broadening species account
for a reasonable part of the atmosphere, we throw a runtime error if their VMR sum deviates
from 1 by more than 10%.

Two other caveats should be mentioned here. Caveat 1: The species list for the ab-
sorption calculation may contain multiple tags groups for the same molecular species, for
example corresponding to different isotopes or even individual spectral lines. For the broad-
ening and shift calculation we always use the VMR belonging to the first tag group. For ex-
ample, if the species list is [“H2O-161”,“H2O-181”,“O3-666”,“O3-668”], then the VMRs
of “H2O-161” and “O3-666” will be the ones that are used for the broadening and shift
calculations.

Caveat 2: If the species to which the line belongs is equal to one of the broadening
species, then the VMR of the species itself will be used for broadening, even if it is not
first in the list. With the same absorption species as above, if the line that we are working
on belongs to “O3-668”, then the VMRs of “H2O-161” and “O3-668” will be used for the
calculation, and the VMR of “O3-666” will be ignored.

Both these caveats mean that the broadening calculation may give unexpected results
in the presence of drastically different VMRs that belong to the same molecular species,
because in that case it makes a difference which of the VMR is selected for broadening.

2.1.4 Species-specific data in ARTS

A line absorption species in ARTS is a particular isotopologue of a particular molecule.
Quantities such as the molecular mass and the isotopologue ratio are specific and constant
for each species. Here is a list of all species-specific information that is needed:

• Molecule name

• Isotopologue name

• Isotopologue ratio

• Molecular mass

• Corresponding tag in different catalogues (MYTRAN, HITRAN, JPL)
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• Partition function data

These data are currently stored in two source code files, species data.cc and
partition function data.cc. That is, these values are basically hard-coded. How-
ever, at present at least isotopologue ratios can be replaced via controlfile settings, which is
useful, e.g., for calculations for other planets.

Buehler et al. [2005] contains an explicit list of species that were implemented at the
time of writing of that article. We do not include such a list here, because it is hard to
maintain. Instead, we directly refer the user to check for the implemented species directly
in file species data.cc. There, also the different sources of data are documented.

Partition function data

ARTS uses third order polynomials to approximate partition functions, so four polynomial
coefficients have to be stored for each isotopologue species. These data are stored in file
partition function data.cc. The file also contains documentation, including the
source of the data for the different species.

The consistency of partition function data from different sources, and the impact of
partition function errors on sub-millimeter wave limb sounder retrievals, was studied in
detail in Verdes et al. [2005]. The partition function data collection in ARTS is based on
that study.

In general, the data in general are derived from the following sources:

TIPS: Default.

JPL: Only species (including individual isotopologues) not covered by TIPS.

Agnes Perrin: Personal communication, only for species BrO.

The TIPS program is developed and maintained by B. Gamache. In conjunction with
HITRAN it is the suggested way to derive the partition functions and is part of the HI-
TRAN distributions. More recent versions might be available via B. Gmache’s website
(http://faculty.uml.edu/robert_gamache/, ‘Software and Data’ section).
TIPS covers all molecular species and isotopolgues found in the respective version of the
HITRAN database. Often it includes some more species than HITRAN, and extensions
for other species (e.g., species of astrophysical interest) can be derived from the Gamache
website.

Earlier versions of TIPS (until at least 1997) provided 3rd order polynomial coefficients,
which were then used in ARTS. Newer versions (from at latest 2003) provide partition
functions for a specific molecule and isotopologue at a specific temperature, and tabulated
values can be obtained through successive runs of the program. Polynomial coefficients
then need to be derived by a fit to the TIPS output. Here, partition functions were calculated
on a 1K-step grid, and the polynomial coefficients derived by a least-square fit between
150 – 300 K (unless otherwise noted in partition function data.cc).

The coefficients for the few species which are not covered in TIPS are calculated from
JPL values. The JPL catalogue has a different way to calculate the partition function. It pro-
vides the partition function at a set of specific temperatures: 300, 225, 150, 75, 37.5, 18.75,
9.375 K. An interpolation scheme is given for values inbetween: the partition functions are
assumed to be proportional to T 1.5 for non-linear molecules (degrees of freedom: 3) and
proportional to T for linear molecules (degrees of freedom 2). From these data polynomial

http://faculty.uml.edu/robert_gamache/
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coefficients are derived in the same way as from TIPS output: first, partition functions are
tabulated on a 1K-step grid, then a least-square fit over T = 150 – 300 K is performed.

The partition function data for BrO were provided by Agnes Perrin, Orsay, France.
The temperature range used for deriving the polynomial fit was judged to be represen-

tative of the range of temperatures occuring in the Earth atmosphere. For calculations in
planetary atmospheres it might be advantageous being able to use other data, e.g. such
derived for temperatures prevailing there. We are exploring options to allow for that (e.g.,
read data from include files as done for isotopologue ratios, or replacement of parameter-
ized partition functions by directly calculated ones through embedding TIPS and the JPL
scheme in ARTS).

2.2 Continuum absorption

As pointed out above, some molecules show beside the resonant line absorption also non-
resonant continuum absorption. The main qualitative difference is the smooth dependence
on frequency of the non-resonant absorption part in contrast to the resonant absorption part
who shows strong local maxima and minima.

The implemented continuum absorption modules are connected with water vapor
(H2O), oxygen (O2), nitrogen (N2), and carbon dioxide (CO2). Since these molecules have
various permanent electric or magnetic multipoles, the physical explanations for the contin-
uum absorption is different for each of these molecules.

Water Vapor has a strong electric dipole moment and posses therefore a wealth of ro-
tational transitions in the microwave up to the submillimeter range. One explanation for
the H2O-continuum absorption is the inadequate formulation of the far wings of a spectral
line, since the usually employed Van Vleck and Weisskopf [1945] line shape is according
to its derivation only valid in the near wing zone. Other explanations are (see Rosenkranz
[1993] for details) far wing contribution from far-infrared water vapor lines, collision in-
duced absorption (CIA), and water polymer absorption. At present one can not definitively
decide which of these possibilities is the correct one, probably all of them play a more or
less important role, depending on the frequency range.

Oxygen is special, because it has no permanent electric dipole moment, but a perma-
nent magnetic dipole moment. The aligned spins of the two valence electrons gives a 3Σ
ground state of molecular oxygen. Due to the selection rules for magnetic dipole transi-
tions, transitions with resonance frequency equal to zero are allowed. Such transitions have
a characteristic Debye line shape function.

The homonuclear nitrogen molecule has in lowest order an electric quadrupole moment
of modest magnitude. For the frequency range below 1 THz the collision induced rotation
absorption band [Goody and Yung, 1989] is of most importance. The band center is around
3 THz and at 1 THz the band strength is approximately 1/6 of the maximum value (see
Figure 5.2 of Goody and Yung [1989]). The electric field of the quadrupole moment of
one molecule induces a dipole moment in the second molecule. This allows rotational
transitions according to the electric quadrupole selection rules, |∆ J | =0,2 (see Rosenkranz
[1993] for details).

In a similar way, carbon dioxide also exhibits a collision induced absorption band (max-
imum around 1.5 THz, Figure 5.10 of Goody and Yung [1989]). Characteristic for collision
induced absorption is the dependency on the square of the molecular density.
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2.2.1 Water vapor continuum models

As shown by Liebe and Layton [1987], Rosenkranz [1998], and Ma and Tipping [1990], the
water vapor continuum absorption can be well described by

αc = ν2 ·Θ3 · (Co
H2O · P

2
H2O ·Θns + Co

d · PH2O · Pd ·Θnf) (2.31)

where the microwave approximation (hν � kBT ) of the radiation field term is already
applied. The adjustment of Eq. 2.31 to the data is performed through the parameter set
Co

H2O, ns, Co
d , and nf. Table 2.2 gives some commonly used continuum parameter sets.

model Co
H2O ns Co

d nd ref.[
dB/km

hPa2 GHz2

]
[1]

[
dB/km

hPa2 GHz2

]
[1]

MPM87 6.50·10−8 7.5 0.206·10−8 0.0 Liebe and Layton [1987]
MPM89 6.50·10−8 7.3 0.206·10−8 0.0 Liebe [1989]
CP98 8.04·10−8 7.5 0.254·10−8 0.0 Cruz Pol et al. [1998]
PWR98 7.80·10−8 4.5 0.236·10−8 0.0 Rosenkranz [1998]
MPM93∗ 7.73·10−8 4.55 0.253·10−8 1.55 Liebe et al. [1993]

Table 2.2: Values of commonly used continuum parameter sets. The last line (MPM93∗)
represents an approximation of the pseudo-line continuum of MPM93 in the form of Eq.
2.31.

The MPM93 continuum parameterization

In the MPM93 model [Liebe et al., 1993], the water vapor continuum is treated as a pseudo-
line located in the far infrared around 2 THz. The pseudo-line continuum has therefore not
four but seven parameters, the pseudo-line center frequency (ν∗) and the six pseudo-line
parameters (b∗1,· · ·,b∗6):

αMPM93
c = 0.1820 · b∗1

ν∗
· PH2O ·Θ3.5 · exp (b∗2 · (1−Θ)) · ν2 · Fc(ν, νk) (2.32)

Fc(ν, νk) =

[
γc

(ν∗ + ν)2 + γ2
c

+
γc

(ν∗ − ν)2 + γ2
c

]
(2.33)

γc = b∗3 ·
(
b∗4 · PH2O ·Θb∗6 + Pd ·Θb∗5

)
(2.34)

Table 2.3 lists the values of this continuum parameter set. It is remarkable that all these pa-
rameters are much larger compared to the physical water vapor line parameters of the same
model. The only exception is b∗2, the parameter which governs the exponential temperature
behavior of the line strength. The magnitude of the pseudo-line width is shown for four

ν∗ b∗1 b∗2 b∗3 b∗4 b∗5 b∗6
[GHz] [kHz

hPa ] [1] [MHz
hPa ] [1] [1] [1]

1780.000 2230.000 0.952 17.620 30.50 2.00 5.00

Table 2.3: List of the MPM93 pseudo-line water vapor continuum parameters.
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contribution total
H2O–H2O H2O–air

γc(200 K) 40.8 GHz 80.4 GHz 121.2 GHz
γc(300 K) 5.4 GHz 23.0 GHz 28.4 GHz

Table 2.4: Magnitude of the line width of the pseudo-line of the continuum term in MPM93.
Assumed is a total pressure of 1000 hPa and a water vapor partial pressure of 10 hPa.

different cases in Table 2.4.
This change of continuum parameterization makes it difficult to compare MPM93 with

the models which use Eq. (2.31). However, with respect to microwave frequencies, the line
shape function, Fc(ν), can be approximated since the magnitude of the pseudo-line width is
much smaller compared to the distance between microwave frequencies and ν∗, as shown
for four different cases in Table 2.4:

Fc(ν, νk) ≈ 2 · γc
ν2

c
(2.35)

Inserting Eq. (2.35) into Eq. (2.32) gives a quadratic frequency dependence of the MPM93
continuum, similar to the continuum parameterization expressed in Eq. (2.31). By addition-
ally approximating the temperature dependence to the simple form

ns · ln (Θ) = ln
(
Θ3.5 · eb∗2·(1−Θ)

)

ns = 3.5 + b∗2 ·
1−Θ

ln (Θ)

ns ≈ 3.5− b∗2 = 2.55 with ln (Θ) ≈ (Θ− 1) (2.36)

one can rearrange the pseudo-line continuum to fit Eq. (2.31) (denoted by MPM93∗). The
so deduced continuum parameter set is given in Table 2.2.
The MPM93∗ continuum parameters Co

H2O and Co
d are 20 % and 15 % larger, respectively,

than in the case of MPM87/MPM89. Large discrepancies exist for the temperature ex-
ponents ns and nd between MPM93∗ and earlier model versions. The exponent ns is in
MPM93∗ only 60 % of the corresponding value in MPM89 and the temperature dependence
of the H2O-air term is significant larger than for earlier MPM versions. This reduction of ns
is mainly due to additional measurements considered in MPM93 [Becker and Autler, 1946;
Godon et al., 1992], while the continuum parameters in MPM87/MPM89 are determined
by a single laboratory measurement at 138 GHz.

2.2.2 Oxygen continuum absorption

As pointed out by Van Vleck [1987], the standard theory for non-resonant absorption is that
of Debye (see also Townes and Schawlow [1955]). The Debye line shape is obtained from
the VVW line shape function by the limiting case νk → 0. Both, Liebe et al. [1993] and
Rosenkranz [1993] adopted the Debye theory for their models. The only difference is the
formulation of the line broadening, where the influence of water vapor is treated slightly
different:

αc = C · Pd ·Θ2 · ν2 · γ
ν2 + γ2

(2.37)
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γ = w · (Pd ·Θ0.8 + 1.1 · PH2O ·Θ) : Rosenkranz (2.38)

γ = w · Ptot ·Θ0.8 : MPM93 (2.39)

where Pd denotes the dry air partial pressure (Pd = Ptot − PH2O). The value for
the strength is C = 2.56·10−20 1/(m Pa Hz) in the case of the Rosenkranz model and
C = 2.57·10−20 1/(m Pa Hz) in the case of the MPM93 model. The MPM93 value for C is
therefore about 0.4 % larger than in the Rosenkranz model. Since the volume mixing ratio
of oxygen in dry air is constant in the lower Earth atmosphere (0.20946 [Goody, 1995]),
both models incorporate the oxygen VMR (VMRO2

) in the constant C. In the arts model
the separation between the oxygen VMR and the constant C is explicitely done. In this
case follows:

C = 0.20946 · Ĉ (2.40)

Ĉ = 1.22 · 10−19 [1/(m Hz Pa)] : Rosenkranz (2.41)

Ĉ = 1.23 · 10−19 [1/(m Hz Pa)] : MPM93 (2.42)

The width parameter w is in both models the same, w = 5.6·103 Hz/Pa. If we define the
width γ in a more general way like

γ = w · (A · Pd ·Θnd +B · PH2O ·Θnw) (2.43)

we can fit both models, the Rosenkranz and the MPM93 model, into the same parameteriza-
tion with (A = 1, B = 1.1, nd = 0.8, nw = 1.0) for the Rosenkranz model and (A = 1.0,
B = 1.0, nd = 0.8, nw = 0.8) for MPM93.

The oxygen continuum absorption term is proportional to the collision frequency of
a single oxygen molecule with other air molecules and thus proportional to the dry air
pressure1.

2.2.3 Nitrogen continuum absorption

Since molecular nitrogen has in its unperturbed state no electric or magnetic dipole moment
(but an electric quadrupole moment), it shows no rotational spectral signature in the mi-
crowave region. Regardless of this, nitrogen absorbs radiation in this frequency range due
to collision induced absorption (CIA). Far–infrared roto-translational band structures from
free–free interactions give rise to far wing absorption below 1 THz.

Different parameterizations of this absorption term for the frequency range below 1 THz
are available Rosenkranz [1993]; Liebe et al. [1993]; Borysow and Frommhold [1986].
Common to all these models is the quadratic dependency on N2 partial pressure which
is a direct consequence of the underlying CIA processes involved. The simplest model is
given by Rosenkranz [1993], which uses the same parameterization as for the water vapor
continuum, described in Equation 2.31:

αc = C · νnν ·ΘnT · PnpN2 (2.44)

with C = 4.56 · 10−13 dB/(km hPa2 GHz2), nν = 2, nT = 3.55, and np = 2, respectively.
The laboratory data set for the determination of C is manly from Dagg et al. [1975, 1978]
around 70 and 140 GHz, respectively.

1The absorption due to weakly bound complexes of O2–X with X = H2O, N2 is treated separately and
therefore not included in this Debye formula.
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The MPM models has compared with Equation 2.44 an additional frequency dependent
term which leads to the following expression

αc = Ĉ · (1.0− 1.2 · 10−5 · ν1.5) · ν2 ·Θ3.5 · P 2
d : MPM89 (2.45)

αc = Ĉ · ν2

(1.0 + a · νnν )
·Θ3.5 · P 2

d : MPM93 (2.46)

a =

where the parameter is Ĉ = 2.55 · 10−13 dB/(km hPa2 GHz2), a =1.9·10−5 GHz−nν , and
nν = 1.5. based on data from Stankevich [1974] and Stone et al. [1984]. With respect to the
22 GHz water vapor line, the additional frequency terms in brackets in Equations 2.45 and
2.46 are nearly unity and therefore not essential. Therefore all three parameterizations have
the same frequency and temperature relationship, but the absolute magnitude is in the case
of Rosenkranz 80 % higher compared with the MPM models.

The model of Borysow and Frommhold2 is somewhat different since their focus is
mainly on the radiative transfer in the Titan’s atmosphere with the infrared interferome-
ter spectrometer, IRIS, on board the Voyager Spacecraft. This detailed model is primarily
designed to parameterize each of the roto-translational spectral lines around 200 cm−1 (≈
6 THz) accurately. The analyzed data set incorporate the data source used by the Rosenkranz
but is largely extended with measurements in the far–infrared.

2.2.4 Carbon dioxide continuum absorption

Rosenkranz [1993] gives a similar parameterization for the CO2-continuum absorption term
as for the nitrogen continuum, with

αc = ·ν2 ·
[
Cs · P 2

CO2 ·Θns + Cf · PCO2 · PN2 ·Θnf
]

(2.47)

where the parameter values Cs = 3.23 · 10−11 dB/(km hPa2 GHz2), Cf = 1.18 · 10−11

dB/(km hPa2 GHz2), ns = 5.08, and nf = 4.7, respectively, are determined from laboratory
measurements of Ho et al. [1966]; Dagg et al. [1975]. Since the foreign term includes only
nitrogen as perturber, one can get an estimate for dry air by replacing PN2 by the dry air
partial pressure in Equation 2.47. Because nitrogen is usually a more efficient perturber
than oxygen, this estimation can be regarded as an upper limit. Concerning the Earth’s
atmosphere, the foreign broadening term is more interesting since the carbon dioxide partial
pressure is only approximately 0.04 % of the nitrogen partial pressure up to 90 km.

2.3 Complete absorption models

The MPM absorption model of Liebe and coworkers consists of modules for water vapor
and oxygen absorption. The Rosenkranz (PWR98) absorption model include also H2O and
O2 while the Cruz-Pol et al. (CP98) absorption models include absorption due to water
vapor. Additionally the CP98 model has a strongly reduced parameter set for the H2O-
line absorption since it is especially intended for the range around the 22 GHz water line.
The MPM and R98 are valid from the microwave up to the submillimeter frequency range
(1-1000 GHz).

Implemented in ARTS are the following modules of the above mentioned models:
2the source code of this model can be downloaded from the home page of A. Borysow:

http://www.astro.ku.dk/∼aborysow/
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species model
H2O MPM87, MPM89, MPM93, PWR98, CP98
O2 MPM93, PWR98

2.3.1 Complete water vapor models

In ARTS several complete water vapor absorption models are implemented and can easily
be used. Implemented models are the versions MPM87 [Liebe and Layton, 1987], MPM89
[Liebe, 1989], and MPM93 [Liebe et al., 1993] of the Liebe Millimeter-wave Propagation
Model and additionally the models of Cruz-Pol et al. (CP98) [Cruz Pol et al., 1998] and P.
W. Rosenkranz (PWR98) [Rosenkranz, 1998]. MPM and PWR98 are especially desigend
for fast absorption calculations in the frequency range of 1-1000 GHz while the CP98 model
is a reduced model for a narrow frequency band around the 22 GHz H2O-line (especially
used by ground-based radiometers).

The total water vapor absorption (αtot) is in all the stated models described by a line
absorption (α`) term and a continuum absorption (αc) term:

αtot = α` + αc (2.48)

The main differences between the different models is the line shape used for α` and the
formulation of αc.

It has to be emphasized that, α` and αc of different models are not necessarily compat-
ible and should therefore not be interchanged between different models.

MPM87 water vapor absorption model

This version, which is described in Liebe and Layton [1987] and follows the general line
of the MPM model to divide the total water vapor absorption, αMPM87

tot , into a spectral line
term, αMPM87

` , and a continuum term not attributed to spectral lines, αMPM87
c :

αMPM87
tot = αMPM87

` + αMPM87
c dB/km (2.49)

Water vapor line absorption: The MPM87 [Liebe and Layton, 1987] water vapor line
catalog consists of 30 lines from 22 GHz up to 988 GHz. The center frequencies and param-
eter values are listed in Table 2.5. To describe the line absorption, a set of three parameters
(b1,k and b3,k) per line are used: two for the line strength and one for the line width. The
total line absorption coefficient (in units of dB/km) is the sum over all individual line ab-
sorption coefficients3:

αMPM87
` = 0.1820 · νk · PH2O ·

∑

k

Sk(T ) · F (ν, νk) dB/km (2.50)

where Sk(T ) is the line intensity described by the parameterization

Sk(T ) = b1,k · PH2O ·Θ3.5 · exp (b2,k · [1−Θ]) kHz (2.51)

with νk as the line center frequency, PH2O the water vapor partial pressure and Θ =
300 K/T .

3The factor 0.1820 · 106 is equal to (4π/c) · 10 log (e) (the term (4π/c) comes from the definition of the
absorption coefficient in terms of the dielectric constant and the term 10 log (e) is due to the definition of the
Decibel.) The velocity of light is defined as c = 2.9979 · 10−4 km GHz. The factor 106 is incorporated into the
line strength and does therefore not appear in the pre-factor.



2.3 COMPLETE ABSORPTION MODELS 23

The line shape function, F (ν, νk), in Eq. (2.50) is the standard Van Vleck-Weisskopf
(VVW) function, given by:

F (ν, νk) =

(
ν

νk

)
·
[

γk
(ν − νk)2 + γ2

k
+

γk
(ν + νk)2 + γ2

k

]
(2.52)

(2.53)

The pressure broadened line width, γk, is calculated with the single parameter b3,k in the
following way:

γk = b3,k · (4.80 · PH2O ·Θ1.1 + Pd ·Θ0.6) GHz (2.54)

where Pd is the partial pressure of dry air (Pd = Ptot − PH2O). The parameterizations of
Sk(T ) and γk are already in use for the early version of MPM81 [Liebe, 1981].

νk b1,k b2,k b3,k

k [GHz] [kHz
kPa ] [1] [GHz

kPa ]
1 22.235080 0.1090 2.143 27.84· 10−3

2 67.813960 0.0011 8.730 27.60· 10−3

3 119.995940 0.0007 8.347 27.00· 10−3

4 183.310117 2.3000 0.653 31.64· 10−3

5 321.225644 0.0464 6.156 21.40· 10−3

6 325.152919 1.5400 1.515 29.70· 10−3

7 336.187000 0.0010 9.802 26.50· 10−3

8 380.197372 11.9000 1.018 30.36· 10−3

9 390.134508 0.0044 7.318 19.00· 10−3

10 437.346667 0.0637 5.015 13.70· 10−3

11 439.150812 0.9210 3.561 16.40· 10−3

12 443.018295 0.1940 5.015 14.40· 10−3

13 448.001075 10.6000 1.370 23.80· 10−3

14 470.888947 0.3300 3.561 18.20· 10−3

15 474.689127 1.2800 2.342 19.80· 10−3

16 488.491133 0.2530 2.814 24.90· 10−3

17 503.568532 0.0374 6.693 11.50· 10−3

18 504.482692 0.0125 6.693 11.90· 10−3

19 556.936002 510.0000 0.114 30.00· 10−3

20 620.700807 5.0900 2.150 22.30· 10−3

21 658.006500 0.2740 7.767 30.00· 10−3

22 752.033227 250.0000 0.336 28.60· 10−3

23 841.073593 0.0130 8.113 14.10· 10−3

24 859.865000 0.1330 7.989 28.60· 10−3

25 899.407000 0.0550 7.845 28.60· 10−3

26 902.555000 0.0380 8.360 26.40· 10−3

27 906.205524 0.1830 5.039 23.40· 10−3

28 916.171582 8.5600 1.369 25.30· 10−3

29 970.315022 9.1600 1.842 24.00· 10−3

30 987.926764 138.0000 0.178 28.60· 10−3

Table 2.5: List of H2O spectral lines and their spectroscopic parameters (H2O-air
mixture) for the MPM87 model [Liebe and Layton, 1987].
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Water vapor continuum absorption: The water vapor continuum absorption coefficient
in MPM87, αMPM87

c , is determined from laboratory measurements at 137.8 GHz by Liebe
and Layton covering the following parameter range:

temperature 282-316 K
relative humidity 0-95 %
dry air pressure 0 - 160 kPa

The mathematical expression of αMPM87
c is derived from the far wing approximation of the

line absorption and is expressed as follows

αMPM87
c = ν2 · PH2O · (Co

H2O · PH2O ·Θns + Co
d · Pd ·Θnf), (2.55)

with the continuum parameter set Co
H2O, Co

d , ns, and nf. The determined values of the
continuum parameters are:

Co
H2O = 6.496 · 10−6 (dB/km) / (hPa·GHz)2

ns = 10.5

Co
d = 0.206 · 10−6 (dB/km) / (hPa·GHz)2

nd = 3.0

MPM89 water vapor absorption model

MPM89 is described in Liebe [1989] and follows the general line of the MPM model to
devide the total water vapor absorption, αMPM89

tot , into a spectral line term, αMPM89
` , and

a continuum term not attributed to spectral lines, αMPM89
c :

αMPM89
tot = αMPM89

` + αMPM89
c dB/km (2.56)

All the absorption coefficients are calculated in units of dB/km.

