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Chapter 1

The art of developing ARTS

The aim of this section is to describe how the program is organized and to give detailed
instructions how to make extensions. That means, it is addressed to the ARTS developers,
not the users. If you only want to use ARTS, you should not need to read it. But if you
want to make changes or additions, you should definitely read this carefully, since it
can save you a lot of work to understand how things are organized.

1.1 Organization

ARTS is written in C++ and uses the cross-platform, open-source build system CMake
(http://www.cmake.org/). It is organized in a similar manner as most GNU pack-
ages. The top-level ARTS directory is either called arts or arts—x.y, where x.y is the
release number. It contains various sub-directories, notably doc for documentation, src
for the C++ source code, The document that you are reading right now, the ARTS Developer
Guide, is located in doc/uguide.

There are two different versions of the ARTS package: The development version and
the end-user version. Both contain the complete source code, the only difference is that the
developers version is where active development takes place.

The end-user version contains everything that you need in order to compile and install
ARTS in a fairly automatic manner. The only thing you should need is an ANSI-C++
compiler, and the CMake utility. Please see files arts/README and arts/INSTALL
for installation instructions. We are aiming to support recent version of the GNU and clang
C++ compilers.

1.2 The ARTS build system

As mentioned above, CMake is used to build the ARTS package. A good introduction to
the CMake system can be found in:

http://www.cmake.org/cmake/project/about.html

History

020425  Stefan Buehler: Put this part back in the AUG. Updated.

000728  Stefan Buehler: Added stuff about build system and howto cut a release.
000615  Created by Stefan Buehler.


http://www.cmake.org/
http://www.cmake.org/cmake/project/about.html
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1.2.1 Configure options

For development, it is recommended to build ARTS using the RelWithDebInfo con-
figuration (see below), which aims to provide a reasonable trade-off between debugging
capability and performance. To use ARTS in production, however, it is important to per-
form a release build, which is therefore set as the default configuration.

—-DCMAKE BUILD TYPE=RelWithDebInfo: This is the build option that should be
used for development, as it will make it easier to track down errors in the code. It
does, however, not disable all compiler optimization, so as to still provide reasonable
performance.

-DCMAKE BUILD TYPE=Release: Removes '-g’ from the compiler flags and includes
#define NDEBUG 1 in config.h. The central switch to turn off all debugging
features (index range checking for vectors, the trace facility, assertions,...).

—-DCMAKE BUILD _TYPE=Debug: This switch turns off all optimizations. This should
only be used if the Re1WithDebInfo configuration makes debugging a given prob-
lem difficult.

—DNO_OPENMP=1: Disables the generation of multi-threaded code. CMake tries to detect
if the compiler supports OpenMP and enables it by default.

1.3 Coding conventions

With the aim of improving quality and consistency of the code, all new code that is added
to ARTS should adhere to naming and formatting conventions from Google’s C++ pro-
gramming guidelines (https://google.github.io/styleguide/cppguide.
html#Formatting). Adhering to a well-defined coding style will make it much easier
for your fellow ARTS developers to understand and work with your code. A brief summary
of the most important programming style and formatting conventions is given below.

1.3.1 Naming conventions

Naming things is one of the two hard problems in computer science. Certainly, there is no
single best way to do it and even with the best names code can still be bad. Yet still, the
consistently naming of objects in your code will make it much easier for other developers
to read and understand your code.

In general, the use descriptive names in all your code is recommended. Try to avoid
abbreviations except when they are very common. Giving proper names to objects increases
the readability of the code and decreases the need for explanatory comments.

Variables

Variable names should use lower-case letters. Words should be separated using underscores:

Index element_index

Numeric t_surface = 0.0; // common abbreviation


https://google.github.io/styleguide/cppguide.html#Formatting
https://google.github.io/styleguide/cppguide.html#Formatting
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Classes, structs and type names

Classes, structs and user-defined type names should start with a capital letter and use camel
case to separate different words.

class CovarianceMatrix {};

Class member variables

Variables that are defined as data members of classes should be suffixed with a underscore
(). This convention has the important advantage that it allows inferring the scope of vari-
ables used inside definitions of member functions.

class CovarianceMatrix {
private:
Numeric *elements_;
}i
Constant names

Names of constants should be prefixed with a lower-case k. Following words should use
camel case starting with a capital letter.

const Numeric kAlmostPi = 3.0;

Function names

Function names should start with a capital letter and words should be separated using camel
case.

volid InterpolateTo (const Vector &x_new) {

}

1.3.2 Formatting

The formatting, i.e. the layout of your code, should adhere strictly to the Google guidelines.
Google’s indentation style is also supported by the clang-format tool, which provides func-
tionality for automatic formatting. A format file for clang-format is provided in ARTS’ top-
level directory. Most development environments provide support for clang-format, which
makes following these guidelines extremely easy.