Water vapor line absorption: The MPM89 water vapor line catalog consists of the same
30 lines like MPM87 from 22 GHz up to 988 GHz. The center frequencies and parameter
values are listed in Table 2.6. To describe the line absorption, a set of six parameters (b1,k

and b6,k) per line are used: two for the line strength and four for the line width. The total
line absorption coefficient (in units of dB/km) is the sum over all individual line absorption
coefficients4:

αMPM89
` = 0.1820 · νk · PH2O ·

∑

k

Sk(T ) · F (ν, νk) dB/km (2.57)

where Sk(T ) is the line intensity described by the parameterization

Sk(T ) = b1,k · PH2O ·Θ3.5 · exp (b2,k · [1−Θ]) kHz (2.58)

whit νk as the line center frequency, PH2O the water vapor partial pressure and Θ =
300 K/T .

4see footnote for MPM97 line absorption
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The line shape function, F (ν, νk), in Eq. (2.57) is the standard Van Vleck-Weisskopf
(VVW) function, given by

F (ν, νk) =

(
ν

νk

)
·
[

γk
(ν − νk)2 + γ2

k
+

γk
(ν + νk)2 + γ2

k

]
(2.59)

where the pressure broadened line width, γk, is calculated as

γk = b3,k · (b5,k · PH2O ·Θb6,k + Pd ·Θb4,k) · 10−3 GHz (2.60)

with Pd = Ptot − PH2O as the dry air partial pressure. The only difference between
MPM87 and MPM89 with respect to the line absorption is the parameterization of the pres-
sure broadened line width, γk, which is calculated with the four parameters b3,k to b6,k in
the case of MPM89 whereas in MPM87 a single parameter (b3,k) is used (see Eq. (2.54)).

νk b1,k b2,k b3,k b4,k b5,k b6,k

k [GHz] [kHz
kPa ] [1] [MHz

kPa ] [1] [1] [1]
1 22.235080 0.1090 2.143 28.11 0.69 4.80 1.00
2 67.813960 0.0011 8.735 28.58 0.69 4.93 0.82
3 119.995940 0.0007 8.356 29.48 0.70 4.78 0.79
4 183.310074 2.3000 0.668 28.13 0.64 5.30 0.85
5 321.225644 0.0464 6.181 23.03 0.67 4.69 0.54
6 325.152919 1.5400 1.540 27.83 0.68 4.85 0.74
7 336.187000 0.0010 9.829 26.93 0.69 4.74 0.61
8 380.197372 11.9000 1.048 28.73 0.69 5.38 0.84
9 390.134508 0.0044 7.350 21.52 0.63 4.81 0.55

10 437.346667 0.0637 5.050 18.45 0.60 4.23 0.48
11 439.150812 0.9210 3.596 21.00 0.63 4.29 0.52
12 443.018295 0.1940 5.050 18.60 0.60 4.23 0.50
13 448.001075 10.6000 1.405 26.32 0.66 4.84 0.67
14 470.888947 0.3300 3.599 21.52 0.66 4.57 0.65
15 474.689127 1.2800 2.381 23.55 0.65 4.65 0.64
16 488.491133 0.2530 2.853 26.02 0.69 5.04 0.72
17 503.568532 0.0374 6.733 16.12 0.61 3.98 0.43
18 504.482692 0.0125 6.733 16.12 0.61 4.01 0.45
19 556.936002 510.0000 0.159 32.10 0.69 4.11 1.00
20 620.700807 5.0900 2.200 24.38 0.71 4.68 0.68
21 658.006500 0.2740 7.820 32.10 0.69 4.14 1.00
22 752.033227 250.0000 0.396 30.60 0.68 4.09 0.84
23 841.073593 0.0130 8.180 15.90 0.33 5.76 0.45
24 859.865000 0.1330 7.989 30.60 0.68 4.09 0.84
25 899.407000 0.0550 7.917 29.85 0.68 4.53 0.90
26 902.555000 0.0380 8.432 28.65 0.70 5.10 0.95
27 906.205524 0.1830 5.111 24.08 0.70 4.70 0.53
28 916.171582 8.5600 1.442 26.70 0.70 4.78 0.78
29 970.315022 9.1600 1.920 25.50 0.64 4.94 0.67
30 987.926764 138.0000 0.258 29.85 0.68 4.55 0.90

Table 2.6: List of H2O spectral lines and their spectroscopic parameters (H2O-air
mixture) for the MPM89 model [Liebe, 1989].
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Water vapor continuum absorption: The MPM89 continuum absorption coefficients in,
αMPM89

c , are identical as those in MPM87 (see Sec. 2.3.1 for details):

αMPM89
c = ν2 · PH2O · (Co

H2O · PH2O ·Θns + Co
d · Pd ·Θnf), (2.61)

with

Co
H2O = 6.496 · 10−6 (dB/km) / (hPa·GHz)2

ns = 10.5

Co
d = 0.206 · 10−6 (dB/km) / (hPa·GHz)2

nd = 3.0

MPM93 water vapor absorption model

This version, which is described in Liebe et al. [1993] and follows the general line of the
MPM model to devide the total water vapor absorption, αMPM93

tot , into a spectral line term,
αMPM93
` , and a continuum term not attributed to spectral lines, αMPM93

c :

αMPM93
tot = αMPM93

` + αMPM93
c dB/km (2.62)

The continuum absorption is parameterized like a resonant spectral line of H2O, a so-called
pseudo-line. This is a fundamental change in the parameterization of the water vapor con-
tinuum in respect to all older versions of MPM, which makes it quite complicate to compare
the different versions, especially to distinguish a self- and foreign broadening term in the
continuum.

Water vapor line absorption: The water vapor line spectrum of MPM93 [Liebe et al.,
1993] consists of 34 lines below 1 THz (four more than in MPM89 and MPM87). To de-
scribe the MPM93 water vapor line absorption, a set of six parameters (b1,k and b3,k) per
line are used: two for the line strength and four for the line width. The total line absorption
coefficient (in units of dB/km) is the sum over all individual line absorption coefficients5:

αMPM93
` = 0.1820 · νk · PH2O ·

∑

k

Sk(T ) · F (ν, νk) dB/km (2.63)

where Sk(T ) is the line intensity described by the parameterization

Sk(T ) = b1,k · PH2O ·Θ3.5 · exp (b2,k · [1−Θ]) kHz (2.64)

with νk as the line center frequency, PH2O the water vapor partial pressure and Θ =
300 K/T .
The line shape function, F (ν, νk), in Eq. (2.50) is the standard Van Vleck-Weisskopf
(VVW) function, given by:

F (ν, νk) =

(
ν

νk

)
·
[

γk
(ν − νk)2 + γ2

k
+

γk
(ν + νk)2 + γ2

k

]
(2.65)

(2.66)
5see footnote for MPM97 line absorption
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The pressure broadened line width, γk, is calculated with the single parameter b3,k in the
following way:

γk = b3,k · (4.80 · PH2O ·Θ1.1 + Pd ·Θ0.6) GHz (2.67)

where Pd is the partial pressure of dry air (Pd = Ptot − PH2O).
The parameterizations of Sk(T ) was already in use for the early version of MPM81

[Liebe, 1981]. The expression for γk is the same as in MPM89. The main difference
between MPM93 and MPM89 concerning the water vapor line absorption is the updated
line catalog.

νk b1,k b2,k b3,k b4,k b5,k b6,k

k [GHz] [kHz
hPa ] [1] [MHz

hPa ] [1] [1] [1]
1 22.235080 0.01130 2.143 2.811 4.80 0.69 1.00
2 67.803960 0.00012 8.735 2.858 4.93 0.69 0.82
3 119.995940 0.00008 8.356 2.948 4.78 0.70 0.79
4 183.310091 0.24200 0.668 3.050 5.30 0.64 0.85
5 321.225644 0.00483 6.181 2.303 4.69 0.67 0.54
6 325.152919 0.14990 1.540 2.783 4.85 0.68 0.74
7 336.222601 0.00011 9.829 2.693 4.74 0.69 0.61
8 380.197372 1.15200 1.048 2.873 5.38 0.54 0.89
9 390.134508 0.00046 7.350 2.152 4.81 0.63 0.55

10 437.346667 0.00650 5.050 1.845 4.23 0.60 0.48
11 439.150812 0.09218 3.596 2.100 4.29 0.63 0.52
12 443.018295 0.01976 5.050 1.860 4.23 0.60 0.50
13 448.001075 1.03200 1.405 2.632 4.84 0.66 0.67
14 470.888947 0.03297 3.599 2.152 4.57 0.66 0.65
15 474.689127 0.12620 2.381 2.355 4.65 0.65 0.64
16 488.491133 0.02520 2.853 2.602 5.04 0.69 0.72
17 503.568532 0.00390 6.733 1.612 3.98 0.61 0.43
18 504.482692 0.00130 6.733 1.612 4.01 0.61 0.45

19+ 547.676440 0.97010 0.114 2.600 4.50 0.70 1.00
20+ 552.020960 1.47700 0.114 2.600 4.50 0.70 1.00

21 556.936002 48.74000 0.159 3.210 4.11 0.69 1.00
22 620.700807 0.50120 2.200 2.438 4.68 0.71 0.68

23+ 645.866155 0.00713 8.580 1.800 4.00 0.60 0.50
24 658.005280 0.03022 7.820 3.210 4.14 0.69 1.00
25 752.033227 23.96000 0.396 3.060 4.09 0.68 0.84
26 841.053973 0.00140 8.180 1.590 5.76 0.33 0.45
27 859.962313 0.01472 7.989 3.060 4.09 0.68 0.84
28 899.306675 0.00605 7.917 2.985 4.53 0.68 0.90
29 902.616173 0.00426 8.432 2.865 5.10 0.70 0.95
30 906.207325 0.01876 5.111 2.408 4.70 0.70 0.53
31 916.171582 0.83400 1.442 2.670 4.78 0.70 0.78

32+ 923.118427 0.00869 10.220 2.900 5.00 0.70 0.80
33 970.315022 0.89720 1.920 2.550 4.94 0.64 0.67
34 987.926764 13.21000 0.258 2.985 4.55 0.68 0.90

ν∗ b∗1 b∗2 b∗3 b∗4 b∗5 b∗6
Table 2.7: (continued on next page)
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νk b1,k b2,k b3,k b4,k b5,k b6,k

[GHz] [kHz
hPa ] [1] [MHz

hPa ] [1] [1] [1]
1780.000000 2230.00000 0.952 17.620 30.50 2.00 5.00

Table 2.7: List of used H2O spectral lines and their spectroscopic coefficients of
H2O in air for the MPM93 model [Liebe et al., 1993]. The last separated line is
the unphysical pseudo-line used in MPM93. The lines which are marked with a
”+” were not in the MPM87/MPM89 line catalog.

The MPM93 continuum parameterization: In the MPM93 version the water vapor con-
tinuum is parameterized as an ordinary spectral line (Eqs. (2.64, 2.65)). The parameters of
this continuum ”pseudo-line” (ν∗, b∗1, b∗2, b∗3, b∗4, b∗5, b∗6) are given in Table 2.7. More de-
tails about this continuum parameterization and its microwave approximation can be found
in Section 2.2.1 of this guide.

CP98 water vapor absorption model

Line absorption component [Cruz Pol et al., 1998] for the water vapor line absorption
is based on MPM87 with the main difference that the line catalog consists of only a single
line at νo = 22 GHz. The contributions from the other lines is put into the water vapor
continuum module. The line absorption is therefore very quickly calculated (in units of
Np/km) according to the formula

αCP98
` = 0.0419 · S0(T ) · F (ν, νk) (2.68)

with

S0(T ) = 0.0109 · CL · PH2O · ν0 ·Θ3.5 · exp (2.143 · [1−Θ])

γ = 0.002784 · CW · (Pd ·Θ0.6 + 4.8 · PH2O ·Θ1.1)

(2.69)

where PH2O and Pd are the partial pressure of water vapor and dry air in units of hPa,
respectively and the Van Vleck-Weisskopf line shape, F (ν, νk). The numbers correspond
to the line parameters form MPM87 for this special line and the factors CL and CW are
adjustable scaling factors to match the model with the measurements. Setting the scaling
factors to CL=1.00 and CW=1.00 leads to the same results as for MPM87. According to the
parameter estimation of Cruz–Pol et al. best agreement between data and model is obtained
with CL = 1.0639±0.016 and CW = 1.0658±0.0096. The correlation between these two
scaling factors was found to be negligible, as can be seen from Table 2.8.

The main reason why the Cruz-Pol model (CP98) considers only one line lies in the
fact that CP98 is especially designed for the data analysis in the 20-31.4 GHz region. The
determination of the scaling factors was performed with ground based radiometer data in
the frequency range of from different locations6 in the USA.

Water vapor continuum absorption: The CP98 model uses the same water vapor con-
tinuum parameterization as MPM87, just scaled with an empirical factor, CC, determined
from the above mentioned data:

αCP98
c = CC · αMPM87

c (2.70)
6The data were recorded at San Diego, California (11. December 1991) and West Palm Beach, Florida

(8.-21. March 1992)



2.3 COMPLETE ABSORPTION MODELS 29

CL CW CC CX
value 1.0639 1.0658 1.2369 1.0739
std. dev. 0.016 0.0096 0.155 0.252
correlation
CL 1 -0.085 0.045 -0.048
CW -0.085 1 -0.513 0.485
CC 0.045 -0.513 1 -0.989
CX -0.048 0.485 -0.989 1

Table 2.8: Scaling parameter values with standard deviation and correlation coefficients
according to [Cruz Pol et al., 1998]. The scaling parameters are CL:22 GHz line strength,
CW :22 GHz line width, CC :H2O-continuum, and CX :O2-absorption. CX scales the entire
oxygen absorption, the continuum as well as the line absorption. The Cruz-Pol et al. model
uses the Rosenkranz [1993] oxygen absorption model.

The scaling factor CC , as given in Table 2.8, gives a 23.69 % increased continuum absorp-
tion compared with MPM87 (see Table 2.2 for a comparison of the parameter values). But
one has to keep in mind that CC has a high correlation with the scaling factor of the oxy-
gen absorption, CX , since these two components could not be completely distinguished in
the data. Therefore the value of 23.69 % has a standard deviation of 15.5 % and is not so
reliable than CL and CW .

PWR98 water vapor absorption model

The water vapor continuum formulation of Rosenkranz [1998] is a re-investigation of the ex-
isting models MPM87/MPM89, MPM93, and CKD 2.1 especially for the frequency region
below 1-1000 GHz. in the context of the available laboratory and atmospheric data [Bauer
et al., 1989, 1993, 1995; Becker and Autler, 1946; English et al., 1994; Godon et al., 1992;
Liebe, 1984; Liebe and Layton, 1987; Westwater et al., 1980].

Rosenkranz adopted the structure of MPM89 for his improved model (R98). However,
some important differences exist compared with MPM89:

• the water vapor line catalogs are different

• the R98 uses the Van Vleck–Weisskopf line shape function with cutoff and MPM89
without cutoff

Water vapor line absorption: The local line absorption is defined as

αR98
` = NH2O ·

∑

k

Sk(T ) · Fc(ν, νk)

= NH2O ·
∑

k

Sk(T ) ·
(
ν

νk

)2

· [fc(ν,+νk) + fc(ν,−νk)] Np/km (2.71)

where NH2O is the number density of water molecules, ν the frequency and S the line
intensity, calculated from the HITRAN92 data base Rothman et al. [1992]. Considered for
this re-investigation are 15 lines with a frequency lower than 1 THz as listed in Table 2.9.

The line shape function Fc(ν, νk) has a cutoff frequency, νcutoff, and a baseline subtrac-
tion similar to the CKD model [Clough et al., 1989]. The introduction of a cutoff frequency
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has two advantages: (1) the cutoff avoids applying the line shape to distant frequencies
where the line form is theoretically not well understood and (2) the cutoff also establishes a
limit to the summation in Eq. (2.71) where lines far away from the cutoff limit do not con-
tribute to the sum. The Rosenkranz formulation uses the same value for the cutoff frequency
as the CKD model:

νcutoff = 750 GHz (2.72)

The explicit mathematical form of the line shape function is defined in such a way that in
the limit νcutoff →∞ the combination of Eq. (2.71) with the line shape function would be
equivalent to a Van Vleck–Weisskopf [Van Vleck and Weisskopf , 1945] line shape:

fc(ν,±νk) =





γk
π

{
1

(ν ∓ νk)2 + γ2
k
− 1

ν2
cutoff + γ2

k

}
: |ν ± νk| < νcutoff

0 : |ν ± νk| ≥ νcutoff

(2.73)

νk is the line center frequency and γk the line half width, which is calculated according to

γk = ws,k · PH2O ·Θns + wf,k · Pd ·Θnf GHz (2.74)

with PH2O and Pd as the partial pressure of water vapor and of dry air, respectively. The line
depending parameters ws,k, ns, wf,k, and nf are listed in Table 2.9 and the dimensionless
parameter Θ is defined as Θ = 300 K/T .

Because of the structural similarity to MPM89, the line broadening parameters differ
only in minor respects from the values used therein (only the parameters xs,1, wf,2 and ws,2

are significantly different).

index νk wf,k nf ws,k ns
k [GHz] [GHz/kPa] [1] [GHz/kPa] [1]
1 22.2351 0.00281 0.69 0.01349 0.61
2 183.3101 0.00281 0.64 0.01491 0.85
3 321.2256 0.00230 0.67 0.01080 0.54
4 325.1529 0.00278 0.68 0.01350 0.74
5 380.1974 0.00287 0.54 0.01541 0.89
6 439.1508 0.00210 0.63 0.00900 0.52
7 443.0183 0.00186 0.60 0.00788 0.50
8 448.0011 0.00263 0.66 0.01275 0.67
9 470.8890 0.00215 0.66 0.00983 0.65

10 474.6891 0.00236 0.65 0.01095 0.64
11 488.4911 0.00260 0.69 0.01313 0.72
12 556.9360 0.00321 0.69 0.01320 1.00
13 620.7008 0.00244 0.71 0.01140 0.68
14 752.0332 0.00306 0.68 0.01253 0.84
15 916.1712 0.00267 0.70 0.01275 0.78

Table 2.9: Line parameters of the Rosenkranz absorption model (PWR98) (values taken
from Rosenkranz [1998]).
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Water vapor continuum absorption: The continuum absorption in R98 has the same
functional dependence on frequency, pressure, and temperature like in MPM87/MPM89
(see Sec. 2.3.1 for details):

αR98
c = ν2 · PH2O · (Co

H2O · PH2O ·Θns + Co
d · Pd ·Θnf) (2.75)

with

Co
H2O = 7.80 · 10−8 (dB/km) / (hPa·GHz)2

ns = 7.5

Co
d = 0.236 · 10−8 (dB/km) / (hPa·GHz)2

nd = 3.0

The main difference to the MPM versions are the values of these parameters, since
Rosenkranz used additional data to fit his set of parameters. A second point is the cutoff in
the line shape of the line absorption calculation. Since this cutoff decreases the line absorp-
tion in the window regions, the continuum absorption tends to compensate this decrease to
get the same total absorption as withouot cutoff. This effects mainly the parameters Co

H2O
and Co

d but has also an influence in the temperature dependence and therefore on ns and nd.

2.3.2 Complete oxygen models

Since the Maxwell equations are symmetric in the electric and magnetic fields, electric as
well as magnetic dipole transitions are both possible although magnetic dipoles are in gen-
eral some orders of magnitudes weaker and therefore not relevant in atmospheric radiative
transfer models. An exception to this is the complex around 60 GHz of the paramagnetic
oxygen magnetic dipole transitions. This bulk of lines arise due to the fact that for rota-
tional quantum numbers K > 1 the allowed transitions ∆J = ±1 have an energy gap of
approximately 60 GHz.
The most frequently used absorption model for this absorption effect is that of Liebe,
Rosenkranz, and Hufford [Liebe et al., 1992] (also reported in Rosenkranz [1993] with a
slightly different parameterization).

For oxygen – like for water vapor – the total absorption (αtot) is modelled as the line
absorption (α`) plus a continuum absorption (αc):

αtot = α` + αc (2.76)

It has to be emphasized that, α` and αc of different models are not necessarily compatible
and should therefore not be interchanged.