* Line length of 80 characters

* No tabs, only spaces

* 2 spaces per indentation level

* Opening brace { of function/class/struct definition and if/for blocks on the same line

* No spaces on the inner side of the parentheses of the conditional expressions of if
statements.
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1.3.3 ARTS-specific rules
Numeric types

Never use float or double explicitly, use the type Numeric instead. This is set by
CMake (to double by default). In the same way, use Index for all integers. It can
take on positive or negative values and defaults to 1ong. To change the default types, run
cmake with the options ~-DINDEX=1ong or —-DNUMERIC=double:

cmake -DINDEX=int —--DNUMERIC=float

Note that changing the numeric type to a lower precision type than double might have
unforseen impacts on the numerical precision and could lead to wrong results. In a similar
way, reducing the index type can make it impossible to handle larger Vectors, Matrices
or Tensors. The maximum range of the index type determines the maximum number of
elements the container types can handle.

1.3.4 Container types

Use Vector and Matrix for mathematical vectors and matrices (with elements of type Nu-
meric). Use Array<something> to create an array of somethings. Commonly used
Arrays have been predefined, they have names like ArrayOfString, ArrayOfMatrix, and so
forth.

1.3.5 Terminology

Calculations are carried out in the so called workspace (WS), on workspace variables
(WSVs). A WSV is for example the variable containing the absorption coefficients. The
WSVs are manipulated by workspace methods (WSMs). The WSMs to use are specified in
the controlfile in the same order in which they will be executed.

1.3.6 Global variables
Are not visible by default. To use them you have to declare them like this:
extern const Numeric PI;

which will make the global constant PI=3.14... available. Other important globals are:

full name Full name of the program, including version.

parameters All command line parameters.

basename Used to construct output file names.
out_path Output path.

messages Controls the verbosity level.

wsv_data WSV lookup data.

wsv_group_names Lookup table for the names of types of WSVs.
WsvMap The map associated with wsv_data.
md_data WSM lookup data.

MdMap The map associated with md_data.
workspace The workspace itself.

species_data Lookup information for spectroscopic species.
SpeciesMap The map associated with species_data.


https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.Vector.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.Matrix.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.Numeric.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.Numeric.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ArrayOfString.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ArrayOfMatrix.html
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The only exception from this rule are the output streams out 0 to out 3, which are visible
by default.

1.3.7 Files

Always use the open_output_file and open_input_file functions to open files.
This switches on exceptions, so that any error occurring later on with this file will result
in an exception. (Currently not really implemented in the GNU compiler, but please use it
anyway.)

1.3.8 Version numbers

The package version number is set in the VERSION file in the top level ARTS directory.
It will be incremented by the ARTS maintainers when new features or bug fixes have been
added to ARTS, not on every commit. Never change this number when working in your own
branch. The major and/or minor version number will be incremented on public releases.
The micro version indicates the addition of new features during development or bugfixes
for stable releases.

1.3.9 Header files

The global header file art s . h must be included by every file. Apart from that you have to
see yourself what header files you need. If you use functions from the C or C++ standard
library, you have to also include the appropriate header file.

1.3.10 Documentation
Doxygen is used to generate automatic source code documentation. See

http://www.stack.nl/~dimitri/doxygen/

for information. There is a complete User manual there. At the moment we only generate
the output as HTML, although latex, man-page, and rtf format is also possible. The HTML
version is particularly useful for source code browsing, since it includes the complete source
code! You should add Doxygen headers to the following:

1. Files
2. Classes (Including all private and public members)
3. Functions

4. Global Variables

The documentation headers are comment blocks that look like the examples below.

Doxygen supports several different comment block styles. Over the years, probably all
of them were used somewhere in ARTS. New code should follow the Doxygen JavaDoc
style. If you edit existing documentation, it is recommended to convert it to the current
style.


http://www.stack.nl/~dimitri/doxygen/
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File comment

Each header and source code file should contain a doxygen comment stating the original
author, creation date and a short summary of its contents.

/ * %

x Qfile dummy . cc

* (@author John Doe <john.doe (at) example.com>
@date 2011-03-02

@brief A dummy file.

This file has no purpose at all,
it just servers as an example...

X% % o X o X

Function comment

Each function should be preceeded with a doxygen comment. It starts with a brief descrip-
tion, ending with a dot. Then follows a more detailed description of the function’s purpose
and parameters.

The doxygen comment block should be put above the declaration of the function, i.e.,
in the . h file. If a function is only declared in a . cc file, the comment should be put there
instead.

If arguments are modified by the function you should add ‘[out]’ after the @param
command, just like for the parameter a in the example below. If a parameter is both input
and output, it should say ‘[in,out]’. Parameters that are not modified inside the function,
e.g. passed by value or const reference, should carry an ‘[in]’. The documentation for each
parameter should start with a capital letter and end with a period, like in the example below.

Author and date tags are not inserted by default, since they would be overkill if you
have many small functions. However, you should include them for important functions.

/*+* A dummy function.

*

* This function has no purpose at all,

* it Jjust serves as an example...

*

* @param[out] a This parameter is initialized by the function.
* @param[in,out] b This parameter is modified by the function.

* @param[in] ¢ This parameter is not changed by the function.
*

* @return Dummy value computed from a and b.
*/

int dummy (int& a, int& b, int c);

Classes and structs

Classes und structs must be preceeded by a doxygen comment describing their intent and
purpose. A short description should be provided for each member variable. Member func-
tion are documented as described in the previous section.

/x* Brief description of Foobar.
*
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* Long description of Foobar.
*/

class FooBar {

private:
/*x Number of elements. x/
Index nelem;

Doxymacs for Emacs

There is an Emacs package (Doxymacs) that makes the insertion of documentation headers
particularly easy. You can find documentation of this on the Doxymacs webpage: http:
//doxymacs.sourceforge.net/. Touse it for ARTS (provided you have it), put the
following in your Emacs initialization file:

(require 'doxymacs)
(setg doxymacs—-doxygen-style "JavaDoc")

(defun my-doxymacs—-font-lock-hook ()

(if (or (eq major-mode 'c-mode) (eq major-mode 'c++-mode))
(progn

(doxymacs—font—-1lock)

(doxymacs-mode) ) ) )

(add-hook 'font-lock-mode-hook 'my-doxymacs—font-lock-hook)

(setg doxymacs—-doxygen-root "../doc/doxygen/html/")
(setqg doxymacs—-doxygen—-tags "../doc/doxygen/arts.tag")

The only really important lines are the first two, where the second line is the one se-
lecting the style of documentation. The next block just turns on syntax highlighting for the
Doxygen headers, which looks nice. The last two lines are needed if you want to use the
tag lookup features (see Doxymacs documentation if you want to find out what this is). The
package allows you to automatically insert headers. The standard key-bindings are:

C-c d ? look up documentation for the symbol under the point.
C-c d r rescan your Doxygen tags file.

C-c d f insert a Doxygen comment for the next function.

C-c d i insert a Doxygen comment for the current file.

C-c d ; insert a Doxygen comment for a member variable on the

current line (like M-;).
C-c d m insert a blank multi-line Doxygen comment.
C-c d s insert a blank single-line Doxygen comment.
C-c d @ insert grouping comments around the current region.

You can call macros to insert certain types of doxygen comment by name:
e doxymacs—insert-file-comment

* doxymacs—-insert-function-comment

* doxymacs—insert-blank-multiline-comment

* doxymacs—insert-blank-singleline—-comment


http://doxymacs.sourceforge.net/
http://doxymacs.sourceforge.net/
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1.4 Extending ARTS

1.4.1 How to add a workspace variable

You should read Section 2.2 to understand what workspace variables are. Here is just the
practical description how a new variable can be added.

1. Create a record entry in file workspace.cc. (Just add another one of the
wsv_data.push_back blocks.) Take the already existing entries as templates. The
ARTS concept works best if WSVs are only of a rather limited number of different
types, so that generic WSMs can be used extensively, for example for 10.

The name must be exactly like you use it in the source code, because this is used to
generate interface functions.

Make sure that the documentation string you give explains the variable and its purpose
well. In particular, state the dimensions (in the case of matrices) and the units!
This string is used for the online documentation. Please take some time to write it
carefully. Use the template at the beginning of function define_wsv_data () in
file workspace. cc as a guideline.

2. That’s it!

1.4.2 How to add a workspace variable group

You should read Section 2.2 to understand what workspace variable groups are. Here is just
the practical description how a new group can be added.

1. Addawsv_group_names.push_back ("your_type") function to the function
define_wsv_group-names () in groups.cc. The name must be exactly like
you use it in the source code, because this is used to generate interface functions.

2. XML reading/writing routines are mandatory for each workspace variable group.
Two steps are necessary to add xml support for the new group:

(a) Implement an xml_read_from_stream and xml write_to_stream

function. Depending on the type of the group the implementa-
tion goes into one of the three files xml_io basic_types.cc,
xml_io_compound_types.cc, or xml_io_array_-types.cc. Ba-

sic types are for example Index or Numeric. Compound types are structures
and classes. And array types are arrays of basic or compound types. Also add
the function declaration in the corresponding . h file.

(b) Add an explicit instantiation for xml _read from_file<GROUP> and
xml_write_to_file<GROUP>to xml_io_instantiation.h.

3. If your new group does not implement the output operator (operator<<), you
have to add an explicit implementation of the Print function in m_general.h and
m_general.cc.

4. Add the group to the python interface’s main module. See the python interface de-
scription for adding new groups. Failing to add the group here will likely lead to the
inability to import the pyarts module to python. Note that there are several automatic
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5.

tests in the pytest suite to ensure that all workspace variables follow a common logic,
such as offering XML IO and being picklable, so you must ensure you are adding all
of these.

That’s it! (But as stated above, use this feature wisely)

1.4.3 How to add a workspace method

You should read Section 2.3 to understand what workspace methods are. Here is just the
practical description how a new method can be added.