PWR93 oxygen absorption model

Resonant oxygen absorption The oxygen absorption model of Rosenkranz is described
in Rosenkranz [1993]. It is based on the investigations made by Liebe, Rosenkranz, and
Hufford [Liebe et al., 1992]. The FORTRAN77 computer program of Rosenkranz for the O2

absorption calculation can be downloaded via anonymous ftp from mesa.mit.edu/phil/lbl rt.
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The oxygen line catalog has 40 lines from which 33 lines build the complex around
60 GHz. The parameterization of the line absorption, αR98

` , is:

αR98
` =

nO2

π
·

40∑

k=1

Sk(T ) · F (ν, νk) (2.77)

line intensity:

Sk(T ) = Sk(300 K) / exp (bk ·Θ) (2.78)

line shape function:

F (ν, νk) =

(
ν

νk

)2

·
[

Γk + (ν − νk) · Yk
(ν − νk)2 + Γ2

k

+
Γk − (ν + νk) · Yk

(ν + νk)2 + Γ2
k

]

line width:

Γk = wk ·
(
Pd ·Θ0.8 + 1.1 · PH2O ·Θ

)
(2.79)

line coupling:

Yk = Pair ·Θ0.8 · [yk + (Θ− 1) · vk]
number density of O2:

nO2 = (0.20946 · Pair)/(kB · T )

where Sk(300 K) denotes the reference line intensity at T=300 K ant the exponential term
approximates the exact partition function. All model parameters (see Refs. Rosenkranz
[1993] and Liebe et al. [1992] for the laboratory measurements and the fitting parameters)
are tabulated in Table 2.10.

index νk Sk(300 K) bk wk yk vk
k [GHz] [cm2 Hz] [1] [MHz

hPa ] [10−3

hPa ] [10−3

hPa ]
1 118.7503 .2936· 10−14 .009 1.63 -0.0233 0.0079
2 56.2648 .8079· 10−15 .015 1.646 0.2408 -0.0978
3 62.4863 .2480· 10−14 .083 1.468 -0.3486 0.0844
4 58.4466 .2228· 10−14 .084 1.449 0.5227 -0.1273
5 60.3061 .3351· 10−14 .212 1.382 -0.5430 0.0699
6 59.5910 .3292· 10−14 .212 1.360 0.5877 -0.0776
7 59.1642 .3721· 10−14 .391 1.319 -0.3970 0.2309
8 60.4348 .3891· 10−14 .391 1.297 0.3237 -0.2825
9 58.3239 .3640· 10−14 .626 1.266 -0.1348 0.0436
10 61.1506 .4005· 10−14 .626 1.248 0.0311 -0.0584
11 57.6125 .3227· 10−14 .915 1.221 0.0725 0.6056
12 61.8002 .3715· 10−14 .915 1.207 -0.1663 -0.6619
13 56.9682 .2627· 10−14 1.260 1.181 0.2832 0.6451
14 62.4112 .3156· 10−14 1.260 1.171 -0.3629 -0.6759
15 56.3634 .1982· 10−14 1.660 1.144 0.3970 0.6547
16 62.9980 .2477· 10−14 1.665 1.139 -0.4599 -0.6675
17 55.7838 .1391· 10−14 2.119 1.110 0.4695 0.6135
18 63.5685 .1808· 10−14 2.115 1.108 -0.5199 -0.6139
19 55.2214 .9124· 10−15 2.624 1.079 0.5187 0.2952
20 64.1278 .1230· 10−14 2.625 1.078 -0.5597 -0.2895
21 54.6712 .5603· 10−15 3.194 1.05 0.5903 0.2654

Table 2.10: (continued on next page)
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index νk Sk(300 K) bk wk yk vk
22 64.6789 .7842· 10−15 3.194 1.05 -0.6246 -0.2590
23 54.1300 .3228· 10−15 3.814 1.02 0.6656 0.3750
24 65.2241 .4689· 10−15 3.814 1.02 -0.6942 -0.3680
25 53.5957 .1748· 10−15 4.484 1.00 0.7086 0.5085
26 65.7648 .2632· 10−15 4.484 1.00 -0.7325 -0.5002
27 53.0669 .8898· 10−16 5.224 .97 0.7348 0.6206
28 66.3021 .1389· 10−15 5.224 .97 -0.7546 -0.6091
29 52.5424 .4264· 10−16 6.004 .94 0.7702 0.6526
30 66.8368 .6899· 10−16 6.004 .94 -0.7864 -0.6393
31 52.0214 .1924· 10−16 6.844 .92 0.8083 0.6640
32 67.3696 .3229· 10−16 6.844 .92 -0.8210 -0.6475
33 51.5034 .8191· 10−17 7.744 .89 0.8439 0.6729
34 67.9009 .1423· 10−16 7.744 .89 -0.8529 -0.6545
35 368.4984 .6460· 10−15 .048 1.92 0.0000 0.0000
36 424.7631 .7047· 10−14 .044 1.92 0.0000 0.0000
37 487.2494 .3011· 10−14 .049 1.92 0.0000 0.0000
38 715.3932 .1826· 10−14 .145 1.81 0.0000 0.0000
39 773.8397 .1152· 10−13 .141 1.81 0.0000 0.0000
40 834.1453 .3971· 10−14 .145 1.81 0.0000 0.0000

Table 2.10: List of O2 spectral lines of the Rosenkranz absorption model
[Rosenkranz, 1993].

Oxygen continuum absorption: As pointed out by Van Vleck [Van Vleck, 1987], the
standard theory for non-resonant absorption is that of Debye (see also Ref. Townes and
Schawlow [1955]). The Debye line shape is obtained from the VVW line shape function by
the limiting case νk → 0. Rosenkranz Rosenkranz [1993] adopt the Debye theory for his
models:

αc = C · Pd ·Θ2 · ν2 · γ
ν2 + γ2

(2.80)

γ = w · (Pd ·Θ0.8 + 1.1 · PH2O ·Θ) (2.81)

The values for the parameters are C = 1.11 · 10−5 dB/km/(hPa GHz) and w = 5.6 · 10−4

GHz/hPa, respectively. This absorption term is proportional to the collision frequency of a
single oxygen molecule and thus proportional to the dry air pressure7.

MPM93 oxygen absorption model

Oxygen line absorption: The oxygen line catalog has 44 lines from which 37 lines build
the complex around 60 GHz [Liebe et al., 1993]. The parameterization of the line absorp-
tion, αMPM

` , is (in units of dB/km):

αMPM
` = 0.1820 · ν2 ·

44∑

k=1

Sk(T ) · F (ν, νk) dB/km (2.82)

7The absorption due to weakly bound complexes of O2–X with X = H2O, N2 is treated separately and
therefore not included in this Debye formula.
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with

line intensity:

Sk(T ) =
a1,k

νk
· Pd ·Θ3 · exp [a2,k · (1−Θ)] (2.83)

line shape function:

F (ν, νk) =

[
γk + (ν − νk) · δk

(ν − νk)2 + γ2
k

+
γk − (ν + νk) · δk

(ν + νk)2 + γ2
k

]

line width:

γk = a3,k · 10−3 · (Pd ·Θa4,k + 1.10 · PH2O ·Θ) (2.84)

line coupling:

δk = Pair ·Θ0.8 · [a5,k + Θ · a6,k]

where a1−5,k are the fitted parameters due to laboratory measurements [Liebe et al., 1992].
All model parameters are tabulated in Table 2.11. One has to note that in the MPM93 code
is a threshold value for αMPM

` implemented:

αMPM
` =

{
αMPM
` : αMPM

` > 0

0 : αMPM
` < 0

(2.85)

Therefore the oxygen absorption in the wings of the strong O2-lines is remarkably higher
than in the R93 model.

index νk a1,k a2,k a3,k a4,k a5,k a6,k

k [GHz] [kHz
hPa ] [1] [MHz

hPa ] [1] [ 103

hPa ] [ 103

hPa ]
1 50.474238 0.094 9.694 0.890 0.0 0.240 0.790
2 50.987749 0.246 8.694 0.910 0.0 0.220 0.780
3 51.503350 0.608 7.744 0.940 0.0 0.197 0.774
4 52.021410 1.414 6.844 0.970 0.0 0.166 0.764
5 52.542394 3.102 6.004 0.990 0.0 0.136 0.751
6 53.066907 6.410 5.224 1.020 0.0 0.131 0.714
7 53.595749 12.470 4.484 1.050 0.0 0.230 0.584
8 54.130000 22.800 3.814 1.070 0.0 0.335 0.431
9 54.671159 39.180 3.194 1.100 0.0 0.374 0.305
10 55.221367 63.160 2.624 1.130 0.0 0.258 0.339
11 55.783802 95.350 2.119 1.170 0.0 -0.166 0.705
12 56.264775 54.890 0.015 1.730 0.0 0.390 -0.113
13 56.363389 134.400 1.660 1.200 0.0 -0.297 0.753
14 56.968206 176.300 1.260 1.240 0.0 -0.416 0.742
15 57.612484 214.100 0.915 1.280 0.0 -0.613 0.697
16 58.323877 238.600 0.626 1.330 0.0 -0.205 0.051
17 58.446590 145.700 0.084 1.520 0.0 0.748 -0.146
18 59.164207 240.400 0.391 1.390 0.0 -0.722 0.266
19 59.590983 211.200 0.212 1.430 0.0 0.765 -0.090
20 60.306061 212.400 0.212 1.450 0.0 -0.705 0.081
21 60.434776 246.100 0.391 1.360 0.0 0.697 -0.324
22 61.150560 250.400 0.626 1.310 0.0 0.104 -0.067
23 61.800154 229.800 0.915 1.270 0.0 0.570 -0.761

Table 2.11: (continued on next page)
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index νk a1,k a2,k a3,k a4,k a5,k a6,k

24 62.411215 193.300 1.260 1.230 0.0 0.360 -0.777
25 62.486260 151.700 0.083 1.540 0.0 -0.498 0.097
26 62.997977 150.300 1.665 1.200 0.0 0.239 -0.768
27 63.568518 108.700 2.115 1.170 0.0 0.108 -0.706
28 64.127767 73.350 2.620 1.130 0.0 -0.311 -0.332
29 64.678903 46.350 3.195 1.100 0.0 -0.421 -0.298
30 65.224071 27.480 3.815 1.070 0.0 -0.375 -0.423
31 65.764772 15.300 4.485 1.050 0.0 -0.267 -0.575
32 66.302091 8.009 5.225 1.020 0.0 -0.168 -0.700
33 66.836830 3.946 6.005 0.990 0.0 -0.169 -0.735
34 67.369598 1.832 6.845 0.970 0.0 -0.200 -0.744
35 67.900867 0.801 7.745 0.940 0.0 -0.228 -0.753
36 68.431005 0.330 8.695 0.920 0.0 -0.240 -0.760
37 68.960311 0.128 9.695 0.900 0.0 -0.250 -0.765
38 118.750343 94.500 0.009 1.630 0.0 -0.036 0.009
39 368.498350 6.790 0.049 1.920 0.6 0.000 0.000
40 424.763124 63.800 0.044 1.930 0.6 0.000 0.000
41 487.249370 23.500 0.049 1.920 0.6 0.000 0.000
42 715.393150 9.960 0.145 1.810 0.6 0.000 0.000
43 773.839675 67.100 0.130 1.820 0.6 0.000 0.000
44 834.145330 18.000 0.147 1.810 0.6 0.000 0.000

Table 2.11: List of O2 spectral lines of the MPM93 absorption model [Liebe et al.,
1993].

Oxygen continuum absorption: As pointed out by Van Vleck [Van Vleck, 1987], the
standard theory for non-resonant absorption is that of Debye (see also Ref. Townes and
Schawlow [1955]). The Debye line shape is obtained from the VVW line shape function by
the limiting case νk → 0. Liebe et al. [1993] adopt the Debye theory for his model:

αc = C · Pd ·Θ2 · ν2 · γ
ν2 + γ2

(2.86)

γ = w · Ptot ·Θ0.8

The values for the parameters are C = 1.11 · 10−5 dB/km/(hPa GHz) and w = 5.6 · 10−4

GHz/hPa, respectively. This absorption term is proportional to the collision frequency of a
single oxygen molecule and thus proportional to the dry air pressure8.

8The absorption due to weakly bound complexes of O2–X with X = H2O, N2 is treated separately and
therefore not included in this Debye formula.
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Chapter 3

Cloud absorption

3.1 Liquid water and ice particle absorption

So far only absorption due to air was described. However hydrometeors1 can have a no-
ticeable effect on the radiative transfer through the atmosphere. To treat hydrometeors you
should normally set up a calculation with scattering, which needs input optical properties
such as the phase matrix. Several chapters, both in ARTS User Guide and here in ARTS
Theory, deal with such scattering simulations.

This very short chapter is not related to the scattering parts in ARTS. Instead, it describes
some functions that handle only the absorption of hydrometeors, not the scattering. They
may be useful in some special cases. Practically, they work exactly as the continuum and
complete gas absorption models, just the ‘VMR’ is interpreted as a condensate amount.

The MPM93 model provides beside the absorption model of air also an absorption
model for suspended liquid water droplets and ice particles [Liebe et al., 1989, 1991; Huf-
ford, 1991; Liebe et al., 1993]. The model is applicable for the Rayleigh regime, for which
the relation r < 0.05 · λ holds where r is the particle radius and λ is the wavelength2, e. g.
for a frequency of around 22 GHz this means r < 500µm. Considering Salby [1996], this
criterium is – except for cirrus – nearly for every aerosol and cloud class satisfied. But one
has to bear in mind that these values have a wide range of variability, for example, Salby
[1996] states that the mean particle radius for stratus, cumulus, and nimbus clouds can be
in the range of 10-1000µm and that the particle radius distribution is highly unsymmetric.

With respect to the imaginary part of the complex refractivity, a unified parameterization
of liquid and ice particle absorption is formulated in MPM93:

α = 0.1820 · ν ·N ′′ dB/km (3.1)

N ′′ =
3

2
· w
m
· Im[(εr − 1)/(εr + 2)]

N ′′ =
3

2
· w
m
·
[

3 · ε′′r
(ε′r + 2)2 + (ε′′r )2

]

where w is the liquid water (0.0< LWC < 5.0 g/m3) or ice mass (0.0 IWC 1.0 g/m3) con-
tent and m is the water or ice bulk density (ρl,i=1.0 g/cm3 and 0.916 g/cm3, respectively).
The difference between liquid water and ice absorption is put in the expressions for the

1We denote liquid water and ice particles, either suspended or precipitating, in the air as hydrometeors.
2See Brussaard and Watson [1995], page 81, for details.
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complex permittivities (i. e. the relative dielectric constant), εr = ε
′
r + i · ε′′r , which depend

on frequency and temperature.
• Complex permittivity for suspended liquid water droplets:

ε
′
r = εo − ν2 ·

[
εo − ε1
ν2 + γ2

1

+
ε1 − ε2
ν2 + γ2

2

]

ε
′′
r = ν ·

[
γ1 ·

εo − ε1
ν2 + γ2

1

+ γ2 ·
ε1 − ε2
ν2 + γ2

2

]

εo = 77.66 + 103.3 · (Θ− 1) (3.2)

ε1 = 0.0671 · εo
ε2 = 3.52

γ1 = 20.20− 146 · (Θ− 1) + 316 · (Θ− 1)2 GHz (3.3)

γ2 = 39.8 · γ1 GHz

Θ = 300 K / T

• Complex permittivity for ice crystals:

ε
′
r = 3.15

ε
′′
r =

a

ν
+ b · ν

a = (Θ− 0.1871) · exp (17.0− 22.1 ·Θ) (3.4)

b =

[(
0.233

1− 0.993/Θ

)2

+
6.33

Θ
− 1.31

]
· 10−5 (3.5)

Θ = 300 K / T

The absorption is directly proportional to the liquid or ice water content LWC/IWC and
inversely proportional to the density of a single liquid ice particle ρl,i. Like the mean par-
ticle radius, the liquid and ice water content have a high variability. Table 3.1 reflects this
variability by summarizing different literature values for several cloud types. Additional
uncertainty of this absorption term comes from two sides: (1) the difference to the Rayleigh
approximation of the order of 1-6% as reported in Li et al. [1997] and (2) from the fit of
the complex permittivity. Since ε(ν, T ) was fitted to measurements which were mostly per-
formed above 0◦C, the extrapolated values for T <0oC for super-cooled clouds are not well
established. For example in Liebe et al. [1991] itself two different parameterizations for the
so called primary relaxation frequency (γ1 in Equation 3.2) are given, one polynomial in Θ
as presented in Equation 3.2) and an exponential function derived from theory. Although
the polynomial describes the selected data better than the exponential function, this might
not be true for temperatures well below 0oC. The difference in γ1 according to these two
approaches can be more than 2 GHz for very low temperatures [Lipton et al., 1999]. The
resulting consequences from this discrepancy for the absorption calculation at three mi-
crowave frequencies are shown in Figure 3.1. A more detailed discussion about this source
of uncertainty is given in Section 3.2.

3.2 Variability and uncertainty in cloud absorption

In the case of clouds three sources of uncertainties can be considered at first sight: (1)
validity of the Rayleigh approximation (2) the parameterization of the relative dielectric
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Figure 3.1: Comparison of the imaginary part of the expression (εr − 1)/(εr + 2) for
liquid water at the three frequencies of 32.9, 22.6, and 10,3 GHz. Plotted are the two
common models of Liebe et al. [1991] (a) and Ray [1972] (b). The Ray parameteri-
zation is calculated with the F77 program of W. Wiscombe, NASA, GSFC, take from
ftp://climate.gsfc.nasa.gov/pub/wiscombe/Refrac Index/WATER/. Additionally the Liebe
et al. [1991] parameterization (c) with the alternative expression for the first relaxation fre-
quency, γ1 = 20.1 · exp [7.88 · (1−Θ)], is plotted.
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liquid water content (LWC)
cloud class (g/m3) reference
stratus St 0.15 Salby [1996]

0.09-0.9 Seinfeld and Pandis [1998]
0.28-0.3 Hess et al. [1998]
0.29 Kneizys et al. [1996]

nimbostratus Ns 0.4 Salby [1996]
0.65 Kneizys et al. [1996]
0.05-0.3 Berton [2000]

altostratus As <0.01-0.2 Seinfeld and Pandis [1998]
0.41 Kneizys et al. [1996]
0.1-1 Berton [2000]

stratocumulus Sc 0.3 Salby [1996]
<0.1-0.7 Seinfeld and Pandis [1998]
0.15 Kneizys et al. [1996]
<0.5 Pawlowska et al. [2000]
0.05-1 Berton [2000]

cumulus Cu 0.5 Salby [1996]
0.26-0.44 Hess et al. [1998]
1.00 Kneizys et al. [1996]

cumulonimbus Cb 2.5 Salby [1996]
0.1-2 Berton [2000]

cumulus congestus Cg 0.1-3.2 Berton [2000]
FIRE-ACE - <0.7 Shupe et al. [2000]

ice water content (IWC)
cloud class (g/m3) reference
cirrus Ci 0.025 Salby [1996]

0.00193-0.0260 Hess et al. [1998]
3.128·10−4-0.06405 Kneizys et al. [1996]
0.15-0.3 Larsen et al. [1998]
<0.1 Berton [2000]

cirrostratus Cs 0.2 Salby [1996]
0.05-2 Berton [2000]

Table 3.1: Stated values for the liquid and ice water content of several cloud classes from
different sources.

constants (εr) of water and ice in the microwave region, and (3) the statistical and climato-
logical variability of the cloud liquid water and ice content.

As it was stated above (Section 3.1) the Rayleigh approximation is valid for particle
sizes < 500µm. Figure 3.2 shows a particle size distribution for water clouds and ice
clouds (cirrus) from the OPAC model [Hess et al., 1998]. According to this model only
cirrus clouds will have particles of size larger than 500µm. Nevertheless one has to keep
in mind that the variability of the particle size can be very high so that at certain condi-
tions some cloud types (most probable is the cumulonimbus) a non-negligible large particle
concentration can occur.
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Figure 3.2: Cloud particle size distributions according to Equations 3a and 3c and the mi-
crophysical properties are from the Tables 1a and 1b of the OPAC model [Hess et al., 1998].
For the liquid water clouds (upper plot) a modified gamma distribution is assumed whereas
for the ice clouds (lower plot) exponential functions are taken.



42 CLOUD ABSORPTION

The uncertainty in the relative dielectric constant of water (see e. g. Lipton et al.
[1999]) is largest below the freezing temperature, since only a few measurements at -4oC
contributed to the parameterization of εr in Liebe et al. [1991], which in turn is used in the
cloud liquid water absorption model of MPM93. Figure 3.1 shows a comparison of Liebe
et al. [1991] and Ray [1972]3 parameterizations for the temperature dependence of the ex-
pression Im[(εr − 1)/(εr + 2)], which is in the Rayleigh approximation one of the relevant
terms in the absorption calculation (see Equation 3.1). Additionally the same calculations
with the alternative expression of the first relaxation frequency, γ1, as stated in Equation 2b
of Liebe et al. [1991] is shown. The three versions give comparable results for temperatures
warmer than 260 K but show significant differences for temperatures below 240 K. How-
ever, an uncertainty estimation of Im[(εr − 1)/(εr + 2)] is due to the lack of measurements
not easy, but it will certainly increase with decreasing temperature.

The largest variability of the involved quantities of cloud absorption is the liquid and
ice water content (LWC and IWC) of the clouds (see Table 3.1). Even within a single
cloud the LWC (IWC) changes with altitude and the distance from the cloud center as can
be seen for example in Figure 10 of Ludlam and Mason [1957] and in the model study of
Costa et al. [2000].

3The calculations for this parameterizastion are performed with the computer code
of W. Wiscombe, NASA, GSFC
(ftp://climate.gsfc.nasa.gov/pub/wiscombe/Refrac Index/WATER/) For the microwave frequency range this
program uses the Ray [1972] temperature parameterization.



Chapter 4

Refractive index

Refractive index describes several effects of matter on propagation of electromagnetic
waves. Refractive index is basically a complex quantity. However, in this chapter it is
restricted to its real part, neglecting the imaginary part, which describes absorption. Effects
the real part of the refractive index describes particularly include changes of the propagation
speed of electromagnetic waves, which leads to a delay of the signal, as well as a change of
the propagation direction, a bending of the propagation path. The latter is commonly called
refraction.

Several components in the atmosphere contribute to refraction, hence to the refractive
index: the gas mixture(“air”), solid and liquid constituents (clouds, precipitation, aerosols),
and electrons. Refractivity (N ) describes the deviation of the refractive index of a medium
nfrom the vacuum refractive index (nvacuum = 1): N = n−1. Contributions of the different
components to refractivity are additive. One distinguishes between monochromatic and
group refractive index, which differ in case of dispersion leading to diverging propagation
paths at different frequencies. FIXME: That needs to be more specific.

4.1 Gases

According to Newell and Baird [1965], the refractivityN , i.e., the deviation of the refractive
index n from 1.0 (N = n − 1), of a gas can be assumed to be proportional to its density.
Newell and Baird [1965] give no validity range for this assumption, but at least Stratton
[1968] assumes that it is valid even for the relatively high densities in the Venusian atmo-
sphere. We have not investigated whether this assumption may break down at some point in
the Jupiter atmosphere.

If we accept the assumption of refractivity scaling with gas density, then the problem of
parameterizing the refractivity can be separated into two sub-problems: (a) determining the
refractivity index for reference conditions (reference pressure p and temperature T ), and (b)
deciding which gas law to use to scale it to other conditions. The total refractivity is then
simply the sum of all partial refractivities, in other words

N = Nref,1
n1

nref,1
+Nref,2

n2

nref,2
+ · · · (4.1)

History
130802 Started based on AUG chapter and ESA-planetary TN1 (Jana Mendrok).
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where N is the total refractivity, Nref,1 is the partial refractivity for gas i at reference con-
ditions, ni is the partial density, and nref,i is the reference density.

Different solutions have been proposed, where approaches specific for Earth atmosphere
commonly are empirical parameterisations. Below we describe the background and formu-
las applied for the different methods implemented in ARTS.

4.1.1 Microwave general method (refr index airMWgeneral)

Apart from presenting a basic approach, Newell and Baird [1965] also provide a thorough
study of both refractivity of different gases for reference conditions and which gas law to
use to scale those to other conditions. They present laboratory refractivity measurements for
dry CO2-free air, argon, carbon dioxide, helium, hydrogen, nitrogen, and oxygen covering
the most relevant gases (probably apart from water vapor) in planetary atmospheres. The
actual refractivity values of Newell and Baird [1965] are stated in the paper abstract and
are not repeated here. The conditions for the reported refractivity values are T = 0◦C and
p = 760 Torr. The measurements are for a frequency of 47.7 GHz. Out of the reference
refractivities povided by Newell and Baird [1965], we apply those of N2, O2, CO2, H2, and
He in this algorithm.

Newell and Baird [1965] also adress the question which gas law to use to scale the mea-
surements to other p/T conditions, chosing different approaches depending on the specific
gas in question. While the more complicated gas laws they suggest can be expected to be
more accurate in the relatively narrow range of p/T conditions considered by Newell and
Baird [1965], it is not easy to assess how well they will hold outside the range for which
they were originally derived. We therefore simply use the ideal gas law, as given in Equation
7 of Newell and Baird [1965] for all gases. This results in the simple parameterization

N =
273.15 K

760 Torr

[
Nref,1

p1

T
+Nref,2

p2

T
+ · · ·

]
(4.2)

where N(T, p) is the total refractivity, the first factor reflectes the reference conditions for
the Newell and Baird [1965] data, Nref,1 are the partial refractivities as reported in the
abstract of their article, pi are the partial pressures, and T is temperature.

In addition to reference refractivities of the five species given by Newell and Baird
[1965], we have derived an equivalent value for H2O from the H2O contribution in the
parametrization by Thayer [1974] for a reference temperature of T0=273.15 K. Using
the ideal gas law reduces temperature dependence to inverse proportionality, whereas the
Thayer [1974] parameterization also carries an inverse quadratic dependence. This causes
notable deviations from H2O refractivity as given by Thayer [1974] when temperature is
not close to the reference temperature applied. However, the deviations are significantly
smaller than when refraction by H2O is not explicitly accounted for.