1.

Create an entry in the function define_md_data in file methods.cc. (Make a
copy of an existing entry (one of the md_data.push_back (...) blocks) and edit
it to fit your new method.) Don’t forget the documentation string! Please refer to the
example at the beginning of the file to see how to format it.

Run: make.
Look in aut o_md. h. There is a new function prototype
void <YourNewMethod> (...)

Add your function to one of the . cc files which contain method functions. Such files
must have names starting with m_. (See separate HowTo if you want to create a new
source file.) The header of your function must be compatible with the prototype in
auto_md.h.

Check that everything looks nice by running
arts —-d YourNewMethod
If necessary, change the documentation string.

Thats it!

1.4.4 How to add a source code file

1.

2.

Create your file. Names of files containing workspace methods should start with m_.

You have to register your file in the file src/CMakeLists.txt. This file states
which source files are needed for arts. In the usual case, you just have to add your
. cc file to the list of source files of the artscore library. Header files are not added to
this list.

. Gotosrcandrun: git add <my_file> to make your file known to git.

1.4.5 How to add a test case

1.

Tests are located in subdirectories in the controlfiles folder. Instrument spe-
cific test cases are in the controlfiles/instruments folder, all other cases
are located in the controlfiles/artscomponents folder. Create a new sub-
directory in the appropriate folder. If your test is closely related to another test case
you can skip this step and instead add it to one of the existing subdirectories.
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2. Create your own test controlfile. The filename should start with
Test followed by the name of the subdirectory it is located in, e.g.
controlfiles/artscomponents/doit/TestDOIT.arts.

If the subdirectory contains more than one test controlfile, append a short descrip-
tive text to the end of the filename like controlfiles/artscomponents/
montecarlo/TestMonteCarloGaussian.arts.

3. Copy all required input files into the subdirectory. Input data that is shared among
several test cases should be placed in controlfiles/testdata.

4. Add an entry for your test case in controlfiles/CMakeLists.txt.

1.4.6 How to add a particle size distribution

In m_psd. cc, add a workspace method psdPsdName, where PsdName stands for the
name or name tag of the new particle size distribution (PSD) parametrization. (see Sec-
tion 1.4.3 for details). If several psdPsdName methods are based on the same algorithm,
add the algorithm as an internal function to psd. cc.

1.5 Version control

ARTS uses git for version control. The central or upstream repository is hosted on github
(https://github.com/atmtools/arts). Contributions to ARTS are handled via
pull requests on github. This is the de-facto standard workflow for open source develop-
ment, so the time required to get familiar with it is certainly a worthy investment. Con-
tributing a new feature or bug-fix to ARTS thus involves the following steps:

1. Fork the upstream repository

2. Clone the ARTS fork from your github account onto your local workstation
3. Implement your changes

4. Commit and push your changes to your ARTS fork

5. Issue a pull request to merge your ARTS fork with the central repository

6. One of the ARTS core developers will review your code and help with the final inte-
gration

The required steps are described below in more detail. Note that all of these steps are so
common to modern software development, that it is very easy to find tutorials and manuals
online that described them in more detail.

1.5.1 Forking the central repository

The forking of the central repository is through the web interface of github.com. This
will create a copy of the central repository in your account. This repository is your personal
version of the ARTS repository. You can change all you want here without breaking ARTS
for anyone else.


https://github.com/atmtools/arts
github.com
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1.5.2 Clone your ARTS fork

So far your fork of ARTS exists only in your github account somewhere in the cloud. To
really work with the code, you need to obtain a copy of the code on your local workstation.
This is done by cloning the repository from your account:

git clone https://github.com/<your_username>/arts

where your_username is the name of your github account. The important point
to note here is that you did not clone the central ARTS repository from github.com/
atmtools but the one from your account. As explained above, this is your personal
version of the ARTS repository and you can do anything you want with it.

1.5.3 Update your fork

One consequences of the forking of the central ARTS repository is that the fork in your own
github account will not automatically be updated when changes are made to the upstream
repository. Before checking in your changes into your repository it is therefore important
that you update your repository with the most recent changes made to the upstream reposi-
tory. For this two steps are required:

1. Register the upstream repository as remote repository for your local clone of your
ARTS fork:

git remote --add upstream https://github.com/atmtools/arts
2. Rebase your code onto the newest changes from the upstream repository:

git fetch upstream master
git rebase -1 upstream/master

The first step here needs to be performed only the first time you are going through
this process. Afterwards only the second step is required. A detailed description of
the rebase step can be found at https://www.atlassian.com/git/tutorials/
rewriting-history/git—-rebase.

1.5.4 Commit and push your changes

After implementing your changes, commit and push them to your ARTS fork. The changes
are now publicly available from your github account. Note that at this point you can already
share your code with others or across different machines. It has, however, not yet been
integrated into the upstream repository. That means your changes are not yet affecting
regular users of the ARTS development version.

1.5.5 Issuing a pull request

Once your changes have been pushed to the ARTS repository in your github account, you
can issue a pull request. This is done most easily through the github web interface. This will
notify the ARTS core developers that you want to integrate your changes into the upstream
repository. On issuing your pull request, the ARTS test-suite will be run on your code. If
all tests pass, an ARTS core developer will review your code and finally merge it into the
central repository.


github.com/atmtools
github.com/atmtools
https://www.atlassian.com/git/tutorials/rewriting-history/git-rebase
https://www.atlassian.com/git/tutorials/rewriting-history/git-rebase
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1.6 Debugging (use of ARTS _ASSERT)

The idea behind ARTS_ASSERT is simple. It exists to stop program execution at times
when the precondition or post-condition of the function is not met. Suppose that at a certain
point in your code, you expect two variables to be equal. If this expectation is a precondi-
tion that must be satisfied in order for the subsequent code to execute correctly, you must
ARTS_ASSERT it with a statement like this:

ARTS_ASSERT (varl == var2);
or
ARTS_ASSERT (varl == wvar2, "(",varl,", ",var2,")")

In general ARTS_ASSERT takes as argument a boolean expression followed by any
number of arguments that the developer wants to pass along to the output operator in case
the assertion is invoked. If the boolean expression is true, execution continues. Other-
wise a C++ std: :runtime_error is invoked and the program execution is stopped. If
a bug prevents the precondition from being true, then you can trace the bug at the point
where the precondition breaks down instead of further down in execution or not at all. The
ARTS_ASSERT call is implemented as a C preprocessor macro, so it can be enabled or
disabled at will.

In ARTS, you don’t have to do this manually. Instead, assertions are turned on and
off with the global NDEBUG preprocessor macro, which is set or unset automatically by
the cmake build configuration. Assertions are enabled in the default cmake build con-
figuration (-DCMAKE BUILD_TYPE=RelWithDebInfo). They are turned off in the
release configuration (-DCMAKE_BUILD_TYPE=Release) and in native configuration
(-DCMAKE_BUILD_TYPE=Native).

If your program is stopped by an assertion failure, then the first thing you should do is
to find out where the error happens. To do this, run the program under the GDB debugger.
First invoke the debugger:

gdb arts

You have to give the full path to the ARTS executable. Then set a breakpoint at the assertion
failure:

(gdb) break __assert_fail
(Note the two leading underscores!) Now run the program:
(gdb) run

Instead of just exiting, under the debugger the program will be paused when the asser-
tion fails, and you will get back the debugger prompt. Now type:

(gdb) where

to see where the assertion failure happened. You can use the print command to look at
the contents of variables and you can use the up and down commands to navigate the stack.
For more information, see the GDB documentation or type help at the prompt of GDB.
For ARTS, the assertion failures mostly happen inside the Tensor / Matrix / Vector
package (usually because you triggered a range check error, i.e., you tried to read or write
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beyond array bounds). In this case the up command of GDB is particularly useful. If you
give this a couple of times you will finally end up in the part of your code that caused the
error.

Recommendation: In Emacs there is a special GDB mode. With this you can very
conveniently step through your code.

1.7 Debugging (use of ARTS USER_ERROR IF)

The ARTS_USER_ERROR_IF command should be used whenever the validity of the pro-
gram being able to produce expected output is compromised by direct user input. This
helps the user debug their controlfiles, python scripts, or C++ API usage. Developing
ARTS, you should use these devotedly to ensure that the user input is correct and can
be understood by all internal functions called by a user-facing method. Invocation of
ARTS_USER_ERROR_IF is not a bug in ARTS per se but an indication that some calcu-
lations will fail at a later stage given the user input.

The interface is exactly the same as for ARTS_ASSERT, however the expectation is that
the first boolean argument is false for the program execution to stop. As for the assertions,
you can pass any number of arguments to the output operator, however, as opposed to the
assertions, you are not allowed to pass no arguments because the user needs to be able to
understand what s/he did wrong.

The ARTS_USER_ERROR_IF command is also implemented as a macro and can be
turned off manually by passing ~-DNO_USER_ERRORS=1 to cmake. Note that this is not
recommended and that the kinds of errors that it can cause to ARTS execution is beyond
the responsibility of the ARTS developers and that we do not even try to understand what
might happen. It might speed up execution times, however, so it is provided for users that
need all possible speed-ups.
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Chapter 2

The workspace

This chapter deals with the main components of ARTS: Workspace variables (WSVs) and
workspace methods (WSMs). Furthermore, it explains the use of agendas, a special group
of WSVs.

2.1 Implementation files

The most important files are:

* workspace.cc:
Definition and documentation of WSVs.

* methods.cc:
Definition and documentation of WSMs. The implementations of WSMs reside in
files named m_something.cc.

* agendas.cc:
Definition and documentation of agendas.

It is very likely that you will have to edit these. Less likely, but possibly, you also have to
edit:

* groups.cc:
Definition of WSV groups.