Hence, the above formulas can currently be used with up to six contributing gas species
(N2, O2, CO2, H2, and He as well as H2O). To account for contributions from further gases
(i.e., when volume mixing ratios of these six do not add up to 1), the calculated refractivity
from those five gases is normalised to a volume mixing ratio of 1. By adding reference
refractive index data from further species – as done for water vapor –, the method can easily
be extended and made more complete.
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4.1.2 Microwave refractive index for Earth (refr index airThayer)

The microwave refractive index due to gases in the Earth’s atmosphere is calculated consid-
ering so-called compressibility factors (to cover non-ideal gas behaviour). The refractivity
of “dry air” and water vapour is summed. All other gases are assumed to have a negligible
contribution. [Thayer, 1974] FIXME: be more specific and provide actual formula?

4.1.3 Infrared refractive index for Earth (refr index airIR)

The infrared refractive index due to gases in the Earth’s atmosphere is derived, but only re-
fractivity of “dry air” is considered. The formula used is contributed by Michael Hoepfner,
Forschungszentrum Karlsruhe. FIXME: be more specific and document the actual for-
mula?

4.2 Free electrons

Free electrons, as exist in the ionosphere, will affect propagating radio waves in several
ways. Free electrons will have an impact of the propagation speed of radio waves, hence a
signal can be delayed and refracted.

An electromagnetic wave passing through a plasma (such as the ionosphere) will drive
electrons to oscillate and re-radiating the wave frequency. This is the basic reason of the
contribution of electrons to the refractive index. An important variable is the plasma fre-
quency, νp:

ωp =

√
Ne2

ε0m
, (4.3)

where ωp = 2πνp, N is the electron density, e is the charge of an electron, ε0 is the per-
mittivity of free space, and m is the mass of an electron. For example, for the Earth’s
ionosphere νp ≈ 9 MHz. Waves having a frequency below νp are reflected by a plasma.

Neglecting influences of any magnetic field, the refractive index of a plasma is [e.g.
Rybicki and Lightman, 1979]

n =

√

1− ω2
p

ω2
=

√
1− Ne2

ε0mω2
, (4.4)

where ω is the angular frequency (ω = 2πν). This refractive index is less than unity
(phase velocity is greater than the speed of light), but is approaching unity with increasing
frequency. The group velocity is [Rybicki and Lightman, 1979]

vg = c

√
1− Ne2

ε0mω2
(4.5)

which is clearly less than the speed of light. The energy (or information) of a signal propa-
gating through the ionosphere travels with the group velocity, and the group speed refractive
index (ng = c

vg
) is

ng =

(
1− Ne2

ε0mω2

)−1/2

. (4.6)

Equations 4.4 and 4.6 are implemented in refr index airFreeElectrons. The method de-
mands that the radiative transfer frequency is at least twice the plasma frequency.

http://www.radiativetransfer.org/docserver-stable/all/refr_index_airFreeElectrons
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Chapter 5

Polarisation and Stokes parameters

The present version of ARTS implements the radiative transfer equation in tensor form, i.e.,
for the 4 components of the Stokes vector, not just for its first component, the intensity or
radiance. This means that the model can include polarisation dependence in absorption or
scattering processes. It is therefore necessary to give some details on the polarisation of
radiation, the definition of the Stokes parameters, and the definition of antenna polarisation.

5.1 Polarisation directions

Electromagnetic waves in homogeneous, isotropic media are transverse waves, i.e., their
oscillating electric and magnetic fields are in a plane perpendicular to the propagation di-
rection. The choice of two basis vectors – we shall call them polarisation directions here –
that span that transverse plane is arbitrary; often they are called “horizontal” and “vertical”
and correspond to some horizontal and vertical direction of the particular setting. Never-
theless, what is meant by horizontal/vertical, or parallel/perpendicular, is purely a matter of
definition.

Here, we stick to the system called laboratory frame or fixed frame, used by Mishchenko
et al. [2002]: We use a coordinate system where the z-axis points toward local zenith. We
denote the propagation direction of radiation by a unit vector n = k/k, where k is the wave
number. n is given by two angles, the zenith angle θ , i.e., the angle between n and the z-
axis, and the azimuth angle φ, i.e., the angle between the projection of n into the xy-plane
and the x-axis:

n =




cosφ sin θ
sinφ sin θ

cos θ


 (5.1)

Then we define the polarisation directions by the partial derivatives of n with respect to θ
and φ. We shall call them θ-direction (also: vertical) and φ-direction (also: horizontal),
respectively, see Figure 5.1. Their unit basis vectors are

History
040524 Section on scattering matrices added by Patrick Eriksson.
040426 Created and written by Christian Melsheimer.
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(vert.)

(horiz.)

Figure 5.1: The definition of the polarisation directions, adapted from Mishchenko
et al. [2002]
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eθ = ev =
∂n

∂θ

/∥∥∥∥
∂n

∂θ

∥∥∥∥ =




cosφ cos θ
sinφ cos θ
− sin θ


 (5.2)

eφ = eh =
∂n

∂φ

/∥∥∥∥
∂n

∂φ

∥∥∥∥ =



− sinφ
cosφ

0


 (5.3)

The vectors n, eθ (=ev), eφ (=eh) are mutually orthogonal and define (in the mentioned
order) a right-handed system, i.e., (n× eθ)·eφ = 1 and the same for all cyclic permutations.

5.2 Plane monochromatic waves

Plane monochromatic electromagnetic waves are commonly written in the form

E(x, t) =

[
Ev
Eh

]
ei(kx−ωt) = (Evev + Eheh) ei(kx−ωt) (5.4)

where E is the electric field vector, the subscripts v and h denote the components with
vertical and horizontal polarisation, respectively. Ev and Eh, the amplitudes, are complex
numbers, k and ω are the wavenumber vector and the angular frequency, respectively, of
the plane wave, and the unit vectors ev = (1, 0)T , eh = (0, 1)T . It is always implicitly
understood that the actual, physical, electric field is the real part of the above expression.
Rewriting the complex amplitudes Ev and Eh using real, non-negative amplitudes av and
ah, and phases δv and δh,

Ev = ave
iδv , Eh = ahe

iδh (5.5)

the actual electric field vector Ẽ is

Ẽ(x, t) = Re[E(x, t)] =

[
av · cos(kx− ωt+ δv)

ah · cos(kx− ωt+ δh)

]
(5.6)

In general, instruments do not measure the electric or magnetic field vectors of an electro-
magnetic wave, but rather the time-averaged intensity, i.e., the energy flux, F . This is the
time-averaged Poynting vector (which, in turn, is proportional to the square of the electric
field), thus:

F =

√
ε

µ
(Ẽ(x, t))2 (5.7)

=

√
ε

µ

(
a2
vcos2(kx− ωt+ δv) + a2

hcos2(kx− ωt+ δh)
)

The overline denotes the time average which for cosine squares is 1/2, thus:

F = 1
2

√
ε
µ(a2

v + a2
h) (5.8)

Taking into account that for plane, monochromatic waves the time average always results in
a factor 1

2 , we can also directly write the intensity using the electric field vector in complex
notation (Equation 5.4).

F = 1
2

√
ε
µE(x, t) ·E∗(x, t) (5.9)

= 1
2

√
ε
µ(EvE

∗
v + EhE

∗
h)
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where the asterisk denotes complex conjugation.
In addition to the flux, three more intensity quantities are defined as in the following

equations. They are called Stokes parameters:

I = 1
2

√
ε
µ(EvE

∗
v + EhE

∗
h) (5.10)

Q = 1
2

√
ε
µ(EvE

∗
v − EhE∗h) (5.11)

U = −1
2

√
ε
µ(EvE

∗
h + EhE

∗
v) (5.12)

V = i1
2

√
ε
µ(EhE

∗
v − EvE∗h) (5.13)

Written as a row or column vector, (I,Q, U, V ) is called Stokes vector. Note that some-
times, S0, S1, S2, S3 is used instead of I , Q, U , V . Using the amplitude/phase notation
from Equation 5.5, we can rewrite the Stokes parameters as

I = 1
2

√
ε
µ(a2

v + a2
h) (5.14)

Q = 1
2

√
ε
µ(a2

v − a2
h) (5.15)

U = −
√

ε
µavah cos(δv − δh) (5.16)

V = −
√

ε
µavah sin(δv − δh) (5.17)

The Stokes parameters fully characterise the electromagnetic wave and therefore contain
the same information as the electric field vector (except for one absolute phase). Since
instruments generally measure intensities (fluxes), describing electromagnetic radiation by
the Stokes parameters is more practical than describing it by the electric (or magnetic) field
vector. Furthermore, the Stokes parameters are always real numbers. Note that the Stokes
parameters are sometimes defined with different signs of Q, U , or V (the definitions and
signs used here are based on Mishchenko et al. [2000]). Moreover, their normalisation
may vary. In particular, the Stokes parameters can be normalised to represent radiance or
irradiance (instead of intensity), which is usually done in radiative transfer contexts.

In order understand what the Stokes parameters mean, we have to go back to the electric
field vector and see what polarisation state it describes. To do so, we look at the curve that
the tip of the physical electric field vector Ẽ describes with time at a fixed position x0:

Ẽv(t) = av cos(∆v − ωt) (5.18)

Ẽh(t) = ah cos(∆h − ωt) (5.19)

where ∆v,h = kx0 + δv,h. To see that this is an ellipse, we first split the cosines using the
addition theorem:

Ẽv(t) = av cos ∆v cos(ωt) + av sin ∆v sin(ωt) (5.20)

Ẽh(t) = ah cos ∆h cos(ωt) + ah sin ∆h sin(ωt) (5.21)

In order to have the tip of Ẽ describe an ellipse with semi-major axis a0 cosβ and semi-
minor axis a0 sinβ, where a2

0 = a2
v + a2

h, it should have the following form

Ẽv(t) = a0 sinβ cos(ωt) (5.22)

Ẽh(t) = a0 cosβ sin(ωt) (5.23)

Here β must be between −45◦ and 45◦: the tip of the vector Ẽ describes a circle for β =
±45◦ (circular polarisation), oscillates along the h-axis for β = 0 (linear polarisation)



5.2 PLANE MONOCHROMATIC WAVES 51

e h

e v

a
sin

β
0

a cos β0 β
h

v

Figure 5.2: The ellipse that the electric field vector describes with time, with the
major axis oriented along the h-axis.
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Figure 5.3: The ellipse that the electric field vector describes with time, with the
major axis oriented arbitrarily.

and else describes an ellipse (cf. Figure 5.2). The sense of rotation is counterclockwise
for positive β (corresponding to left-circular or left-elliptic polarisation) and clockwise for
negative β (corresponding to right-circular or right-elliptic polarisation). Since | tanβ| is
the ratio of the semi-minor and semi-major axes of the ellipse (the ellipticity), β is called
the ellipticity angle. Note that the semi-major axis is oriented along the positive h-axis. To
have the major axis of the ellipse enclose an arbitrary angle ζ (0 ≤ ζ < 180◦) with the
h-axis, we apply a rotation matrix and get the equation for an ellipse with arbitrary shape
(ellipticity) and orientation (cf. Figure 5.3):

Ẽv(t) = a0(sinβ cos(ωt) cos ζ + cosβ sin(ωt) sin ζ) (5.24)

Ẽh(t) = a0(− sinβ cos(ωt) sin ζ + cosβ sin(ωt) cos ζ) (5.25)

With these definitions, horizontal polarisation corresponds to β = 0◦ and ζ = 0◦; vertical
polarisation to β = 0◦ and ζ = 90◦; left-circular to β = 45◦ and any value of ζ; right-
circular to β = −45◦ and any value of ζ.

Now we want to establish a direct connection between the parameters β and ζ describing
the shape (ellipticity) and orientation of the polarisation ellipse on the one hand, and the
amplitudes av and ah and phases δv and δh of the components of the electric field vector on
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the other hand. Comparing the sin(ωt) and cos(ωt) terms in Equations 5.24 to 5.25 with
the corresponding terms in Equations 5.20 to 5.21, we get:

av cos ∆v = a0 sinβ cos ζ (5.26)

av sin ∆v = a0 cosβ sin ζ (5.27)

and

ah cos ∆h = −a0 sinβ sin ζ (5.28)

ah sin ∆h = a0 cosβ cos ζ (5.29)

Multiplying Equation 5.26 with Equation 5.28, and Equation 5.27 with Equation 5.29 and
adding up the results, we get

avah(cos ∆v cos ∆h + sin ∆v sin ∆h) = a2
0 sin ζ cos ζ(cos2 β − sin2 β) (5.30)

Using the addition theorems for sinusoidals and taking into account that ∆v−∆h = δv−δh:

avah
a2

0

cos(δv − δh) = 1
2 sin(2ζ) cos(2β) (5.31)

In a similar way, subtracting the product of Equation 5.27 with Equation 5.28 from the
product of Equation 5.26 with Equation 5.29 and adding up the results, we get

−avah
a2

0

sin(δv − δh) = 1
2 sin(2β) (5.32)

The above two equations tell us how to translate the amplitudes (av, ah) and phases (δv, δh)
of the vertical and horizontal component of the electric field into the orientation and shape
of the ellipse that the tip of the electric field vector describes with time. We can obtain one
further relation by subtracting the sum of the squares of Equation 5.28 and Equation 5.29
from the sum of the squares of Equation 5.26 and Equation 5.27:

a2
v − a2

h = −a2
0 cos(2ζ) cos(2β) (5.33)

Finally, we use the above 3 equations (5.31, 5.32 and 5.33) to rewrite the Stokes parameters
(Equations 5.14 to 5.17) as

I = 1
2

√
ε
µa

2
0 (5.34)

Q = −1
2

√
ε
µa

2
0 cos(2ζ) cos(2β) (5.35)

U = −1
2

√
ε
µa

2
0 sin(2ζ) cos(2β) (5.36)

V = −1
2

√
ε
µa

2
0 sin(2β) (5.37)

FIXME: β < 0 is right-handed pol. (see above, consistent with Jackson and others); thus
V > 0. This conflicts with Mishchenko’s book (p.26).

Thus, we can get the orientation angle ζ of the ellipse from

tan(2ζ) =
U

Q
(5.38)

Since 0 ≤ 2ζ < 360◦, there are 2 solutions for ζ for a given pair U,Q. This ambiguity is
resolved by looking at Equation 5.35, taking into account that |β| ≤ 45◦ and thus cos(2β) ≥
0: The sign of cos(2ζ) must be the same as the sign of −Q.
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We get the ellipticity angle β from

tan(2β) = − V

(Q2 + U2)1/2
(5.39)

I is the total intensity of the radiation, Q is the difference in the intensity of the ver-
tically and horizontally polarised components (cf. Section 5.3). I is always non-negative,
and Q, U , and V are between +I and −I , since they can be expressed as a product of I
with sines and/or cosines (Equations 5.35 to 5.37). Note also that the 4 Stokes parameters
are not independent (for completely polarised radiation, see further Section 5.4), since the
following equality applies:

I2 = Q2 + U2 + V 2 (5.40)

Some examples of Stokes parameters for specific polarisations are given at the end of the
next section (page 55).

5.3 Measuring Stokes parameters

The three different ways given so far to write the Stokes parameters (Equations 5.10ff.,
Equations 5.14ff., Equations 5.34ff.) are not very helpful if we actually want to measure the
Stokes parameters. So here we are going to rewrite them while keeping in mind that most
instruments can just measure intensities of radiation.

We have seen above that the Stokes parameter Q is the difference in the intensity of the
vertically and horizontally polarised components (Equations 5.11, or 5.15)

Q = Iv − Ih (5.41)

where

Iv = 1
2

√
ε
µEvE

∗
v (5.42)

Ih = 1
2

√
ε
µEhE

∗
h (5.43)

Thus if we measure Iv and Ih using – for optical wavelengths – a polariser aligned
with the v- and the h-axis, respectively, or using – for microwaves – two appropriately
aligned dipole antennas, we can directly obtain I by taking their sum and Q by taking their
difference.

U and V can likewise be expressed as differences of intensities, but not with respect to
the linear base evand eh. We recall Equation 5.4, omitting the oscillatory term:

E = (Evev + Eheh) (5.44)

Now we want to write E by two components along polarisation axes at ±45◦ with
respect to the h-axes. The basis vectors are thus (cf. Figure 5.4)

e+45◦ =
√

1
2 (eh − ev) (5.45)

e−45◦ =
√

1
2 (eh + ev) (5.46)

and we get the field vector in this modified linear basis:

E =
√

1
2 (Ev + Eh)

︸ ︷︷ ︸
E−45◦

e−45◦ +
√

1
2 (−Ev + Eh)

︸ ︷︷ ︸
E+45◦

e+45◦ (5.47)
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e v

e h

e +45°

e −45°

Figure 5.4: Two sets of basis vectors for the linear basis.

With the definitions of intensities of the components,

I−45◦ = 1
2

√
ε
µE−45◦E

∗
−45◦ (5.48)

I+45◦ = 1
2

√
ε
µE+45◦E

∗
+45◦ (5.49)

we get for their difference:

I−45◦ − I+45◦ = 1
2

√
ε
µ

[
1
2(Ev + Eh)(E∗v + E∗h)− 1

2(−Ev + Eh)(−E∗v + E∗h)
]

(5.50)

= 1
2

√
ε
µ(EvE

∗
h + EhE

∗
v)

Therefore (cf. Equation 5.12)

U = I+45◦ − I−45◦ (5.51)

Thus if we measure I+45◦ and I−45◦ using – for optical wavelengths – a polariser aligned
at +45◦ and −45◦ with respect to the h-axis, respectively, or using – for microwaves – two
appropriately aligned dipole antennas, we can directly obtain U by taking their difference.

In order to see how to measure the fourth Stokes parameter, V , we have to transform
to the circular basis, i.e., express E by a left-hand (LH) and a right-hand (RH) circularly
polarised component. The relevant equations:

Basis vectors

eLH =
√

1
2 (ev + ieh) (5.52)

eRH =
√

1
2 (ev − ieh) (5.53)

Field vector in circular base

E =
√

1
2 (Ev − iEh)

︸ ︷︷ ︸
ELH

eLH +
√

1
2 (Ev + iEh)

︸ ︷︷ ︸
ERH

eRH (5.54)

Intensity of the components

ILH = 1
2

√
ε
µELHE

∗
LH (5.55)

IRH = 1
2

√
ε
µERHE

∗
RH (5.56)

Their difference

ILH − IRH = 1
2

√
ε
µ

[
1
2(Ev − iEh)(E∗v + iE∗h)− 1

2(Ev + iEh)(E∗v − iE∗h)
]
(5.57)

= i1
2

√
ε
µ(EvE

∗
h − EhE∗v)
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Therefore (cf. Equation 5.13):

V = IRH − ILH (5.58)

Thus if we measure IRH and ILH using – for microwaves – appropriate helical beam anten-
nas, we can directly obtain V by taking their difference. Unfortunately, for optical wave-
lengths, we cannot measure IRH and ILH directly with the help of filters like polarisers and
retarders1. However, a combination of a retarder and a polarizer can be used to measure the
sum of I and V :

The light first passes through a retarder that delays the phase of the horizontally po-
larised component by 90◦ with respect to the phase of the vertically polarised component
(a quarter-wave plate). A phase delay by 90◦can be expressed as a multiplication of the
horizontal component by i, so the resulting electric field vector E′ is

E′ = (Evev + iEheh) (5.59)

The light then passes through a polarizer that is aligned at −45◦ with respect to the h-axis.
This means we have to project E′ onto e−45◦ , resulting in

E′′ = (E′ · e−45◦)e−45◦ =
√

1
2 (Ev + iEh) e−45◦ (5.60)

Measuring the intensity now, we get

I ′′ =
∣∣E′′

∣∣2 (5.61)

= 1
2 (Ev + iEh) (E∗v − iE∗h)

= 1
2

(|Ev|2 + |Eh|2 − i(EvE∗h − EhE∗v)
)

= 1
2(I + V )

Here is a summary of the Stokes parameters in terms of intensities of orthogonal compo-
nents:

I = Iv + Ih = I−45◦ + I+45◦ = IRH + ILH (5.62)

Q = Iv − Ih (5.63)

U = I+45◦ − I−45◦ (5.64)

V = IRH − ILH (5.65)

We see that Q and U are both related to linear polarisation, while V is related to circular
polarisation.

Here are the Stokes parameters for some standard polarisations:

polarisation (I , Q, U , V )
horizontal (I ,−I , 0, 0)

vertical (I ,+I , 0, 0)
linear ±45◦ (I , 0,∓I , 0)

right-circular (I , 0, 0, I)
left-circular (I , 0, 0,−I)

1A retarder allows the phase of two orthogonal components of light to be varied with respect to each other.
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5.4 Partial polarisation

The equality I2 = Q2 +U2 +V 2 (Equation 5.40) is valid for the ideal case of a monochro-
matic plane wave that is completely polarised, i.e., where the amplitudes av and ah and the
phases δv and δv are fixed and do not vary with time. This means that the plane wave is
emitted by one coherent source.

In reality, i.e., in the case of natural radiation, the amplitudes and phases fluctuate, since
the radiation originates from several sources that do not emit radiation coherently, and since
the emission from one source usually has very short coherence times. This means that
we usually have a superposition of radiation from several incoherent sources, and that the
polarisation state of the radiation from each source fluctuates as well2. Typically, such fluc-
tuations have time scales that are longer than the period (2π/ω) of the oscillation, but that
are still shorter than the integration time of the instrument that measures the radiation. Thus,
the instrument measures an incoherent superposition of time averages over of the fluctuating
polarisation. If the fluctuations are random for all the sources and if the different sources
emit incoherently and are not in any way oriented, then there is no preferred orientation,
ellipticity or handedness of the emitted radiation, which is then called unpolarised. This
is the case for radiation from the sun. If the fluctuations are not completely random, the
radiation is called partially polarised.

To quantify this rather heuristic argumentation, we express the above-mentioned ideas
in the language of the Stokes parameters: The Stokes parameters I , Q, U , V derived from
measurements result from the superposition of radiation from many sources and/or the av-
erage over emission events with individual Stokes parameters Ii, Qi, Ui, Vi. Since the
different sources and/or emission events are incoherent, the Stokes parameters – which are
intensity, not amplitude quantities – can simply be added up:

I =
∑

i

Ii , Q =
∑

i

Qi , U =
∑

i

Ui , V =
∑

i

Vi (5.66)

In the case of unpolarised radiation, i.e., when the amplitudes and phases, or equivalently,
the orientation angle ζ and the ellipticity angle β are random (uniformly distributed), Q, U ,
and V each cancel out.