When ARTS is built, a number of source code files are generated automatically. They
are listed here in the order in which they are generated:

* auto_workspace.h:
Generated from groups . cc.

* automd.h, auto_md.cc:
Generated from auto_workspace.h, agendas.cc, groups.cc, and
methods.cc.

History
110622  Updated by Oliver Lemke.
020605 Created by Stefan Buehler.
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This is achieved by a set of simple C++ programs:
* make_auto_workspace_h.cc
* make_automd-h.cc
* make_auto.md_-cc.cc

The meaning of the names should be self-explanatory. There is one program for each file
to be generated. The generation of the auto_ files happens automatically when you do a
make. Therefore, never edit any of these files.

Next, there are some files that contain the internal implementation of WSVs and WSMs.
These are:

* wsv_aux.h:
Implementation of class WsvRecord, which stores the lookup information for one
WSV, plus auxiliary stuff for the workspace.

* methods.h,methods_aux.cc:
Implementation of class MdRecord, which stores the lookup information for one
WSM.

Finally, there are some files that contain the internal implementation of agendas. These
are:

* agenda_class.h,agenda_class.cc:
Implementation of class MRecoxrd, which stores runtime information for one WSM,
and class Agenda, which stores an agenda.

* agenda_record.h, agenda_record.cc:
Implementation of class AgRecord, which is used to store agenda lookup informa-
tion.

As mentioned above, you will not have to modify any of the implementation files, they
are listed here just for reference. Normally, you only have to modify workspace. cc,
methods.cc, and agendas. cc.

2.2 Workspace Variables or WSVs

All important variables in ARTS are WSVs. This means that they can be manipulated by a
list of WSMs, which is specified in the ARTS controlfile. There exists a predefined list of
possible WSVs. This list defines the workspace. One can think of each WSV as a ‘slot’ in
the workspace: The WSV can be either set, or unset. Set means that the WSV has a well-
defined content, unset means that it has no well-defined content. At the start of an ARTS
job all WSVs are unset.

WSVs are defined in the file workspace . cc. A typical definition looks like this:

wsv_data.push_back
(WsvRecord
( NAME ( "f_grid" ),
DESCRIPTION
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"The frequency grid for monochromatic pencil beam\n"
"calculations.\n"

" \n"
"Usage: Set by the user.\n"
"w \n"
"Unit: Hz"
),
GROUP ( "Vector" )));

All WSV definitions have the same three elements:
1. The name, exactly the same name has to be used in the code.

2. The description, which is normally much longer than in the example here. It must
fully describe the WSV, its purpose, and its normal usage. See file workspace.cc
for instructions how to write the documentation.

3. The group to which the WSV belongs. You can think of a group as something similar
to a C++ data type. The WSV in the example belongs to the group Vector. The
allowed groups are defined in file groups. cc.

See Section 1.4 for explicit instructions how to add a new WSV to ARTS.

2.3 Workspace Methods or WSMs

WSMs manipulate WSVs to produce other WSVs. There are three kinds of WSMs:
1. Specific WSMs.
2. Generic WSMs.
3. Agenda WSMs.

As in the case of WSVs, there is a central place in ARTS where information on the available
WSMs is stored. This place is the file methods . cc. It contains a record for each WSM.
Here is an example:

md_data_raw.push_back
( MdRecord
( NAME ( "r_geoidSpherical" ),

DESCRIPTION

(
"Sets the geoid to be a perfect sphere.\n"
"\I'l"
"The radius of the sphere is selected by the generic argument r.\n"

)I

AUTHORS ( "Patrick Eriksson" ),

OUT ( "r_geoid" ),

GOUT (),

GOUT_TYPE (),

GOUT_DESC (),

IN( "atmosphere_dim", "lat_grid", "lon_grid" ),

GIN( "r" ),


https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.Vector.html
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GIN_TYPE ( "Numeric" ),
GIN_DEFAULT ( NODEF ),
GIN_DESC( "Radius of the geoid sphere."),

) )i

All WSM definitions have the same elements:

1.
2.

10.

11.

The NAME, exactly as in the code.

The DESCRIPTION. This must fully describe the WSM, its purpose, and its normal
usage. See file methods . cc for instructions how to write the documentation.

The OUT. This is a list of WSV names. All these WSVs are set by this WSM.

. The GOUT. This is a list descriptive names for the generic outputs.

. The GOUT_TYPE. This is a list of WSV group names. This defines the group to

which the generic output arguments must belong (see below).

. The GOUT_DESC, a list of short descriptions for the generic outputs.

The IN. This is a list of WSV names. All these WSVs are required as input by this
WSM. This means they must have been set before.

The GIN, a list of descriptive names for the generic inputs.

. The GIN_TYPE. This is a list of WSV group names. This defines the group to which

the generic input arguments must belong.

The GIN_DEFAULT, a list of default values for the generic inputs. NODEF means that
the generic input has no default and the user has to set it in the control file.