The equality I2
i = Q2

i +U2
i +V 2

i (cf. Equation 5.40) still holds for each contribution i,
but for the resulting I,Q, U, V , we have in general the inequality

I2 ≥ Q2 + U2 + V 2 (5.67)

To prove it, we must once again go back to the amplitude/phase notation (Equations 5.14ff.),
also cf. Chandrasekhar [1960, chap. I.15], but we shall omit the factor 1

2

√
ε
µ on the right-

hand sides, for the sake of better readability:

I =
∑

i

Ii =
∑

i

(
a(i)
v

)2
+
∑

i

(
a

(i)
h

)2
(5.68)

Q =
∑

i

Qi =
∑

i

(
a(i)
v

)2
−
∑

i

(
a

(i)
h

)2
(5.69)

U =
∑

i

Ui = −2
∑

i

a(i)
v a

(i)
h cos δ(i) (5.70)

V =
∑

i

Vi = 2
∑

i

a(i)
v a

(i)
h sin δ(i) (5.71)

(5.72)
2This does, of course, not apply to coherent sources like lasers or coherent radars.
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where δ(i) = δ
(i)
v − δ(i)

h . We get

I2 −Q2 − U2 − V 2 = 4
∑

i

(
a(i)
v

)2∑

i

(
a

(i)
h

)2
(5.73)

−4

(∑

i

a(i)
v a

(i)
h cos δ(i)

)2

−4

(∑

i

a(i)
v a

(i)
h sin δ(i)

)2

The first term on the right-hand side can be rearranged as
∑

i

(
a(i)
v a

(i)
h

)2
+
∑

i,j
i 6=j

(
a(i)
v a

(j)
h

)2
(5.74)

The other two terms can be rearranged similarly to yield:

−
∑

i

(
a(i)
v a

(i)
h

)2 [
cos2 δ(i) + sin2 δ(i)

]
(5.75)

−
∑

i,j
i 6=j

a(i)
v a

(i)
h a

(j)
v a

(j)
h

[
cos δ(i) cos δ(j) + sin δ(i) sin δ(j)

]

Putting this into Equation 5.73 (and dividing by 4), the sums over just i cancel and we get:

(I2 −Q2 − U2 − V 2)/4 =
∑

i,j
i 6=j

(
a(i)
v a

(j)
h

)2
(5.76)

−
∑

i,j
i 6=j

a(i)
v a

(i)
h a

(j)
v a

(j)
h cos(δ(i) − δ(j))

where the cosine addition theorem was used. In the summation, we now change from i 6= j
to i < j, so we have to symmetrise the first term (the second term is already symmetric with
respect to i and j and therefore just gets a factor 2):

(I2 −Q2 − U2 − V 2)/4 =
∑

i,j
i<j

[(
a(i)
v a

(j)
h

)2
+
(
a(j)
v a

(i)
h

)2
(5.77)

−2
(
a(i)
v a

(j)
h

) (
a(j)
v a

(i)
h

)
cos(δ(i) − δ(j))

]

Each summand of the sum on the right-hand side is positive, since it is greater than or equal
to (a

(i)
v a

(j)
h − a

(j)
v a

(i)
h )2, which completes the proof. The right-hand side vanishes only if

δ(i) = δ(j) and a(i)
v /a

(i)
h = a

(j)
v /a

(j)
h for all i, j, i.e., if the phase difference and amplitude

ratio between the horizontal and vertical component of the electric field is the same for all
contributions, in other words: if all contributions have the same polarisation.

For completeness, we shall now restate the definition of the Stokes component, extended
to include natural radiation (i.e., including the case of partially polarised and unpolarised
radiation). Instead of summing over the individual emission events, we use ensemble aver-
ages, denoted by angular brackets:

I = 1
2

√
ε
µ 〈EvE∗v + EhE

∗
h〉 (5.78)
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Q = 1
2

√
ε
µ 〈EvE∗v − EhE∗h〉 (5.79)

U = −1
2

√
ε
µ 〈EvE∗h + EhE

∗
v〉 (5.80)

V = i1
2

√
ε
µ 〈EhE∗v − EvE∗h〉 (5.81)

Except for the ensemble average 〈..〉, the definition is identical to the one for monochro-
matic, plane waves (Equations 5.10 to 5.13). The same applies to the second and third
definitions of the Stokes parameters (Equations 5.14 to 5.17 and Equations 5.34 to 5.37,
respectively). Note that the fourth definition (Equations 5.62 to 5.65) which uses sums
and differences of intensities, is equally valid for fully polarised, partially polarised and
unpolarised radiation. The definition of intensities, however, has to include the ensemble
average: Ih = 〈EhE∗h〉 etc.

Now we can define a measure for the degree of polarisation, p, as:

p =

√
Q2 + U2 + V 2

I
(5.82)

For completely polarised radiation, Q2 + U2 + V 2 = I2, so p = 1, and for unpolarised
radiation, Q = U = V = 0, so p = 0.

Furthermore, it can be convenient to define the polarised component of radiation by

I2
p = Q2 + U2 + V 2 (5.83)

and the unpolarised component as

Iu = I − Ip (5.84)

Thus, partially polarised radiation, described by a Stokes vector (I,Q, U, V ), can be re-
garded as as a superposition of completely polarised radiation described by the Stokes vec-
tor (Ip, Q, U, V ) and unpolarised radiation described by the Stokes vector (Iu, 0, 0, 0). We
see that the Stokes parameter formalism can conveniently deal with partially polarised and
with unpolarised radiation, much in contrast to the formalism using the electric field (am-
plitude and phase).

In addition to the degree of polarisation, p, we can define measures for the circularity
and the linearity of the polarisation. Recalling Equations 5.64 and 5.65, we can define the
degree of linear polarisation, plin, as

plin =

√
Q2 + U2

I
(5.85)

and the the degree of circular polarisation, pcirc, as

pcirc =
V

I
(5.86)

5.4.1 Polarisation of Radiation in the Atmosphere

The radiation encountered in atmospheric sounding (for which ARTS is intended) is natu-
ral radiation, coming from the sun, space (cosmic background), and/or the atmosphere and
the Earth surface (thermal radiation, scattered radiation)3. Radiation from the sun is un-
polarised, as already mentioned; the same applies for the cosmic background. In contrast,

3This is not so for active sounding techniques that use a coherent source, such as lidar.
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radiation emitted by the ground can be polarised, dependent on material, texture and direc-
tion. Radiation emitted by the atmosphere (thermal radiation) is almost unpolarised because
of the random orientation of the air molecules. An exception is caused by the Zeeman effect
induced in oxygen molecules by the – anisotropic – Earth’s magnetic field. Scattering of
radiation by oriented particles, e.g. cirrus clouds, is sensitive to polarisation, and generally
increases the degree of polarisation. Typically I > |Q| > |U |, |V |.

5.4.2 Antenna polarisation

Finally we want to know what an antenna of arbitrary polarisation response (antenna polar-
isation) measures if radiation of some other arbitrary polarisation is incident on it.

In order to clarify the concept, we first consider some trivial examples: We assume an
antenna that receives only vertically polarised radiation.

• If the incident radiation is fully horizontally polarised, the antenna will measure noth-
ing.

• If the incident radiation is fully vertically polarised, the antenna will measure the full
intensity of the radiation.

• If the radiation is fully left- or right-circularly polarised, the antenna will measure half
of the full intensity, for circularly polarised radiation is made up of equal portions of
vertically and horizontally polarised radiation, superimposed with a phase lag of 90◦.

In order to be able to describe the general case, we first have to formalise the description
of the antenna polarisation. Polarised radiation is described by

1. the Jones vector, or

2. the Stokes vector, or

3. intensity, I , orientation angle, ζ (i.e., the angle between the major axis of the polar-
isation ellipse and the horizontal polarisation direction), and ellipticity angle, β (see
page 51).

Since the intensity of the radiation is the absolute square (the squared “length”) of the
complex Jones vector, or, in other words, the first Stokes component, I , the polarisation
alone is defined by

1. a normalised Jones vector, or

2. three normalised Stokes components Q, U , and V (where Q2 + U2 + V 2 = 1), or

3. the orientation angle ζ and the ellipticity angle β (see Equation 5.38 to 5.39).

In the same way, the polarisation of the antenna can be described in one of three ways:

1. a normalised Jones vector

e =

[
ev
eh

]
where e · e∗ = 1 (5.87)

(note that in the scalar product of two complex vectors, the second one has to be
complex-conjugated.)
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2. a normalised Stokes vector

i = (1, q, u, v) where q2 + u2 + v2 = 1 (5.88)

3. the two angles ζ and β. According to Equation 5.34 to 5.37, we have:

q = − cos(2ζ) cos(2β) (5.89)

u = − sin(2ζ) cos(2β) (5.90)

v = − sin(2β) (5.91)

Now we can calculate the intensity I ′ the antenna measures. In terms of the electrical fields,
i.e., Jones vectors, we just have to project the Jones vector E of the incident radiation onto
the normalised Jones vector e of the antenna,

E′ = (E · e∗)e (5.92)

(this is in effect like passing through a polarizer) and then take its absolute square

I ′ = 1
2

√
ε
µ |E′|

2 = 1
2

√
ε
µ |(E · e∗)|

2 (5.93)

With some elementary algebra (mainly using that 1
2

√
ε
µEvE

∗
v = (I +Q)/2, 1

2

√
ε
µEhE

∗
h =

(I −Q)/2, 1
2

√
ε
µEvE

∗
h = −(U − iV )/2 which follow immediately from Equation 5.10 to

5.13 ) this can be rewritten in terms of the of the Stokes vector I of the incident radiation
and the Stokes vector i of the antenna. It turns out to be just a scalar product:

I ′ =
1

2
i · I (5.94)

5.5 The scattering amplitude matrix

The electric field, [Ev, Eh]T , originating from a single scattering event of an incident elec-
tric field [E0

v , E
0
h]T may in the far field be written as (see further Equation 6.7)

[
Ev
Eh

]
= f(r)

[
S2 S3

S4 S1

] [
E0
v

E0
h

]
, (5.95)

where Sj are the scattering amplitude functions and all distance effects are put into the
function f(r). Using Stokes based nomenclature, the equation above becomes




I
Q
U
V


 = g(r)F




I0

Q0

U0

V 0


 , (5.96)

where all distance effects are put into the function g(r) and the transformation matrix F can
be expressed as [Liou, 2002, Sec. 5.4.3].

F =




1
2

(M2+M3+M4+M1) 1
2

(M2−M3+M4−M1) S23+S41 −D23−D41

1
2

(M2+M3−M4−M1) 1
2

(M2−M3−M4+M1) S23−S41 −D23+D41

S24+S31 S24−S31 S21+S34 −D21+D34

D24+D31 D24−D31 D21+D34 S21−S34


 . (5.97)
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The elements of F are finally given by the following expressions:

Mk = |Sk|2, (5.98)

Skj = Sjk = (SjS
∗
k + SkS

∗
j )/2, (5.99)

−Dkj = Djk = i(SjS
∗
k − SkS∗j )/2, j, k = 1, 2, 3, 4. (5.100)

Depending on the properties of the scattering event, the structure of the matrix F differs.
Two special cases are:

S1 = S2, S3 = S4 = 0 → F =




x 0 0 0
0 x 0 0
0 0 x 0
0 0 0 x


 , (5.101)

S3 = S4 = 0 → F =




x x 0 0
x x 0 0
0 0 x x
0 0 x x


 , (5.102)

where x indicates elements deviating from 0. Many (most?) natural materials have the
property that S4 is the complex conjugate of S3 (S3 = S∗4) and this results in that F is a
symmetric matrix (in general with all element positions filled).
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Chapter 6

Basic radiative transfer theory

When dealing with atmospheric radiation a division can be made between two different
wavelength ranges where the limit is found around 5 µm, i.e. one range consists of the
near IR, visible and UV regions while the second range covers thermal and far IR and
microwaves. The first reason to this division is the principal sources to the radiation in
the two ranges, for wavelengths shorter than 5 µm the solar radiation is dominating while
at longer wavelengths the thermal emission from the surface and the atmosphere is more
important. A second reason is the importance of scattering but here it is impossible to give
a fixed limit. Clouds are important scattering objects for most frequencies but at cloud
free conditions scattering can in many cases be neglected for wavelengths > 5 µm. If
the atmosphere can be assumed to be in local thermodynamic equilibrium the radiative
transfer can be simplified considerably, and this is a valid assumption for the IR region and
microwaves but not for e.g. UV frequencies.

The radiative transfer in the atmosphere must be adequately described in many situ-
ations, as when estimating rates of photochemical reactions, calculating radiative forcing
in the atmosphere or evaluating a remote sensing observation. It is not totally straightfor-
ward to quantify the radiative transfer with good accuracy because the calculations can be
very computationally demanding and many of the parameters needed are hard to determine.
For example, situations when a great number of transitions or multiple scattering must be
considered will cause long calculations while as a rule scattering is problematic to model
because the shape and size distribution of the scattering particles are highly variable quan-
tities.

This chapter introduces the theoretical background which is essential to develop a ra-
diative transfer model including scattering. The theory is based on concepts of electro-
dynamics, starting from the Maxwell equations. An elementary book for electrodynamics
is written by Jackson [1998]. For optics and scattering of radiation by small particles the
reader may refer for instance to van de Hulst [1957] and Bohren and Huffman [1998]. The
notation used in this chapter is mostly adapted from the book “Scattering, Absorption, and

History
120924 Added discussion of the n2-law, mainly using text originally written for

an ESA report by Bengt Rydberg (PE).
110615 Revised, and moved parts about surface from AUG (PE).
050224 Most text replaced by chapter 1 from Claudia Emde’s phd-thesis.
030305 Copied from a compendium written by Patrick Eriksson.
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Emission of Light by Small Particles” by Mishchenko et al. [2002]. Several lengthy deriva-
tions of formulas, which are not shown in detail here, can also be found in this book. The
purpose of this chapter is to provide definitions and give ideas, how these definitions can
be derived using principles of electromagnetic theory. For the derivation of the radiative
transfer equation an outline of the traditional phenomenological approach is given.

6.1 Basic definitions

From the Maxwell equations one can derive the formula for the electromagnetic field vector
E of a plane electromagnetic wave propagating in a homogeneous medium without sources:

E(r, t) = E0 exp

(
−ω
c
mI

ˆ̂n · r
)

exp

(
i
ω

c
mR

ˆ̂n · r− iωt
)
, (6.1)

where E0 is the amplitude of the electromagnetic wave in vacuum, c is the speed of light in
vacuum, ω is the angular frequency, r is the position vector and ˆ̂n is a real unit vector in the
direction of propagation. The complex refractive index m is

m = mR + imI = c
√
εµ, (6.2)

where mR is the non-negative real part and mI is the non-negative imaginary part. Fur-
thermore µ is the permeability of the medium and ε the permittivity. For a vacuum,
m = mR = 1. The imaginary part of the refractive index, if it is non-zero, determines
the decay of the amplitude of the wave as it propagates through the medium, which is thus
absorbing. The real part determines the phase velocity v = c/mR. The time-averaged
Poynting vector P(r), which describes the flow of electromagnetic energy, is defined as

P(r) =
1

2
Re(〈E(r)〉 × 〈H∗(r)〉), (6.3)

where H is the magnetic field vector and the ∗ denotes the complex conjugate. The Poynting
vector for a homogeneous wave is given by

〈P(r)〉 =
1

2
Re

(√
ε

µ

)
|E0|2 exp

(
−2

ω

c
mI

ˆ̂n · r
)

ˆ̂n. (6.4)

Equation 6.4 shows that the energy flows in the direction of propagation and its absolute
value I(r) = |〈P(r)〉|, which is usually called intensity (or irradiance), is exponentially
attenuated. Rewriting Equation 6.4 gives

I(r) = I0 exp(−αp ˆ̂n · r), (6.5)

where I0 is the intensity for r = 0. The absorption coefficient αp is

αp = 2
ω

c
mI =

4πmI

λ
=

4πmIν

c
, (6.6)

where λ is the free-space wavelength and ν the frequency. Intensity has the dimension of
monochromatic flux [energy/(area× time)].
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6.2 Scattering, absorption and thermal emission by a single par-
ticle

A parallel monochromatic beam of electromagnetic radiation propagates in vacuum without
any change in its intensity or polarization state. A small particle, which is interposed into
the beam, can cause several effects:

Absorption: The particle converts some of the energy contained in the beam into other
forms of energy.

Elastic scattering: Part of the incident energy is extracted from the beam and scattered into
all spatial directions at the frequency of the incident beam. Scattering can change the
polarization state of the radiation.

Inelastic scattering: As above, but the frequency is changed by the scattering. This pro-
cess is neglected below.

Extinction: The energy of the incident beam is reduced by an amount equal to the sum of
absorption and scattering.

Dichroism: The change of the polarization state of the beam as it passes a particle.

Thermal emission: If the temperature of the particle is non-zero, the particle emits radia-
tion in all directions over a large frequency range.

The beam is an oscillating plane magnetic wave, whereas the particle can be described
as an aggregation of a large number of discrete elementary electric charges. The incident
wave excites the charges to oscillate with the same frequency and thereby radiate secondary
electromagnetic waves. The superposition of these waves gives the total elastically scattered
field.

One can also describe the particle as an object with a refractive index different from that
of the surrounding medium. The presence of such an object changes the electromagnetic
field that would otherwise exist in an unbounded homogeneous space. The difference of
the total field in the presence of the object can be thought of as the field scattered by the
object. The angular distribution and the polarization of the scattered field depend on the
characteristics of the incident field as well as on the properties of the object as its size
relative to the wavelength and its shape, composition and orientation.

6.2.1 Definition of the amplitude matrix

For the derivation of a relation between the incident and the scattered electric field we con-
sider a finite scattering object in the form of a single body or a fixed aggregate embedded in
an infinite homogeneous, isotropic and non-absorbing medium. We assume that the individ-
ual bodies forming the scattering object are sufficiently large that they can be characterized
by optical constants appropriate to bulk matter, not to optical constants appropriate for sin-
gle atoms or molecules. Solving the Maxwell equations for the internal volume, which is
the interior of the scattering object, and the external volume one can derive a formula, which
expresses the total electric field everywhere in space in terms of the incident field and the
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field inside the scattering object. Applying the far field approximation gives a relation be-
tween incident and scattered field, which is that of a spherical wave. The amplitude matrix
S(ˆ̂n

sca
, ˆ̂n

inc
) includes this relation:

[
Esca
ψ (r ˆ̂n

sca
)

Esca
ω (r ˆ̂n

sca
)

]
=
eikr

r
S(ˆ̂n

sca
, ˆ̂n

inc
)

[
Einc

0ψ

Einc
0ω

]
. (6.7)

The amplitude matrix depends on the directions of incident ˆ̂n
inc

and scattering ˆ̂n
sca

as well
as on size, morphology, composition, and orientation of the scattering object with respect to
the coordinate system. The distance between the origin and the observation point is denoted
by r and the wave number of the external volume is denoted by k.

The amplitude matrix provides a complete description of the scattering pattern in the
far field zone. The amplitude matrix explicitly depends on ωinc and ωsca even when ψinc

and/or ψsca equal 0 or π.

6.2.2 Phase matrix

The phase matrix Z describes the transformation of the Stokes vector of the incident wave
into that of the scattered wave for scattering directions away from the incidence direction
(ˆ̂n

sca 6= ˆ̂n
inc

),

ssca(r ˆ̂n
sca

) =
1

r2
Z(ˆ̂n

sca
, ˆ̂n

inc
)sinc. (6.8)

The 4× 4 phase matrix can be written in terms of the amplitude matrix elements for single
particles [Mishchenko et al., 2002]. All elements of the phase matrix have the dimension
of area and are real. As the amplitude matrix, the phase matrix depends on ωinc and ωsca

even when ψinc and/or ψsca equal 0 or π. In general, all 16 elements of the phase matrix
are non-zero, but they can be expressed in terms of only seven independent real numbers.
Four elements result from the moduli |Sij | (i, j = 1, 2) and three from the phase-differences
between Sij . If the incident beam is unpolarized, i.e., sinc = (I inc, 0, 0, 0)T , the scattered
light generally has at least one non-zero Stokes parameter other than intensity:

Isca = Z11I
inc, (6.9)

Qsca = Z21I
inc, (6.10)

U sca = Z31I
inc, (6.11)

V sca = Z41I
inc. (6.12)

This is the phenomena is traditionally called “polarization”. The non-zero degree of polar-
ization Equation 5.82 can be written in terms of the phase matrix elements

p =

√
Z2

21 + Z2
31 + Z2

41

Z11
. (6.13)

6.2.3 Extinction matrix

In the special case of the exact forward direction (ˆ̂n
sca

= ˆ̂n
inc

) the attenuation of the
incoming radiation is described by the extinction matrix K. In terms of the Stokes vector
we get

s(r ˆ̂n
inc

)∆S = sinc∆S −K(ˆ̂n
inc

)sinc +O(r−2). (6.14)
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Here ∆S is a surface element normal to ˆ̂n
inc

. The extinction matrix can also be expressed
explicitly in terms of the amplitude matrix. It has only seven independent elements. Again
the elements depend on ωinc and ωsca even when the incident wave propagates along the
z-axis.

6.2.4 Absorption vector

The particle also emits radiation if its temperature T is above zero Kelvin. According
to Kirchhoff’s law of radiation the emissivity equals the absorptivity of a medium under
thermodynamic equilibrium. The energetic and polarization characteristics of the emitted
radiation are described by a four-component Stokes emission column vector a(r̂, T, ω). The
emission vector is defined in such a way that the net rate, at which the emitted energy crosses
a surface element ∆S normal to r̂ at distance r from the particle at frequencies from ω to
ω + ∆ω, is

W e =
1

r2
a(r̂, T, ω)B(T, ω)∆S∆ω, (6.15)

where W e is the power of the emitted radiation and B is the Planck function. In order to
calculate a we assume that the particle is placed inside an opaque cavity of dimensions large
compared to the particle and any wavelengths under consideration. We have thermodynamic
equilibrium if the cavity and the particle is maintained at the constant temperature T . The
emitted radiation inside the cavity is isotropic, homogeneous, and unpolarized. We can
represent this radiation as a collection of quasi-monochromatic, unpolarized, incoherent
beams propagating in all directions characterized by the Planck blackbody radiation

B(T, ω)∆S∆Ω =
h̄ω3

2π2v2
[
exp

(
h̄ω
kBT

)
− 1

]∆S∆Ω, (6.16)

where ∆Ω is a small solid angle about any direction, h̄ is the Planck constant divided by
2π, and kB is the Boltzmann constant. With respect to the n2-law discussed below, it could
be noticed that the Planck law is governed by the local phase velocity, v, [see e.g. Thomas
and Stamnes, 2002], and not the vacuum speed.

The blackbody Stokes vector is

sb(T, ω) =




B(T, ω)
0
0
0


 . (6.17)

For the Stokes emission vector, which we also call particle absorption vector, we can derive

api (r̂, T, ω) = Ki1(r̂, ω)−
∫

4π
dr̂′Zi1(r̂, r̂′, ω), i = 1, . . . , 4. (6.18)

This relation is a property of the particle only, and it is valid for any particle, in thermody-
namic equilibrium or non-equilibrium.

6.2.5 Optical cross sections

The optical cross-sections are defined as follows: The product of the scattering cross section
Csca and the incident monochromatic energy flux gives the total monochromatic power
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removed from the incident wave as a result of scattering into all directions. The product
of the absorption cross section Cabs and the incident monochromatic energy flux gives the
power which is removed from the incident wave by absorption. The extinction cross section
Cext is the sum of scattering and absorption cross section. One can express the extinction
cross sections in terms of extinction matrix elements

Cext =
1

I inc
( K11(n̂inc)I inc +K12(n̂inc)Qinc + (6.19)

K13(n̂inc)U inc +K14(n̂inc)V inc), (6.20)

and the scattering cross section in terms of phase matrix elements

Csca =
1

I inc

∫

4π
dr̂( Z11(r̂, n̂inc)I inc + Z12(r̂, n̂inc)Qinc + (6.21)

Z13(r̂, n̂inc)U inc + Z14(r̂, n̂inc)V inc). (6.22)

The absorption cross section is the difference between extinction and scattering cross sec-
tion:

Cabs = Cext − Csca. (6.23)

The single scattering albedo ω0, which is a commonly used quantity in radiative transfer
theory, is defined as the ratio of the scattering and the extinction cross section:

ω0 =
Csca

Cext
≤ 1. (6.24)

All cross sections are real-valued positive quantities and have the dimension of area.
The phase function is generally defined as

p(r̂, n̂inc) =
4π

CscaI inc
( Z11(r̂, n̂inc)I inc + Z12(r̂, n̂inc)Qinc+ (6.25)

Z13(r̂, n̂inc)U inc + Z14(r̂, n̂inc)V inc). (6.26)

The phase function is dimensionless and normalized:

1

4π

∫

4π
p(r̂, n̂inc) dr̂ = 1. (6.27)

6.3 Scattering, absorption and emission by ensembles of inde-
pendent particles

The formalism described in the previous chapter applies only for radiation scattered by a
single body or a fixed cluster consisting of a limited number of components. In reality,
one normally finds situations, where radiation is scattered by a very large group of particles
forming a constantly varying spatial configuration. Clouds of ice crystals or water droplets
are a good example for such a situation. A particle collection can be treated at each given
moment as a fixed cluster, but as a measurement takes a finite amount of time, one measures
a statistical average over a large number of different cluster realizations.

Solving the Maxwell equations for a whole cluster, like a collection of particles in a
cloud, is computationally too expensive. Fortunately, particles forming a random group
can often be considered as independent scatterers. This approximation is valid under the
following assumptions:
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Figure 6.1: Coordinate system to describe the direction of propagation and the polarization
state of a plane electromagnetic wave (adapted from Mishchenko).

1. Each particle is in the far-field zone of all other particles.

2. Scattering by the individual particles is incoherent.

As a consequence of assumption 2, the Stokes parameters of the partial waves can be
added without regard to the phase. If the particle number density is sufficiently small,
the single scattering approximation can be applied. The scattered field in this approach is
obtained by summing up the fields generated by the individual particles in response to the
external field in isolation from all other particles. If the particle positions are random, one
can show, that the phase matrix, the extinction matrix and the absorption vector are obtained
by summing up the respective characteristics of all constituent particles.

6.3.1 Single scattering approximation

We consider a volume element containing N particles. We assume that N is sufficiently
small, so that the mean distance between the particles is much larger than the incident
wavelength and the average particle size. Furthermore we assume that the contribution of
the total scattered signal of radiation scattered more than once is negligibly small. This is
equivalent to the requirement

N 〈Csca〉
l2

� 1, (6.28)

where 〈Csca〉 is the average scattering cross section per particle and l is the linear dimension
of the volume element. The electric field scattered by the volume element can be written as



70 BASIC RADIATIVE TRANSFER THEORY

the vector sum of the partial scattered fields scattered by the individual particles:

Esca(r) =
N∑

n=1

En
sca(r). (6.29)

As we assume single scattering the partial scattered fields are given according to Equation
6.7:

[
[Esca

n (r)]ψ
[Esca

n (r)]ω

]
=
eikr

r
S(r̂, n̂inc)

[
Einc

0ψ

Einc
0ω

]
, (6.30)

where S is the total amplitude scattering matrix given by:

S(r̂, n̂inc) =
N∑

n=1

ei∆nSn(r̂, n̂inc). (6.31)

Sn(r̂, n̂inc) are the individual amplitude matrices and the phase ∆n is given by

∆n = krOn · (n̂inc − r̂), (6.32)

where the vector rOn connects the origin of the volume element O with the nth particle
origin (see Figure 6.2). Since ∆n vanishes in forward direction and the individual extinc-
tion matrices can be written in terms of the individual amplitude matrix elements, the total
extinction matrix is given by

K =
N∑

n=1

Kn = N 〈K〉 , (6.33)

where 〈K〉 is the average extinction matrix per particle. One can derive the analog equation
for the phase matrix

Z =
N∑

n=1

Zn = N 〈Z〉 , (6.34)

where 〈Z〉 is the average phase matrix per particle. In almost all practical situations, ra-
diation scattered by a collection of independent particles is incoherent, as a minimal dis-
placement of a particle or a slight change in the scattering geometry changes the phase
differences entirely. It is important to note, that the ensemble averaged phase matrix and
the ensemble averaged extinction matrix have in general 16 independent elements. The re-
lations between the matrix elements, which can be derived for single particles, do not hold
for particle ensembles.

6.4 Phenomenological derivation of the radiative transfer equa-
tion

When the scattering medium contains a very large number of particles the single scattering
approximation is no longer valid. In this case we have to take into account that each particle
scatters radiation that has already been scattered by another particle. This means that the ra-
diation leaving the medium has a significant multiple scattered component. The observation
point is assumed to be in the far-field zone of each particle, but it is not necessarily in the
far-field zone of the scattering medium as a whole. A traditional method in this case is to
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r

Figure 6.2: A volume element of a scattering medium conststing of a particle ensemble.
O is the origin of the volume element, rO1 connects the origin with particle 1 and rO2

with particle 2. The observation point is assumed to be in the far-field zone of the volume
element.

solve the radiative transfer equation. This approach still assumes, that the particles forming
the scattering medium are randomly positioned and widely separated and that the extinc-
tion and the phase matrices of each volume element can be obtained by incoherently adding
the respective characteristics of the constituent particles. In other words the scattering me-
dia is assumed to consist of a large number of discrete, sparsely and randomly distributed
particles and is treated as continuous and locally homogeneous. Radiative transfer theory
is originally a phenomenological approach based on considering the transport of energy
through a medium filled with a large number of particles and ensuring energy conservation.
Mishchenko [2002] has demonstrated that it can be derived from electromagnetic theory of
multiple wave scattering in discrete random media under certain simplifying assumptions.

In the phenomenological radiative transfer theory, the concept of single scattering by
individual particles is replaced by the assumption of scattering by a small homogeneous
volume element. It is furthermore assumed that the result of scattering is not the transfor-
mation of a plane incident wave into a spherical scattered wave, but the transformation of
the specific intensity vector, which includes the Stokes vectors from all waves contributing
to the electromagnetic radiation field.

The vector radiative transfer equation (VRTE) is

ds(ν, r, n̂)

ds
= −K(ν, r, n̂)s(ν, r, n̂) + a(ν, r, n̂)B(ν, r) (6.35)

+
∫
4π dn̂′Z(ν, r, n̂, n̂′)s(ν, r, n̂′),

where s is the specific intensity vector, K is the total extinction matrix, a is the total ab-
sorption vector, B is the Planck function and Z is the total phase matrix. Furthermore ν
is the frequency of the radiation, ds is a path-length-element of the propagation path, r
represents the atmospheric position and n̂ the propagation direction. Equation 6.35 is valid
for monochromatic or quasi-monochromatic radiative transfer. We can use this equation for
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simulating microwave radiative transfer through the atmosphere, as the scattering events do
not change the frequency of the radiation.

The four-component specific intensity vector s = (I,Q, U, V )T fully describes the
radiation and it can directly be associated with the measurements carried out by a radiometer
used for remote sensing. For the definition of the components of the specific intensity vector
refer to Section 5, where the Stokes components are described.

The three terms on the right hand side of Equation 6.35 describe physical processes
in an atmosphere containing different particle types and different trace gases. The first
term represents the extinction of radiation traveling through the scattering medium, K. For
microwave radiation in cloudy atmospheres, extinction is caused by gaseous absorption,
particle absorption and particle scattering. Therefore K can be written as a sum of two
matrices, the particle extinction matrix Kp and the gaseous extinction matrix Kg:

K(ν, r, n̂) = Kp(ν, r, n̂) + Kg(ν, r, n̂). (6.36)

The particle extinction matrix is the sum over the individual specific extinction matrices
Kp
i of the N different particles types contained in the scattering medium weighted by their

particle number densities npi :

Kp(ν, r, n̂) =
N∑

i=1

npiK
p
i (ν, r, n̂). (6.37)

The gaseous extinction matrix can normally be derived from the scalar gas absorption. This
as there is no polarization due to gas absorption at cloud altitudes, and the off-diagonal
elements of the gaseous extinction matrix are zero. On the other hand, at very high altitudes
above approximately 40 km there is polarization due to the Zeeman effect, mainly due to
oxygen molecules. In addition, in the toposphere and stratosphere molecular scattering can
be neglected in the microwave frequency range. Hence the coefficients on the diagonal
correspond to the gas absorption coefficient:

Kg
l,m(ν, r) = αg(ν, r) if l = m

0 if l 6= m. (6.38)

where αg is the total scalar gas absorption coefficient, which is calculated from the indi-
vidual absorption coefficients of all M trace gases αgi and their volume mixing ratios ngi
as:

αg(ν, r) =
M∑

i=1

ngiα
g
i (ν, r). (6.39)

The second term in Equation 6.35 is the thermal source term. It describes thermal emission
by gases and particles in the atmosphere. The absorption vector a is

a(ν, r, n̂) = ap(ν, r, n̂) + ag(ν, r, n̂), (6.40)

where ap and ag are the particle absorption vector and the gas absorption vector, respec-
tively. The particle absorption vector is a sum over the individual absorption vectors api ,
again weighted with npi :

ap(ν, r, n̂) =
N∑

i=1

npi a
p
i (ν, r, n̂). (6.41)
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The gas absorption vector is simply (if no Zeeman splitting)

ag = [αp, 0, 0, 0]T . (6.42)

The last term in Equation 6.35 is the scattering source term. It adds the amount of radiation
which is scattered from all directions n̂′ into the propagation direction n̂. The phase matrix
Z is the sum of the individual phase matrices Zi weighted with npi :

Z(ν, r, n̂) =
N∑

i=1

npiZi(ν, r, n̂). (6.43)

The scalar radiative transfer equation (SRTE)

dI(ν, r, n̂)

ds
= −K11(ν, r, n̂)I(ν, r, n̂) + a1(ν, r, n̂)B(ν, r)

+
∫
4π dn̂′Z11(ν, r, n̂, n̂′)I(ν, r, n̂′) (6.44)

can be used presuming that the radiation field is unpolarized. This approximation is rea-
sonable if the scattering medium consists of spherical or completely randomly oriented
particles, where Kp is diagonal and only the first element of ap is non-zero.

6.5 The n2-law of radiance

6.5.1 Introduction

The radiance, s, is unchanged for propagation in “free space”. The term free space implies
a refractive index of unity and that extinction is zero. However, it is possible to define a
slightly different quantity that is conserved also for propagation with a varying refractive
index. This quantity is here denoted as, sn2, and is defined as [Mobley, 1994; Mätzler and
Melsheimer, 2006]:

sn2 ≡
s

n2
. (6.45)

That is, for radiation propagating without extinction or any sources, sn2 is constant along
the propagation path. This is denoted as the n2-law for radiance. This impact of n can, for
different reasons, normally be neglected. As a consequency and to keep the nomenclature
simple, the n2-law is in general ignored in the ARTS documentation.

6.5.2 Treatment in ARTS

As mentioned, the quantity defined by Equation 6.45 is constant for propagation without
attenuation. Further, it can be shown that the radiance corresponding to some emission is
independent on the refractive index along the propagation path, only the refractive indexes
at the emission and measurement points matter. This is also valid with attenuation along the
propagation path [Mobley, 1994, Eq. 4.23]:

Im
n2
m

= e−τ
Ie
n2
e

, (6.46)

where Im is measured radiance, nm the refractive index where the measurement is per-
formed, Ie emitted radiance, ne the refractive index at the emission point, and τ is the
optical thickness between the two points.
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As long as LTE applies, the emission is proportional to the Planck function, B
(Eq. 6.16). Hence, using an emissivity, ε, we have

Ie
n2
e

=
εB(Te)

n2
e

= εBn2(Te), (6.47)

where Te is the temperature of the emitting substance, and

Bn2(TB) ≡ B(TB)

n2
=

2hν3

c2(exp(hν/kbTB)− 1)
. (6.48)

That is, it turns out that by consistently apply c in the Planck function (instead of v), the
dependency of ne is removed. What remains to obtain the correct radiance to output, I , is
to consider the impact of nm:

I = n2
mI
′, (6.49)

where I ′ is the radiance calculated ignoring the n2-law.
As discussed by Mätzler and Melsheimer [2006], it can be deduced from basic princi-

ples that the brightness temperature must be a preserved quantity, even in light of the n2-law.
This statement can also be understood from Equation 6.48. In simple terms, the brightness
temperature is defined with respect to the local Planck function and the impact of refractive
index variations vanishes if the radiance is measured in terms of brightness temperature.

6.6 Simple solution without scattering and polarization

If scattering can be neglected and the atmosphere is assumed to be in local thermodynamic
equilibrium, the radiative transfer equation gets unusually simple. These assumptions will
be made below and they are normally valid for the infrared region and longer wavelengths as
in the microwave region. For these conditions the atmospheric absorption and emission are
linked and the basic problem to determine the radiative transfer is to calculate the absorp-
tion. At the wavelengths considered rotational and vibrational transitions are the dominating
absorbing processes.

The basic equation describing radiative transfer along a specific direction is

dI(ν)

dl
= −k(l, ν)(I(ν) +B(l, ν)) (6.50)

where I is the intensity per unit area, ν the frequency, l the distance along the propagation
path, k the total absorption coefficient (summed over all species and transitions) and B the
Planck function. This differential equation can be solved:

I(ν) = I0(ν)e−
∫ h
0
k(l′,ν)dl′ +

∫ h

0
k(l, ν)B(T (l), ν)e−

∫ l
0
k(l′,ν)dl′dl (6.51)

where the receiver is assumed to be placed at l = 0 and h is the distance along the path to the
limit of the media. I0 is the intensity at the point h which can represent thermal emission
from the surface, solar radiation at top of the atmosphere or cosmic background radiation
depending on the observation geometry. When discussing radiative transfer the quantity
optical depth, τ , is commonly used and it is defined as

τ(l, ν) =

∫ l

0
k(l′, ν)dl′ (6.52)
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Figure 6.3: Schematic picture of the
radiative transfer through a medium
with constant temperature.

Iin

I out
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and Equation 6.51 can be written as

I(ν) = I0(ν)e−τ(h,ν)dl′ +

∫ h

0
k(l, ν)B(T (l), ν)e−τ(l′,ν)dl (6.53)

The terms inside the integral found in this equation have a simple physical meaning, the
radiation emitted at one point is kBdl and this quantity is attenuated by the factor e−τ

before it reaches the observation point.

6.7 Special solutions

If the total emission along the propagation path can be neglected compared to the transmit-
ted part of the incoming radiation, the radiative transfer equation is simplified to the well
known Beer-Lambert law:

I(ν) = I0(ν)e−τ(h,ν) (6.54)

This equation can for example be used when evaluating solar occultation observations.
If the temperature is constant through the medium studied (Fig. 6.3) the integral in

Equation 6.51 can be solved analytically:

Iout = Iine−τ +B(T, ν)(1− e−τ ) (6.55)

where is τ the total optical thickness of the medium. Two special cases can be distinguished.
If the layer is totally optically thick (τ → ∞) then Iin is totally absorbed and Iout = B,
the medium emits as a blackbody. If the layer has no absorption (τ = 0) then Equation 6.55
gives Iout = Iin as expected.

In microwave radiometry the measured intensity is normally presented by means of the
brightness temperature, Tb. This quantity is derived from the Rayleigh-Jeans approximation
of the Planck function:

B(T, ν) ≈ 2ν2kbT

c2
=

2kbT

λ2
(6.56)

This equation is valid when hν � kT which is the case in the microwave region due to
the relatively low frequencies. If the temperature is 50 K, hv equals kT at 1.04 THz. The
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Figure 6.4: The difference
between the physical temper-
arature of a blackbody and
the equivalent brightness tem-
perature calculated using the
Rayleight-Jeans approximation.
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important aspect of Equation 6.56 is the linear relationship between the intensity and the
physical temperature. The natural definition of brightness temperature, Tb, is then

Tb(ν) =
λ2

2kbT
I(ν) (6.57)

The difference between the brightness temperature and the physical temperature (corre-
sponding to the actual intensity) increases with frequency which is exemplified in Figure
6.4. The differences for higher frequencies are certainly not negligible and the brightness
temperature shall not be mistaken for the physical temperature. The important fact is that
the brightness temperature has a linear relationship to the intensity and gives a more intu-
itive understanding of the magnitude of the emission. In the Rayleigh-Jeans limit Equation
6.51 can be written as

Tb(ν) = Tb0(ν)e−τ(h,ν)dl′ +

∫ h

0
k(l, ν)T (l)e−τ(l′,ν)dl (6.58)

6.8 Surface emission and reflection

6.8.1 The dielectric constant and the refractive index

The properties of a material can be reported either as the relative dielectric constant, ε, or
the refractive index, n. Both these quantities can be complex and are related as

n =
√
ε. (6.59)

6.8.2 Relating reflectivity and emissivity

Thermodynamic equilibrium can be assumed for natural surfaces, as long as there exist no
strong temperature gradients. The Kirchoff law can then be used to relate the reflectivity
and emissivity of a surface. For rough surfaces the scattering properties must be integrated
to determine the emissivity (Equation 6.77). For specular reflections (defined below) and
scalar radiative transfer calculations, the emissivity e is

e = 1− r, (6.60)
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where r is the reflective (power reflection coefficient) of the surface. Equation 6.60 is valid
for each polarisation state individually [Ulaby et al., 1981, Eq. 4.190a].

We have then that

Iup = Idownr + (1− r)B, (6.61)

where Iup is upwelling radiation, Idown is downwelling radiation and B is the magnitude
of blackbody radiation. As expected, if Idown = B, also Iup equals B. Expressing the last
observation using vector nomenclature gives




B
0
0
0


 = R




B
0
0
0


+ b, (6.62)

where R is the matrix (4 x 4) correspondence to the scalar reflectivity, describing the prop-
erties of the surface reflection. The vector b is the surface emission, that can be expressed
as

b = (1−R)




B
0
0
0


 , (6.63)

where 1 is the identity matrix.

6.8.3 Specular reflections

If the surface is sufficiently smooth, radiation will be reflected/scattered only in the comple-
mentary angle, specular reflection. Required smoothness for assuming specular reflection
is normally estimated by the Rayleigh criterion:

∆h <
λ

8 cos θ1
(6.64)

where ∆h is the root mean square variation of the surface height, λ the wavelength and
θ1 the angle between the surface normal and the incident direction of the radiation. The
criterion can also be defined with the factor 8 replaced with a higher number.

The complex reflection coefficient for the amplitude of the electromagnetic wave for
vertical (Rv) and horizontal (Rv) polarisation is for a flat surface (if the relative magnetic
permeability (µr) of both media is 1) given by the Fresnel equations:

Rv =
n2 cos θ1 − n1 cos θ2

n2 cos θ1 + n1 cos θ2
(6.65)

Rh =
n1 cos θ1 − n2 cos θ2

n1 cos θ1 + n2 cos θ2
(6.66)

where n1 is refractive index for the medium where the reflected radiation is propagating, θ1

is the incident angle (measured from the local surface normal) and n2 is the refractive index
of the reflecting medium. The angle θ2 is the propagation direction for the transmitted part,
and is (approximately) given by Snell’s law:

Re(n1) sin θ1 = Re(n2) sin θ2, (6.67)
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where Re(·) denotes the real real part. Equation 6.67 is theoretically correct only if both n1

and n2 have no imaginary part. For cases where medium 1 is air, n1 can (in this context)
be set to 1, and an expression allowing n2 to be complex is found in Section 5.4.1.3 of Liou
[2002]. We are not awere of any expression for the case when both n1 and n2 are complex.

The power reflection coefficients are converted to an intensity reflection coefficient as

r = |R|2, (6.68)

where |·| denotes the absolute value. Note that R can be complex, while r is always real.
The surface reflection can be seen as a scattering event and Section 5.5 can be used to

derive the reflection matrix values. The scattering amplitude functions of Equation 5.95 are
simply

S2 = Rv, (6.69)

S1 = Rh, (6.70)

S3 = S4 = = 0. (6.71)

This leads to that the transformation matrix for a specular surface reflection is (compare to
Liou [2002, Sec. 5.4.3])

R =




rv+rh
2

rv−rh
2 0 0

rv−rh
2

rv+rh
2 0 0

0 0
RhR

∗
v+RvR∗h

2 i
RhR

∗
v−RvR∗h

2

0 0 i
RvR∗h−RhR∗v

2

RhR
∗
v+RvR∗h

2



. (6.72)

For the case ofRv = Rh the matrix in Equation 6.72 is strictly diagonal and all the diagonal
elements have the same value, (rv + rh)/2. If the downwelling radiation is unpolarised, the
reflected part of the upwelling radiation is

R




I
0
0
0


 =




I(rv + rh)/2
I(rv − rh)/2

0
0


 . (6.73)

as expected.
If R is given by Equation 6.72, Equation 6.63 gives that the surface emission is

b =




B
(
1− rv+rh

2

)

B rh−rv
2

0
0


 . (6.74)

6.8.4 Rough surfaces

The scattering of rough surfaces is normally described by the bidirectional reflectance dis-
tribution function, BRDF. With the BRDF, f(θ0, φ0, θ1, φ1), the scattered radiance in the
direction (θ1, φ1) can be written as (see e.g. Rees [2001] or Petty [2006])

I ′(θ1, φ1) =

∫ π/2

0

∫ 2π

0
I(θ, φ) cos(θ)f(θ, φ, θ1, φ1) sin(θ) dφ dθ, (6.75)
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where I(θ, φ) is the downwelling radiance for incidance angle θ and azimuth angle φ. One
important property of the BRDF is

f(θ0, φ0, θ1, φ1) = f(θ1, φ1, θ0, φ0). (6.76)

The reflectivity is the half-sphere integral of the BRDF

r(θ1, φ1) =

∫ π/2

0

∫ 2π

0
f(θ1, φ1, θ, φ) cos(θ) sin(θ) dφ dθ. (6.77)

An ideally rough surface is denoted as Lambertian. The BRDF is for this case constant, and
normally expressed using the the diffuse reflectivity, rd [e.g. Petty, 2006]:

f =
rd
π
. (6.78)

From Eq. 6.77 it follows that r = rd.
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Chapter 7

Propagation paths

7.1 Structure of implementation

The workspace method for calculating propagation paths is ppathCalc, but this is just a
getaway function for ppath calc. The main use of ppathCalc is to debug and test the
path calculations, and that WSM should normally not be part of the control file.

7.1.1 Main functions for clear sky paths

The master function to calculate full clear sky propagation paths is ppath calc. This
function is outlined in Algorithm 1. The function can be divided into three main parts, ini-
tialisation (handled by ppath start stepping), a repeated call of ppath step agenda
and putting data into the return structure (ppath).

Algorithm 1 Outline of the function ppath calc.
check consistency of function input
call ppath start stepping to set ppath step
while radiative background not reached do

call ppath step agenda
if path is at the highest pressure surface then

radiative background is space
else if path is at either end point of latitude or longitude grid then

this is not allowed, issue an runtime error
end if
if cloud box is active then

if path is at the surface of the cloud box then
radiative background is the cloud box surface

end if
end if

end while
initialise the WSV ppath to hold found number of path points

History
120227 Created by splitting and revising the corresponding chapter in ARTS

User Guide (Patrick Eriksson).

http://www.radiativetransfer.org/docserver-stable/all/ppathCalc
http://www.radiativetransfer.org/docserver-stable/all/ppathCalc
http://www.radiativetransfer.org/docserver-stable/all/ppath_step_agenda
http://www.radiativetransfer.org/docserver-stable/all/ppath
http://www.radiativetransfer.org/docserver-stable/all/ppath_step
http://www.radiativetransfer.org/docserver-stable/all/ppath_step_agenda
http://www.radiativetransfer.org/docserver-stable/all/ppath
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The main task of the function ppath start stepping is to set up ppath step for
the first call of ppath step agenda, which means that the practical starting point for the path
calculations must be determined. As the propagation path is followed in the backward di-
rection, the calculation starting points equals the end point of the path. If the sensor is
placed inside the model atmosphere, the sensor position gives directly the starting point.
For cases when the sensor is found outside the atmosphere, the point where the path exits
the atmosphere must be determined. The exit point can be determined by pure geometri-
cal calculations (see Sections 7.2 and 7.3) as the refractive index is assumed to have the
constant value of 1 outside the atmosphere. The problem is accordingly to find the geomet-
rical crossing between the limit of the atmosphere and the sensor line-of-sight (LOS). The
function performs further some other tasks, which include:

• If the sensor is placed inside the model atmosphere

– Checks that the sensor is placed above the surface level. If not, an error is issued.

– If the sensor and surface altitudes are equal, and the sensor LOS is downward,
the radiative background is set to be the surface. For 2D and 3D, the tilt of the
surface radius is considered when determining if the LOS is downward.

– If the cloud box is active and the sensor position is inside the cloud box, the
radiative background is set to be “cloud box interior”.

• If the sensor is placed outside the model atmosphere

– If it is found for 2D and 3D that the exit point of the path not is at the top of the
atmosphere, but is either at a latitude or longitude end face of the atmosphere,
an error is issued. This problem can not appear for 1D.

For further details, see the code.