The GIN_DESC, a list of short descriptions for the generic inputs.

2.3.1 Specific WSMs

md_data_raw.push_back

(

MdRecord
( NAME ( "p_gridFromGasAbsLookup" ),
DESCRIPTION
(
"Sets *p_gridx to the frequency grid of =xabs_lookupx.\n"
) 14
AUTHORS ( "Patrick Eriksson" ),
OUT( "p_grid" ),
GOUT (),
GOUT_TYPE (),
GOUT_DESC (),
IN( "abs_lookup" ),
GIN(),
GIN_TYPE (),
GIN_DEFAULT (),
GIN_DESC ()
)) i
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For this type of WSM the output and input is fixed. Fields GIN and GOUT are empty.
The example above belongs in this category. It sets the WSV p_grid, using the WSV
abs_lookup as input.

To call this method in the controlfile, you just have to write p_gridFromGasAbsLookup.

2.3.2 Generic WSMs

This class of WSMs is more powerful, because it can be applied to any WSV that belongs
to the right group. A good example is:

md_data_raw.push_back
( MdRecord
( NAME ( "VectorSetConstant" ),

DESCRIPTION

(
"Creates a vector and sets all elements to the specified value.\n"
"\1’1"

"The vector length is determined by *nelemx.\n"
)I

AUTHORS ( "Patrick Eriksson" ),

ouT (),

GOUT ( "y ),

GOUT_TYPE ( "Vector" ),

GOUT_DESC( "Variable to initialize." ),

IN( "nelem" ),

GIN ( "value" ),
GIN_TYPE ( "Numeric" ),
GIN_DEFAULT ( NODEF ),
GIN_DESC ( "Vector value." )

)) i

As you probably have guessed, this WSM resizes the output vector to have nelem elements
and sets all elements to the given value. You would use it as follows:

IndexSet (nelem, 10)
VectorCreate (myvector)
VectorSetConstant (myvector, nelem, 0)

This would create the WSV myvector and then fill it with 10 elements set to 1.
Note that output arguments always come first, input arguments last. Try arts -d
VectorSetConstant to get more information on this method. (See Section 1.2.3 in
ARTS User Guide for information on the built-in documentation.)

For basic types it is allowed to pass values instead of variables directly to the WSM. In that
case, the above example would look like this:

VectorCreate (myvector)
VectorSetConstant (myvector, 10, 0)


https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.p_grid.html
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2.3.3 Agenda WSMs
2.4 Agendas

2.4.1 Introduction

Agendas are a special incarnation of a WSM. At runtime an arbitrary number of WSMs
can be added to an agenda. On invocation, the agenda will execute its methods one after
the other. The inputs and outputs defined for the agenda must be satisfied by the invoked
WSMs. E.g., if an agenda has f_grid in its list of output WSVs, a WSM which generates
f_grid must be added to the agenda in the control file.

Agendas run their methods in a separate scope. Although WSMs invoked by an agenda
have full access to all workspace variables, only the WSVs defined as output of the agenda
will keep their values after the agenda execution. All other WSVs retain the values from
before the agenda run.

Even though it is possible to execute agendas directly from the control file with the
AgendaExecute method, the more common and intended use case is the internal invocation
by other WSMs. This adds a considerable amount of flexibility to arts. The iyEmissionStan-
dard method for example calculates (besides other components) the emission term. Without
the means of an agenda, it would only be possible to use always the same method for the
emission calculation. By the use of an agenda the user can choose between different meth-
ods to calculate the emission and plug them into the emission agenda in the control file:

AgendaSet ( blackbody\_radiation\_agenda ) {
blackbody\_radiationPlanck
}
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Chapter 3

Vectors, matrices, tensors, and arrays

This section describes how arbitrary-rank “tensor” classes are implemented in ARTS and
how their objects can be used. Furthermore it describes how arrays of arbitrary type can be
constructed and used.

3.1 Implementation files

The arbitrary-rank “’tensor” classes are implemented in the src/matpack/ folder. The
implementation is done through template programming, meaning that the logic for how to
use the objects is similar even though the rank may change. Common for all of these types
though is that the rank of the object has to be known at compile time.

There are two template classes that represents objects owning their own data. The
template class that knows both its rank and exact size at compile time is implemented in
matpack_constexpr.h. The template class that only knows its rank at compile time
but has to allocate memory at runtime is implemented in matpack_data.h.

There are also two template classes representing a view of the data. The tem-
plate class that views a piece of data with known rank and size is implemented also in
matpack_constexpr.h. The template class that views data of known rank but unknown
size at compile time is implemented in matpack_view.h.

All four of these will be described more below.

The template class Array (also described below) is implemented in the file array. h.

The Sparse class is described in the file matpack_sparse.h.