7.1.2 Main functions for propagation path steps

Example on workspace methods to calculate propagation path steps are
ppath stepGeometric and ppath stepRefractionBasic. All such methods adapt auto-
matically to the atmospheric dimensionality, but the different dimensionalities are handled
by separate internal functions. For example, the sub-functions to ppath stepGeometric
are ppath step geom 1d, ppath step geom 2d and ppath step geom 3d.
See m ppath.cc to get the names of the sub-functions for other propagation path step
workspace methods.

Many tasks are independent of the algorithm for refraction that is used, or if refrac-
tion is considered at all. These tasks are solved by two functions for each atmospheric
dimensionality. For 1D the functions are ppath start 1d and ppath end 1d, and
the corresponding functions for 2D and 3D are named in the same way. The functions to
calculate geometrical path steps are denoted as do gridrange 1d, do gridcell 2d
and do gridcell 3d byltest. Paths steps passing a tangent point are handled by a
recursive call of the step function. Algorithm 2 summarises this for geometrical 2D steps.

7.2 Some basic geometrical relationships for 1D and 2D

This section gives some expressions to determine positions along a propagation path when
refraction is neglected. The expressions deal only with propagation path inside a plane,

http://www.radiativetransfer.org/docserver-stable/all/ppath_step
http://www.radiativetransfer.org/docserver-stable/all/ppath_step_agenda
http://www.radiativetransfer.org/docserver-stable/all/ppath_stepGeometric
http://www.radiativetransfer.org/docserver-stable/all/ppath_stepRefractionBasic
http://www.radiativetransfer.org/docserver-stable/all/ppath_stepGeometric
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Algorithm 2 Outline of the function ppath step geom 2d.
call ppath start 2d
if ppath step.ppc < 1 then

calculate the path constant (this is then first path step)
end if
call do gridcell 2d
call ppath end 2d
if calculated step ends with tangent point then

call ppath step geom 2d with temporary Ppath structure
append temporary Ppath structure to ppath step

end if

r2

ψ2
l

line−of−sight

r1

1
∆l

∆α

ψ Figure 7.1: The radius (r) and
zenith angle (ψ) for two points
along the propagation path, and
the distance along the path (∆l)
and the latitude difference (∆α)
between these points.

where the latitude angle is the angular distance from an arbitrary point. This means that the
expressions given here can be directly applied for 1D and 2D. Some of the expression are
also of interest for 3D. The ARTS method for making the calculation of concern is given
inside parenthesis above each equation, if not stated explicitly. A part of a geometrical
propagation path is shown in Figure 7.1.

The law of sines gives that the product must r sin(ψ) be constant along the propagation
path:

pc = r sin(ψ), (7.1)

where the absolute value is taken for 2D zenith angles as they can for such cases be negative.
The propagation path constant, pc, is determined by the position and line-of-sight of the sen-
sor, a calculation done by the function geometrical ppc. The constant equals also the
radius of the tangent point of the path (that is found along an imaginary prolongation of
the path behind the sensor if the viewing direction is upwards). The expressions below are
based on pc as the usage of a global constant for the path should decrease the sensitivity to
numerical inaccuracies. If the calculations are based solely on the values for the neighbour-
ing point, a numerical inaccuracy can accumulate when going from one point to next. The
propagation path constant is stored in the field constant of ppath and ppath step.

The relationship between the distance along the path for an infinitesimal change in ra-
dius is here denoted as the geometrical factor, g. If refraction is neglected, valid expressions

http://www.radiativetransfer.org/docserver-stable/all/ppath
http://www.radiativetransfer.org/docserver-stable/all/ppath_step
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for the geometrical factor are

g =
dl

dr
=

1

cos(ψ)
=

1√
1− sin2(ψ)

=
r√

r2 − p2
c

. (7.2)

For the radiative transfer calculations, only the distance between the points, ∆l, is of inter-
est, but for the internal propagation path calculations the length from the tangent point (real
or imaginary), l, is used. By integrating Equation 7.2, we get that (geomppath l at r)

l(r) =
√
r2 − p2

c . (7.3)

As refraction is here neglected, the tangent point, the point of concern and the centre of the
coordinate system make up a right triangle and Equation 7.3 corresponds to the Pythagorean
relation where pc is the radius of the tangent point. The distance between two points (∆l)
is obtained by taking the difference of Equation 7.3 for the two radii.

The radius for a given l is simply (geomppath r at l)

r(l) =
√
l2 + p2

c . (7.4)

The radius for a given zenith angle is simply obtained by rearranging Equation 7.1
(geomppath r at za)

r(ψ) =
pc

sin(ψ)
. (7.5)

The zenith angle for a given radius is (geomppath za at r)

ψ(r) =





180− sin−1(pc/r) for 90◦ < ψa ≤ 180◦,
sin−1(pc/r) for 0◦ ≤ ψa ≤ 90◦,
− sin−1(pc/r) for − 90◦ ≤ ψa < 0◦,
sin−1(pc/r)− 180 for − 180◦ ≤ ψa < −90◦,

(7.6)

where ψa is any zenith angle valid for the path on the same side of the tangent point. For
example, for a 1D case, the part of the path between the tangent point and the sensor has
zenith angles 90◦ < ψa ≤ 180◦.

The latitude for a point (geomppath lat at za) is most easily determined by its
zenith angle

α(ψ) = α0 + ψ0 − ψ (7.7)

where ψ0 and α0 are the zenith angle and latitude of some other point of the path. Equation
7.7 is based on the fact that the quantities ψ1, ψ2 and ∆α fulfil the relationship

∆α = ψ1 − ψ2, (7.8)

this independently of the sign of the zenith angles. The definitions used here result in that
the absolute value of the zenith angle always decreases towards zero when following the
path in the line-of-sight direction, that is, when going away from the sensor. It should then
be remembered that the latitudes for 1D measures the angular distance to the sensor, and for
2D a positive zenith angle means observation towards higher latitudes.

The radius for a given latitude (geomppath r at lat) is obtained by combining
Equations 7.7 and 7.5.
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7.3 Calculation of geometrical propagation paths

This section describes the calculation of geometrical propagation paths for different atmo-
spheric dimensionalities. That is, the effect of refraction is neglected. These calculations
are performed by the workspace method ppath stepGeometric. This method, as all methods
for propagation path steps, adjust automatically to the atmospheric dimensionality, but the
actual calculations are performed a sub-function for each dimensionality.

7.3.1 1D

The core function for this case is do gridrange 1d. The lowest and highest radius value
along the path step is first determined. If the line-of-sight is upwards (ψ ≤ 90◦), then
the start point of the step gives the lowest radius, and the radius of the pressure surface
above gives the highest value. In the case of a downwards line-of-sight, the lowest radius
is either the tangent point, the pressure surface below or the surface. The needed quantities
to describe the propagation path between the two found radii are calculated by the function
geompath from r1 to r2, that has the option to introduce more points to fulfil a length
criterion between the path points. The mathematics of geompath from r1 to r2 are
given by Equations 7.1–7.7.

7.3.2 2D

The definitions given in Chapter 3 of ARTS User Guide results in that for a 2D case
the radius of a pressure surface varies linearly from one point of the latitude grid to
next. Compared to the 1D case, this is the main additional problem to solve, handled by
plevel crossing 2d. A two step procedure is applied. In the first step the propagation
path is moved towards the pressure level as far as exact expressions can be used. For exam-
ple, if the level is approached from above the path is moved down to the maximum radius
of the level inside the gridbox. An approximative solution is needed for the second step.
Figure 7.2 gives a schematic description of the problem at hand, which is handled by the
internal function rslope crossing. The law of sine gives the following relationship for
the crossing point:

sin Θp

r0 + cα
=

sin(π − α−Θp)

rp
, (7.9)

which can be re-written to

rp sin(Θp) = (r0 + cα)(sin Θp cosα+ cos Θp sinα). (7.10)

This equation has no analytical solution. A first step to find an approximate solution is to
note that α is limited to relatively small values. For example, if it shall be possible for the
angular distance α to reach the value of 3◦, the vertical distance between rp and r must be
about 8 km. For angles α ≤ 3◦, the sine and cosine terms can be replaced with the three
first (non-constant) terms of their Taylor expansions maintaining a high accuracy. That is,

cosα ≈ 1− α2/2 + α4/24 + α6/720

sinα ≈ α− α3/6 + α5/120

http://www.radiativetransfer.org/docserver-stable/all/ppath_stepGeometric
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α
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θp

0

0 αr = r + c

Figure 7.2: Quantities used to describe how to find
the crossing between a geometrical propagation
path and a tilted pressure surface. The angle α
is the angular distance from a reference point on
the path. The problem at hand is to find α for the
crossing point. The radius of the pressure surface
at α = 0 is denoted as r0. The tilt of the pressure
surface is c.

Equation 7.10 becomes with these replacements a polynomial equation of order 6:

0 = p0 + p1α+ p2α
2 + p3α

3 + p4α
4 + p5α

5 + p6α
6, (7.11)

p0 = (r0 − rp) sin(Θp)

p1 = r0 cos(Θp) + c sin(Θp),

p2 = −r0 sin(Θp)/2 + c cos(Θp),

p3 = −r0 cos(Θp)/6− c sin(Θp)/2,

p4 = r0 sin(Θp)/24− c cos(Θp)/6,

p5 = r0 cos(Θp)/120 + c sin(Θp)/24,

p6 = −r0 sin(Θp)/720 + c cos(Θp)/120.

This equation is solved numerically with the root finding algorithm implemented in
the function poly root solve. Solutions of interest shall not be imaginary. Sev-
eral issues associated with numerical accuracy must be considered, see the code
(rslope crossing2d) for details.

Geometrical 2D propagation path steps are determined by do gridcell 2d. This
function uses plevel crossing 2d to calculate the latitude distance to a crossing of
the pressure surface below and above the present path point, as well as the planets surface
if it is found inside the grid box. If the closest crossing point with the pressure surfaces is
outside the latitude range of the grid cell, it is the crossing of the path with the end latitude
(in the viewing direction) that is of interest (Figure 7.3).
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Figure 7.3: Example on propagation path steps starting from a latitude end face (solid lines),
or the lower pressure surface (dashed lines), to all other grid cell faces. The distortion of
the grid cell from cylinder segment is highly exaggerated compared to a real case. The rela-
tionship between vertical and horizontal size deviates also from normal real cases. Typical
values for the vertical extension is around 500 m, while the horizontal length is normally
>10 km.

7.3.3 3D

Conversion between polar and Cartesian coordinates

The Cartesian coordinate system used follows the (standard?) Earth-centred earth-fixed
(ECEF) system (http://en.wikipedia.org/wiki/ECEF), with the axes defined
as:

x-axis is along latitude 0◦and longitude 0◦

y-axis is along latitude 0◦and longitude +90◦

z-axis is along latitude +90◦

This definition results in the following relationships between the spherical (r, α, β) and
Cartesian (x, y, z) coordinates

x = r cos(α) cos(β)

y = r cos(α) sin(β) (7.12)

z = r sin(α)

and

r =
√
x2 + y2 + z2

α = arcsin(z/r) (7.13)

β = arctan(y/x) (implemented by the atan2 function)

The functions performing these transformations are sph2cart and cart2sph.

http://en.wikipedia.org/wiki/ECEF
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The first step to transform a line-of-sight, given by the zenith (ψ) and the azimuth (ω)
angle, to Cartesian coordinates is to determine the corresponding vector with unit length in
the spherical coordinate system:




dr
dα
dβ


 =




cos(ψ)
sin(ψ) cos(ω)/r

sin(ψ) sin(ω)/(r cos(α))


 (7.14)

This vector is then translated to the Cartesian coordinate system as



dx
dy
dz


 =




cos(α) cos(β) −r sin(α) cos(β) −r cos(α) sin(β)
cos(α) sin(β) −r sin(α) sin(β) r cos(α) cos(β)

sin(α) r cos(α) 0







dr
dα
dβ


(7.15)

Note that the radial terms (r) in Equations 7.14 and 7.15 cancel each other. These calcula-
tions are performed in poslos2cart. Special expressions must be used for positions at
the north and south pole (see the code) as the azimuth angle has there a special definition
(see Section 5.2.2 of ARTS User Guide).

The Cartesian position of a point along the geometrical path at a distance l is then simply


x2

y2

z2


 =



x1 + ldx
y1 + ldy
z1 + ldz


 (7.16)

The Cartesian viewing vector [dx,dy,dz]T is constant along a geometrical path. The new
position is converted to spherical coordinates by Equation 7.13 and the new spherical view-
ing vector is calculated as




dr
dα
dβ


 =




cos(α) cos(β) cos(α) sin(β) sin(α)
− sin(α) cos(β)/r − sin(α) sin(β)/r cos(α)/r
− sin(β)/(r cos(α)) cos(β)/(r cos(α)) 0







dx
dy
dz


(7.17)

which is converted to a zenith and azimuth angle as

ψ = arccos(dr)

ω = arccos(rdα/ sin(ψ)), for dβ >= 0 (7.18)

ω = − arccos(rdα/ sin(ψ)), for dβ < 0

These calculations are performed in cart2poslos. Again special expressions must be
used for positions at the north and south pole (see the code).

Finding the crossing of a specified r, α or β

The starting point in for all three cases is the following equation system:

r cos(α) cos(β) = x+ ldx,

r cos(α) sin(β) = y + ldy, (7.19)

r sin(α) = z + ldz,

where (x, y, z) is the position of the sensor, (dx,dy,dz) the sensor LOS, and either r, α or
β is given.
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The distance l to a given r is found by adding the square of all three equations:

r2 = (x+ ldx)2 + (y + ldy)2 + (z + ldz)2. (7.20)

Once l is determined, the latitude and longitude can easily be calculated by Equations 7.16
and 7.13. These calculations are implemented in the function r crossing 3d.

If instead α is given, the length to the point of interest can found by again squaring the
three equations, but now summing the x- and y-terms and diving with the z-term:

tan2(α) =
(z + ldz)2

(x+ ldx)2 + (y + ldy)2
. (7.21)

The solution of this quadratic equation is implemented in the function
lat crossing 3d1. The solution for α = 0◦ is particularly simple (l = −z/dz).
The case of α = 90◦ is set to have no solution (tan(90◦) = ∞), and is instead assumed to
be picked up as a crossing with one of the two longitudes defining the grid box. Another
complication is that, as the tan-term is squared, both±α can show up as possible solutions,
and it must be tested that the found length gives a α with the correct sign.

For a given longitude, the x- and y-equations can be combined to give:

l =
y − x tan(β)

dx tan(β)− dy
. (7.22)

This case is handled by lon crossing 3d2. If the zenith or azimuth angle equals 0◦ or
180◦, or if the start and target longitudes are equal, there is no valid solution.

Finding the crossing with a pressure level

The same approach as for 2D is applied. The difference is that for 3D the additional dimen-
sion gives a more complex variation of the radius of the pressure level. For 2D, the variation
can be expressed as a first order polynomial (r = r0 + cα), while for 3D a second order
polynomial must be used

r = r0 + c1α+ c2α
2. (7.23)

The coefficients c1 and c2 are detwermined in a purely numerical way, by
plevel slope 3d. The change in radius, ∆r1 and ∆r2, at a distance of ∆α and 2∆α,
respectively, are determined. These values give

c1 =
4∆r1 −∆r2

2∆α
(7.24)

and

c2 =
4∆r1 − c1∆α

(∆α)2
. (7.25)

The polynomial to solve becomes (cf. Eq. 7.27)

0 = p0 + p1α+ p2α
2 + p3α

3 + p4α
4 + p5α

5 + p6α
6, (7.26)

p0 = (r0 − rp) sin(Θp),

p1 = r0 cos(Θp) + c1 sin(Θp),

1This function is presently not used. The source code can be found in ppath NotUsed.cc
2This function is presently not used. The source code can be found in ppath NotUsed.cc
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p2 = −r0 sin(Θp)/2 + c1 cos(Θp) + c2 sin(Θp),

p3 = −r0 cos(Θp)/6− c1 sin(Θp)/2 + c2 cos(Θp),

p4 = r0 sin(Θp)/24− c1 cos(Θp)/6− c2 sin(Θp)/2,

p5 = r0 cos(Θp)/120 + c1 sin(Θp)/24− c2 cos(Θp)/6,

p6 = −r0 sin(Θp)/720 + c1 cos(Θp)/120 + c2 sin(Θp)/24.

The solution of this polynomial is handled by rslope crossing3d3.

A robust 3D algorithm

Algorithm 3 The method applied in do gridcell 3d byltest to find the total length
of the path step to be calculated. The symbol S signifies here conversion from Cartesian to
spherical coordinates (Equation 7.13).

calculate the spherical position (x0, y0, z0) and LOS vector (dx,dy,dz)
calculate (rc, αc, βc) = S(x0, y0, z0)− (r0, α0, β0), the position correction term
set lin = 0
if ls > 0 then
lout = ls (ls is a function input)

else
set ls to 3*vertical thickness of gid cell

end if
while S(x0 + loutdx, y0 + loutdy, z0 + loutdz)− (rc, αc, βc) is inside grid cell do
lout ← 5 ∗ lout

end while
set lend = (lin + lout)/2
set accuracy flag to false
while accuracy flag is false do

calculate (r, α, β) = S(x0 + lenddx, y0 + lenddy, z0 + lenddz)− (rc, αc, βc)
if (r, α, β) is inside grid cell then
lin = lend

else
lout = lend

end if
if (lout − lin) smaller than specified accuracy then

set accuracy flag to true
else
lend = (lin + lout)/2

end if
end while
(r, α, β)← (r, α, β) + (rc, αc, βc)
A recursive call can be neeeded, see the text.

Some of the expressions presented above, for finding the crossing of a specified r, α or
β, wehre found to be sensitive to numerical inaccuracy and an algorith that avoids those
expressions have been devised. It applies a straightforward “length-search” algorithm (Al-
gorithm 3 and Figure 7.4). The main advantage of the algorithm is that a correction for the

3This function is presently not used. The source code can be found in ppath NotUsed.cc
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shift in position caused by the transformations back and fourth to the Cartesian coordinate
system can be applied. The correction term assures that the position is not changed for a step
of zero length, and is not moved outside the grid cell due to the numerical problems. The
algorithm was further found to be sufficiently fast to be accepted. A simple bisection search
to find the length of the propagation path step is used. Both the position and the line-of-sight
for the other end point of the path step are calculated using a transformation to Cartesian
coordinates. This algorithm is implemented by the function do gridcell 3d byltest.

The core task is to find the length of the path step. The search algorithm is safe with
respect to all grid cell boundaries, except the lower pressure level where it can fail for zenith
angles around 90◦. In this case, the path can pass the lower pressure level and re-enter the
grid cell after a short distance. For 1D cases, the part inside the lower cell would hold the
tangent point, but for a non-spherical reference ellipsoid and “titled” pressure levels the
tangent point can be found elsewhere.

The bisection algorithm can miss such excursions to the lower grid cell. Analytic ap-
proaches to handle this was rejected due to numerical problems. Instead, all final points of
the path step are checked with respect to this issue and if any point is found to be below the
lower pressure level, the function is called recursively with the distance to the problematic
point as maximum search length (ls in Algorithm 3).

7.4 Basic treatment of refraction

Refraction affects the radiative transfer in several ways. The distance through a layer of a
fixed vertical thickness will be changed, and for a limb sounding observation the tangent
point is moved both vertically and horizontally. If the atmosphere is assumed to be hori-
zontally stratified (1D), a horizontal displacement is of no importance but for 2D and 3D
calculations this effect must be considered. For limb sounding and a fixed zenith angle,
the tangent point is moved downwards compared to the pure geometrical case (Figure 7.5),
resulting in that inclusion of refraction in general gives higher intensities.

l
inl

endl
out
i+2

l
out
i+1

l
out
i

Figure 7.4: Schematic of Algorithm 3. The figure shows two iterations of the algorithm
to search for the total length of the path step. The asterisk (∗) gives the start point for the
calculations and the circles (◦) are the final end points of the path step. The plus signs (+)
shows the position of the different lengths tested during the iterations.
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The refraction causes a bending of the path, which gives a deviation from the geometri-
cal approximation of propagation along a straight line. The bending of the path is obtained
by the relationship

dx

dl
=

1

n

(
∂n

∂y

)

x

(7.27)

where x is the direction of propagation, l the distance along the path, n the refractive index4,
and y is the coordinate perpendicular to the path. See further Section 9.4 in Rodgers [2000].

The workspace method ppath stepRefractionBasic takes refraction into consideration
by probably the most simple (from the viewpoint of implementation) algorithm possible.

The approach taken in ppath stepRefractionBasic is to take a geometrical ray tracing
step from the present point of the path (and in the direction of present line-of-sight). Re-
fraction is considered only when the line-of-sight at the new point is determined (Figure
7.6). The found line-of-sight is used to calculate the next ray tracing step etc. The main
difference between handling 1D, 2D or 3D cases is how the line-of-sight for the new point
is corrected to compensate for the bending due to refraction. The calculation of propagation
paths including the effect of refraction is often denoted as ray tracing.

The length of the calculation steps is set by the generic input lraytrace. This length
shall not be confused with the final distance between the points that define the path, which
is controlled by lmax. The path is first determined in steps of lraytrace. The normal
situation is that the ray tracing step length is considerably shorter than the final spacing
between the path points. Suitable values for lraytrace have not yet been investigated
in detail, but for limb sounding values in around 1–10 km should be appropriate. Shorter
ray tracing steps (down to a level where rounding errors will start to have an impact) will
of course give a propagation path more accurately determined, but on the cost of more time
consuming calculations.

7.4.1 1D

When determining the propagation path through the atmosphere geometrical optics can be
applied because the change of the refractive index over a wavelength can be neglected.
Applying Snell’s law to the geometry shown in Figure 7.7 gives

ni sin(ψi) = ni+1 sin(ψi′) (7.28)

Using the same figure, the law of sines gives the relationship

sin(ψi+1)

ri
=

sin(180◦ − ψ′i+1)

ri+1
=

sin(ψi′)

ri+1
(7.29)

By combining the two equations above, the Snell’s law for a spherical atmosphere (that is,
1D cases) is derived [e.g. Kyle, 1991; Balluch and Lary, 1997]:

pc = rini sin(ψi) = ri+1ni+1 sin(ψi+1) (7.30)

where pc is a constant. With other words, the Snell’s law for spherical atmospheres states
that the product of n, r and sin(ψ) is constant along the propagation path. It is noteworthy
that with n = 1, Equations 7.1 and 7.30 are identical.

4The refractive index is here assumed to have no imaginary part

http://www.radiativetransfer.org/docserver-stable/all/ppath_stepRefractionBasic
http://www.radiativetransfer.org/docserver-stable/all/ppath_stepRefractionBasic
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Figure 7.5: Comparison of propagation paths calculated geometrically and with refraction
considered, for the same zenith angle of the sensor line-of-sight. The figure include two pair
of paths, with refracted tangent altitude of about 0 and 10 km, respectively. The horizontal
coordinate is the latitude distance from the point where the path exits the model atmosphere
(at 80 km). The model atmosphere used had a spherical symmetry (that is, 1 D case, but the
calculations were performed in 2D mode).
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Figure 7.7: Geometry to derive Snell’s law for a spherical atmosphere.
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Figure 7.8: Vertical variation of refractivity (n−1) ·106. Calculated for a mid-latitude sum-
mer climatology (FASCODE), where the dashed line is for a completely dry atmosphere,
and the solid line includes also contribution from water vapour.

The Snell’s law for a spherical atmosphere makes it very easy to determine the zenith
angle of the path for a given radius. A rearrangement of Equation 7.30 gives

ψ = arcsin(rn/pc) (7.31)

This relationship makes it possible to handle refraction for 1D without calculating any gra-
dients of the refractive index, which is needed for 2D and 3D. These calculations are im-
plemented in the function raytrace 1d linear euler. Figure 7.8 shows the vertical
variation of the refractive index.
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Figure 7.9: Vertical gradient of the refractive index. Calculated for a mid-latitude summer
climatology (FASCODE), where the dashed line is for a completely dry atmosphere, and
the solid line includes also contribution from water vapour.
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Figure 7.10: Latitude gradient of the refractive index due to varying radius of the geoid.
The gradient is given as the change in refractive index over 1 m, which allows direct com-
parison with the values in Figure 7.9e. The wet atmosphere from Figure 7.9 was used for all
latitudes, and the the plotted gradient is only caused by the fact that the radius of the geoid
is not constant. The gradient is positive on the southern hemisphere (shown), and negative
on the northern hemisphere.
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7.4.2 2D

Equation 7.27 expressed in polar coordinates is [Rodgers, 2000, Eq. 9.30]

d(α+ ψ)

dl
= −sinψ

n

(
∂n

∂r

)

α
+

cosψ

nr

(
∂n

∂α

)

r
(7.32)

If the gradients are zero (corresponding to the geometrical case) we find that the sum of the
zenith angle and the latitude is constant along a 2D geometrical path, which is also made
clear by Equation 7.7. The geometrical zenith angle at ray tracing point i+ 1 is accordingly
ψi+1 = ψi − (αi+1 − αi). If then also the refraction is considered, we get the following
expression:

ψi+1 = ψi − (αi+1 − αi) +
lg
ni

[
− sinψi

(
∂n

∂r

)

αi

+
cosψi
ri

(
∂n

∂α

)

ri

]
(7.33)

These calculations are handled by raytrace 2d linear euler.
The gradients of the refractive index for 2D are calculated by the function

refr gradients 2d. The radial and latitudinal gradients of the refractive index are
calculated in pure numerical way, by shifting the position slightly from the position of con-
cern. Figures 7.9 and 7.10 show example on gradients of the refractive index. This function
returns both gradients as the change of the refractive index over 1 m. The conversion for the
latitude gradient, from rad−1 to m−1, corresponds to the 1/r term found in Equation 7.33,
and this term is accordingly left out in raytrace 2d linear euler.

7.4.3 3D

For 3D, the geometrical expressions are used to calculate the geometrical zenith and azimuth
angles at the end of the ray tracing step. Following the methodology for 2D, the geometrical
zenith and azimuth angles are then corrected to incorporate the influence of refraction. The
zenith angle is calculated as

ψi+1 = ψg −
lg sinψi
ni

(
∂n

∂r

)

(αi,βi)
+ (7.34)

+
lg cosψi
rini

[
cosωi

(
∂n

∂α

)

(ri,βi)
+

sinωi
cosαi

(
∂n

∂β

)

(ri,αi)

]

where ψg is the zenith angle obtained from the geometrical expressions. In similar manner,
the geometrical azimuth angle, ωg, is corrected as

ωi+1 = ωg +
lg sinψi
rini

[
− sinωi

(
∂n

∂α

)

(ri,βi)
+

cosωi
cosαi

(
∂n

∂β

)

(ri,αi)

]
(7.35)

This expression, slightly modified, is found in raytrace 3d linear euler. The
terms of Equation 7.35 missing in that function, are part of refr gradients 3d to con-
vert the gradients to the same unit. The longitude gradient is converted to the unit [1/m] by
multiplication with the term 1/(r cosα).



Chapter 8

Reversed Monte Carlo Scattering:
ARTS-MC

8.1 Introduction

The ARTS Monte Carlo scattering module (ARTS-MC) offers an efficient method for polar-
ized radiative transfer calculations in arbitrarily complex 3D cloudy cases. The algorithm
solves the integral form of the Vector Radiative Transfer Equation (VRTE), by applying
Monte Carlo integration with importance sampling (MCI) (e.g. [Press et al., 1997]). As
described in [Battaglia et al., 2007], when compared to other techniques for solving the
VRTE in 3D domains the ARTS-MC algorithm has the following advantages:

• All computational effort is dedicated to calculating the Stokes vector at the location
of interest and in the direction of interest. This is in contrast to forward Monte Carlo
and discrete ordinate methods where the whole radiation field is calculated.

• CPU and memory cost scale more slowly than discrete ordinate methods with grid
size, so that large or detailed 3D scenarios are not a problem.

• Only parts of the atmosphere that significantly contribute to the observed radiance are
considered in the computation. Where the medium is optically thick, only the parts
of the atmosphere closest to the sensor are visited by the algorithm. This contrasts
with DOM methods, where the whole radiation field is computed, and in particular
with forward Monte Carlo methods, where added optical thickness further restricts
the number of photons reaching the sensor.

The Monte Carlo integration of the VRTE is over infinite dimensions, where for each
scattering order there is a dimension representing: path-lengths, the choice between emis-
sion and scattering, and the choice between reflection or emission at the earth’s surface. In
practice the integrand is always calculated for a finite scattering order, as the dimensionality
of the integral is truncated by photon emission or the boundary of the domain. Thus, the
algorithm can be pictured as tracing a large number of photons backwards from sensor, in

History
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300504 Created and written by Cory Davis.
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randomly selected multiply scattered propagation paths to either their point of emission, or
entry into the scattering domain. This physical picture is identical to the Backward-Forward
Monte Carlo algorithm described by [Liu et al., 1996]. However, BFMC did not account
for dichroism, which is correctly accounted for in ARTS-MC by importance sampling.

The description of reversed Monte Carlo as tracing photon paths backwards from the
sensor gives a useful first-order physical picture for understanding the algorithm, but can
lead to difficulty understanding the veracity of the method with regard to polarization. These
difficulties are not apparent in the scalar radiative transfer case1. Specifically, questions I
have been asked that highlight the difficulty have included:

• how can you sample a single reversed pathlength when the medium is dichroic? (i.e.
different extinction for the different polarized components)

• when reverse tracing, how can you decide on a scattering or emission event when the
single scattering albedo depends on the polarization state of the incoming photon?

• How can you sample a single reverse scattered (i.e. incoming) direction when the
scattered polarization state depends on the polarization state of the incoming photon?

The answer in each case is to forget the physical picture, focus on the mathematical solution
to the VRTE, and realise that MCI permits some freedom in the choice of probability den-
sity functions (PDFs), provided the sampled integrand is properly weighted. In the model
presented here we choose PDFs that aim to minimise the variance in the 1st element of the
Stokes vector. This issue does not arise in the scalar case because it is possibile to per-
fectly sample the phase function to choose new incoming directions, and perfectly sample
the transmission function to choose pathlengths, so no weighting terms appear. With the
above difficulties in mind, in comparison with [Davis et al., 2005], the algorithm descrip-
tion presented here is more in the context of MCI and with less reference to reversed traced
photons. What were referred to as photons in [Davis et al., 2005] we now call Stokes Vector
Evaluations (SVE).

The current implementation of the algorithm differs slightly from the description in
[Davis et al., 2005]; changes include:

• the initial line of sight is no longer treated differently than the scattered paths

• the algorithm is no longer confined to the ‘cloudbox’,

• MCI is now used for convolving the simulated Stokes vector with a 2D antenna re-
sponse ([Davis et al., 2005] discusses only pencil beam calculations)

• MCI is now used to treat emission or reflection from the earth’s surface.

These changes make the algorithm simpler and more general.

8.2 Model

The radiative transfer model solves the vector radiative transfer equation (VRTE), here writ-
ten as (cf. Eq. 6.35)

dI(n)

ds
= −K(n)I(n) + Ka(n)Ib(T ) +

1Although this physical picture of reversed Monte Carlo radiative transfer in the scalar case makes intuitive
sense, the mathematical demonstration of how this method solves the Schwarzchild equation is often neglected
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∫

4π
Z(n,n′)I(n′)dn′ (8.1)

where I is the 4 element column vector of radiances I = [I,Q, U, V ]T with units
(Wm−2µm−1sr−1). This will be referred to as the Stokes vector, although normally the
Stokes vector is expressed in units of intensity. s is distance along direction n and Ib is
the Planck radiance. K(n), Ka(n), and Z(n,n′) are the bulk extinction matrix, absorption
coefficient vector and phase matrix of the medium respectively. For brevity these have been
expressed as bulk optical properties, where individual single scattering properties have been
multiplied by particle number density and averaged over all orientations and particle types.
The argument n has been retained to signify that in general these properties depend on the
direction of propagation.

To apply Monte Carlo integration to the problem, the VRTE needs to be expressed in
integral form. (e.g. Hochstadt [1964])

I(n, s0) = O(u0, s0)I(n,u0)+
∫ s0
u0

O(s′, s0) (Ka(n)Ib(T ) +
∫

4π Z(n,n′)I(n′)dn′) ds′

(8.2)

, where O(s′, s) is the evolution operator defined by Degl’Innocenti and Degl’Innocenti
[1985]. u0 is the point where the line of sight intersects the far boundary of the scattering
domain, and s0 is the exit point where the outgoing Stokes vector is calculated.

8.2.1 Integration over the antenna response function

If we consider a scalar antenna response function, ψ = ψ(θ, φ) = ψ(n), where ψ(n) is
normalised such that

∫
4π ψ(n)dn = 1, then the observed Stokes vector Iant.(n, s0) will be

Iψ(n, s0) =

∫

4π
ψ(n′)I(n′, s0)dn′ (8.3)

If we apply Monte Carlo integration with importance sampling to Eq. 8.3 and sample
n′ according to a probability density function (PDF) equal to ψ(n′), an unbiased estimate
of Eq. 8.3 is given by (e.g. Press et al. [1992])

Iψ(n, s0) =

∫

4π
I(n′, s0)ψ(n′)dn′ (8.4)

≈ 〈I(n′, s0)〉ψ (8.5)

, where the angled brackets indicate the arithmetic mean, and the ψ subscript indicates the
sampled PDF. Eq. 8.5 has an estimated error for each Stokes index, j, of

δIj =

√
〈I2
j 〉 − 〈Ij〉2
N

. (8.6)
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8.2.2 The path integral

We now require a Monte Carlo estimate of the integrand in Eq. 8.5, which is given by Eq.
8.2. First, we re-express 8.2 as a single integral, for simplicity dropping the prime on n′,

I(n, s0) =

∫ s0

∞





O(s′, s0) (Ka(n)Ib(T ) +
∫

4π Z(n,n′)I(n′)dn′) s′ < s′boundary
O(u0,s0)I(n,u0)g∫∞

u0
gds

s′ ≥ s′boundary ds
′ (8.7)

, where g is the PDF we will eventually use to sample pathlength, ∆s. s′boundary represents
the pathlength corresponding to the boundary of the domain opposite the line of sight. The
integrand Eq. 8.7 is a piecewise function of the path distance, where path distances cor-
responding to positions outside the modelled domain give a boundary radiance attenuated
by the evolution operator over the length of the path within the model domain, and path
distances corresponding to points within the modelled atmosphere give a sum of emission
and scattering attenuated by the evolution operator over the distance between the point and
the atmosphere exit. The reader could easily verify that evaluating Eq. 8.7 is equivalent Eq.
8.2.

The aim in importance sampling is to choose probability density functions (PDFs) for
the independent variables that are as close as possible to being proportional to the integrand
Liu [2001]. This concentrates computational effort on regions where the integrand is most
significant and also reduces the variance in the Stokes Vector evalations (SVE), thus re-
ducing the number of SVEs and hence CPU time required to give a prescribed accuracy.
Eq. 8.2 suggests that the PDF for sampling path length, where path length is the distance
traced backwards from the sensor, ∆s = |s− s′|, should be proportional in some way to
the evolution operator O(s′, s).

In general there is no closed form expression for O(s′, s). However, in cases where the
extinction matrix is constant along a propagation path

O(s′, s) = exp (−K∆s) (8.8)

In ARTS a propagation path consists of a set of coordinates indicating where the path in-
tersects with grid surfaces. If the extinction matrix in the path segment between two such
points is considered constant, K = (Kj + Kj+1)/2, the evolution operator between two
arbitrary points s0 and sN is

O(s0, sN ) = O(sN−1, sN )O(sN−2, sN−1) . . .

O(s1, s2)O(s0, s1), (8.9)

, where O(si, si+1) is given by Eq. 8.8.
Since PDFs are scalar functions, and that we consider the first element of the Stokes

vector most important, we choose the pathlength PDF to be proportional to the (1,1) element
of O(s′, s),

g(∆s) = k̃Õ11(∆s) (8.10)

, where Õ11(∆s), is the piecewise exponential function that includes O11(s′, s) values at
points where the line of sight intersects with grid surfaces. Between two such adjacent
intersections, A and B, the function Õ11(∆s) is given by

Õ11(∆s) = O11(∆sA) exp
(
−k̃ (∆s−∆sA)

)
(8.11)
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, and

k̃ =
1

(∆sB −∆sA)
ln

(
OA11

OB11

)
(8.12)

, which, for cases where the extinction matrix is diagonal, is equal toK11 = (KA
11+KB

11)/2.
Eq. 8.10 is sampled by drawing a random number (from the uniform distribution [0,1]), r,
and solving

Õ11(∆s) = r. (8.13)

for ∆s. In practise this is done by stepping backwards over grid boundaries untilO11 <= r,
and solving Eqs. 8.11 and 8.13 within the final grid step,

∆s = ∆sA +
1

k̃
ln

(
OA11

r

)
(8.14)

With pathlength sampled according to Eq. 8.13, the Monte Carlo estimate for Eq. 8.7
becomes

I(n, s0) =

∫ s0

∞





O(s′,s0)
g(∆s) (Ka(n)Ib(T ) +

∫
4π Z(n,n′)I(n′)dn′) s′ < s′boundary

O(u0,s0)I(n,u0)

1−Õ11(∆s)
s′ ≥ s′boundary

g(∆s)ds′

≈
〈


O(s′,s0)
g(∆s) (Ka(n)Ib(T ) +

∫
4π Z(n,n′)I(n′)dn′) s′ < s′boundary

O(u0,s0)I(n,u0)

1−Õ11(∆s)
s′ ≥ s′boundary

〉

g(∆s)

(8.15)

So if the sampled pathlength corresponds to a point outside the atmosphere, or below
the earth’ surface, the SVE is given by O(u0,s0)I(n,u0)

1−Õ11(∆s)
. In the top of atmosphere cases, this

can be immediately calculated: O(u0, s0) from Eq. 8.9, and I(n,u0) from the background
radiation from space. As shown in Figure 8.2.8, in this event, we have our SVE and we can
begin the calculation for the next one. If however the reversed traced path passes the earth’s
surface, the calculation of I(n,u0) requires more steps.

8.2.3 Emission and scattering

If the sampled pathlength corresponds to a point within the atmosphere then the emission
and scattering terms in the top term in Eq. 8.15, must be calculated. We also treat this as
Monte Carlo integration:

Ka(n)Ib(T ) +

∫

4π
Z(n,n′)I(n′)dn′ =

∫ 1

0

{
1
ω̃

∫
4π Z(n,n′)I(n′)dn′ r ≤ ω̃

Ka(n)Ib(T )
1−ω̃ r > ω̃

dr

≈
〈{

1
ω̃

∫
4π Z(n,n′)I(n′)dn′ r ≤ ω̃

Ka(n)Ib(T )
1−ω̃ r > ω̃

〉
(8.16)

. Here we are using a uniform random deviate r, and an albedo-like quantity,

ω̃ = 1− Ka1(n0, s1)

K11(n0, s1)
(8.17)

, to choose between emission and scattering contributions. Note: we can’t use the actual
single-scattering albedo as this depends on the polarization state of the incident radiation. If
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r > ω̃, then the event is considered to be emission. In this case we have all the information
required to calculate the SVE,

Ii(n, s0) =
QkO(sk+1, sk)Ka(nk, sk+1)Ib(T, sk+1)

g (∆s) (1− ω̃)
(8.18)

, where O(sk+1, sk) is the evolution operator pertaining to the preceding pathlength sample,
and g (∆s), the corresponding importance sampling weight, as indicated in Eq. 8.15. The
matrix Qk, whose calculation will be described below, holds the multiplicative effect of
previous evolution operators, phase matrices, surface reflection matrices, and importance
sampling weighting factors, acting on the reversed traced multiply scattered propagation
path.

8.2.4 The scattering integral

If, in Eq. 8.16 our sampled r ≤ ω̃ , we have sampled a scattering event. In this case we
need to evaluate the scattering integral

∫
4π Z(n,n′)I(n′)dn′. Again we apply Monte Carlo

integration with importance sampling to this integral.
∫

4π
Z(n,n′)I(n′)dn′ =

∫ 2π

0

∫ π

0

Z(n,n′)I(n′)
g(θinc, φinc)

g(θinc, φinc) sin θincdθincdφinc(8.19)

≈
〈

sin θincZ(n,n′)I(n′)
g(θinc, φinc)

〉

g(θinc,φinc)

(8.20)

Given the desire to use a PDF proportional to the integrand, we choose to sample incoming
directions, n′ = (θinc, φinc) from a PDF proportional to sin θincZ(θscat, φscat, θinc, φinc).
At the scattering point sample a new incident direction (θinc, φinc) according to

g(θinc, φinc) =
Z11(θscat, φscat, θinc, φinc) sin(θinc)

K11(θscat, φscat)−Ka1(θscat, φscat)
(8.21)

, which is sampled by the rejection method as described in Liu [2001]. This sampling of
the new incoming direction for the evaluation of Eq. 8.20 leads to the calculation of the
incoming stokes vector I(n′, s) at the point of scattering s in the new incident direction n′.
We thus return to pathlength sampling and evaluation of Eq. 8.15.

8.2.5 Applying the Mueller matrices

The influence of the phase matrix and the preceding evolution operator, along with the
importance samping weights, are stored by calculating the matrix

Qk = Qk−1qk (8.22)

, where

qk =
sin(θinc)kO(sk, sk−1)Z(nk−1,nk)

g (∆s) g(θinc, φinc)ω̃
, (8.23)

and Q0 = 1. The index k represents the scattering order. The Qk is updated through
precedent scattering events and finally applied to an emission contribution (Eq. 8.18) if an
emission event is sampled in Eq. 8.16.
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8.2.6 Boundary contributions

If the kth pathlength sampled in Eq. 8.15 is beyond the top of the atmosphere or below the
earth surface, Qk is applied in

Ii(n, s0) =
QkO(uk, sk)I(nk,uk)

O11(uk, sk)
(8.24)

, where I(nk,uk) is the incoming radiance at boundary point uk. For the top of atmosphere
case, I(nk,uk) = Ispace. In ARTS it is possible to set Ispace to any value, but in most
cases this is set to the cosmic background radiance associated with a Planck temperature of
2.735K.

For the surface case, if we choose to treat the surface as a blackbody, i.e. there is
no reflection, in Eq. 8.24 we set I(nk,uk) = Isurf , where Isurf is the Planck radiance
associated with the surface temperature, Isurf = Ib (Tsurf ).

8.2.7 Surface reflection

Currently ARTS-MC can only consider specular reflection. Mostly ARTS-MC has been ap-
plied where surface reflections have a small or negligible effect on simulated remote sensing
observations.It would be a straightforward development to handle more complicated reflec-
tions. In the same way that the phase matrix is sampled to choose new incoming directions
for scattering events, we could sample the Bidirectional reflection distribution (BDRF) for
surface reflection events. In analogy with scattering and emission in Eq. 8.16, Isurf is given
by the sum of reflected and emitted radiation:

Isurf (nk,uk) = B(nk,uk) + R(nk,nk+1,uk)I(nk+1,uk)

=

∫ 1

0

{
1
R11

R(nk,nk+1,uk)I(nk+1,uk) r ≤ R11
B(nk,uk)

1−R11
r > R11

dr

≈
〈{

1
R11

R(nk,nk+1,uk)I(nk+1,uk) r ≤ R11
B(nk,uk)

1−R11
r > R11

〉

r

(8.25)

The reflection matrix R(nk,nk+1,uk) and related surface emission, B(nk,uk) are
calculated in one of several ways, as described in section [FIXME: that stuff should be
in this document but it isn’t yet]. As in Eq. 8.16, we use a uniform random deviate r; if
r > R11, where R11 is the (1,1) element of R(nk,nk+1,uk), then the event is considered
to be surface emission. In this case we have all the information required to calculate the
SVE in Eq.8.24 becomes,

Ii(n, s0) =
QkO(uk, sk)B(nk,uk)

O11(uk, sk)(1−R11)
. (8.26)

If our sampled r ≤ R11 in Eq. 8.25, then we have a surface reflection contribution,
and the incoming (downward) stokes vector I(nk+1,uk) remains unknown. As in the
scattering case we record the effect the evolution and reflection operators in the matrix
Qk = Qk−1qk, where

qk =
O(sk, sk−1)R(nk−1,nk)

O11(uk, sk)R11
(8.27)
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, and continue with another path integral (Eq. 8.15) in the direction nk+1. Since the re-
fection is specular, nk+1 is described by zenith and azimuthal angles θk+1 = π − θk and
φk+1 = φk. With regard to the scattering order k, surface reflection is considered the same
as scattering.

8.2.8 Summary

Summarizing sections 8.2.2 to 8.2.7 we see that successively nested Monte Carlo integrals
are calculated until atmospheric emission, surface emission, or top of atmosphere contribu-
tions are sampled. Mueller matrices encountered in each nested integral (evolution opera-
tors, phase matrices, reflection matrices), along with Monte Carlo weights, are recorded in
the matrix Qk. This matrix applies the Mueller matrices in the correct ‘forward’ order to
each emission or top of atmosphere contribution (Eq.s 8.18, 8.26, and 8.24). The algorithm
summarized graphically in Figure 8.2.8.

8.3 Practical considerations regarding optical properties

8.3.1 Particle orientation and the evolution operator

The calculation of the evolution operator in Eqs. 8.8 and 8.9 requires evaluation of the
matrix exponential. If the scattering particles are spheres (P10), or randomly orientated
(p20), as described in Section [FIXME], then Eq. 8.8 is simply

Ojj(s
′, s) = exp (−Kjj∆s) (8.28)

If scattering particles have rotational symmetry, and the axis of symmetry is oriented verti-
cally, or if the particles are have random azimuthal orientation (p30), as described in Sec-
tion [FIXME], then the extinction matrix has a block diagonal form with 3 independent
elements, Kjj , K12, and K34 (See section [FIXME]).

8.3.2 Particle orientation and the phase matrix

8.4 Variations on the ARTS-MC algorithm

8.4.1 The original ARTS-MC and forcing the original pathlength sample to
be within the 3D box

8.4.2 1D clear sky variables and clear sky radiance look up

8.4.3 MCIPA

8.4.4 optical path and ice water path calculations



8.4 VARIATIONS ON THE ARTS-MC ALGORITHM 105

IN
S
ID
E
A
T
M
O
S
P
H
E
R
E

S
U
R
FA

C
E
E
M
IS
S
IO
N

Ii
(n

,s
0
)
=

Q
k
O
(u

k
,s

k
)I

su
r
f
(n

k
,u

k
)

O
1
1
(u

k
,s

k
)
(1

−
R

1
1
)

T
O
P
O
F
A
T
M
O
S
P
H
E
R
E

Ii
(n

,s
0
)
=

Q
k
O
(u

k
,s

k
)I

sp
a
c
e
(n

k
,u

k
)

O
1
1
(u

k
,s

k
)

E
M
IS
S
IO
N

Ii
(n

,s
0
)
=

Q
k
O
(s

k
+
1
,s

k
)K

a
(n

k
,s

k
+
1
)I

b
(T

,s
k
+
1
)

g
(∆

s)
(1

−
ω̃
)

r
>

R
1
1
?

S
U
R
FA

C
E
R
E
F
L
E
C
T
IO
N

G
et

ne
w

in
ci
de
nt

di
re
ct
io
n
n
k
fr
om

su
r-

fa
ce

sc
he
m
e.

C
al
cu
la
te

th
e
m
at
ri
x
Q

k
=

Q
k
−
1
q
k
,
w
he
re

q
k
=

O
(u

k
,s

k
)R

(n
k
−
1
,n

k
)

O
1
1
(u

k
,s

k
)R

1
1

,

an
d
Q

0
=

1.
S
am

pl
e
a
ne
w
pa
th

le
ng
th
,
∆
s
al
on
g
th
e

ne
w
di
re
ct
io
n
us
in
g
th
e
P
D
F

g
(∆

s)
=

k̃
Õ
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Figure 8.1: Flowchart illustrating MCGeneral algorithm
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