3.2 Arbitrary rank ’tensor”’ — matpack

This section describes ranked data in ARTS. We call template classes of our arbitrary data
template class with rank above 2 “Tensor”, though we fully admit that they do not conform
to all the ideas that a mathematical tensor would. The intent is that they should, but we are

History

030807  Sparse added by Mattias Ekstrom.

030109 Documentation for using jokers without Range added by Stefan Buehler.
020516  Tensors added by Stefan Buehler.

011018  Created and written by Stefan Buehler.
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limited by the use that we have had of them, so further extensions that come at no cost to
the quality of the current implementation is highly welcome. We use the term ”Vector” to
describe a rank 1 realization of the template class. We use the term “Matrix” to describe a
rank 2 realization of the template class. These rank 1 and 2 objects do more closely follow
the mathematical description of vectors and matrices, such as supporting the dot-product
and matrix-vector, and matrix-matrix multiplications.

As the most common underlying type to perform computations on in ARTS is Numeric,
the rank 1 class representing Numeric is called Vector and the rank 2 class is called Matrix.
We do not name types above rank 7. Ranked classes representing Numeric between rank
3 and rank 7 are called Tensor3, Tensor4, Tensor5, Tensor6, and Tensor7, respectively.
These are all the named types, each of which have their sizes known only at runtime. It is
important to be aware that re-interpolating a Tensor7 requires a rank 14 object, however,
so the information in this section also applies to versions of the class that are only named
internally.

Under the hood, the implementation for these classes is based on C++23
std: :mdspan and the C++26 proposal for std: : submdspan. The intent is that you
should be able to interact with these objects as if they were actually of the template class
std: :mdspan. Note that neither of these C++ standards are actually available as of yet
(nb., 2023-02-28), so the details under the hood relies on the Kokkos implementation (which
represents what got accepted for C++23 and what is proposed for C++26).

The underlying data type when the size of the data is known at compile time is
std: :array and the underlying data type when the size of the data is known only at
runtime is std: : vector. Again, it is our intent that we should expose as much of these
the underlying data type’s behavior in the interface to our own classes as possible.

In short there are two intents of these codes:

1. Represent any data that we might need in ARTS in a concise, fast, and mathematically
meaningful way.

2. Offer a functional interface that matches the C++ standard interface as closely as
possible.
3.2.1 Defining the template classes

These template classes can own data or view data. The size of the data can be known at
compile time or not. This subsection goes through the common type and their used names
inside ARTS.

matpack_constant_data — owning and constant size

The data owning template class for the type that knows its size at compile time is called

template <typename T, Index... alldim>
struct matpack_constant_data;

It will hold a type T that can be any type that can be held by std: : array and it will have
a rank N that is as many Index that you define in the place of al1dim. Here are a few
examples to help you understand:

// An object "a" that holds 5 Numeric as a vector:
matpack_constant_data<Numeric, 5> a;
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// An object "a2" that holds 1,2,3,4,5 as Numeric as a vector:
matpack_constant_data<Numeric, 5> a2{1,2,3,4,5};

// An object "b" that holds 6 Index as a 3x2 matrix:
matpack_constant_data<Index, 3, 2> b;

// An object "b" that holds 1,2;3,4;5,6 Index as a 3x2 matrix:
matpack_constant_data<Index, 3, 2> b{l,2,3,4,5,6};

// An object "c" that holds 120 Complex as a 5x4x3x2 tensor 4:
matpack_constant_data<Complex, 5, 4, 3, 2> c;

Note that while the name might be confusing, the “constant” part here refers to “constant
size”. The “const” and “constexpr” properties of C++ still has to be applied to make the
data actually not mutable.

These are the named versions of these types inside ARTS:

« THERE ARE NO TYPES EXPLICITLY NAMED YET

matpack_constant_view — non-owning and constant size

The template class that does not own its data but points at a compile time constant size of
data is called

template <typename T, bool constant, Index... alldim>
struct matpack_constant_view;

Both T and alldim are the same as above. The new boolean argument constant
is held to tell the type if it can mutate its data or not. Generally, you should try to
not construct a type like this manually but instead rely on access-patterns to a higher
or same rank matpack_constant_data or matpack_constant_view to generate
the type as need be. You can do so by using the access or call operators provided by
matpack_constant_data. Note also that you can always create a constant==true
object if you have a constant==fal se object, but that this is irreversible within the type
system.
These are the named versions of these types inside ARTS:

* THERE ARE NO TYPES EXPLICITLY NAMED YET

matpack _data — owning and runtime size

The data owning template class that does not know its size but its rank at compile time is
called

template <typename T, Index N> class matpack_data;

Unlike the other data owning object, the size of the data is invariant in most operations by
keeping the underlying allocated data constant. This has to be dealt with on a function-by-
function basis to keep the rest of the class working. As for the constant data type, the value
type will be a T — that is possible to be held by a std: : vect or — but the rank is defined
explicitly as N. Rank O objects are not allowed. The sizes of the object has to at some point
be given during runtime. Here are a few examples to help you understand:
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// An object "a" as a rank 1 vector of unknown size:
matpackt_data<Numeric, 1> a;

// An object "a2" as a rank 1 vector of current size 5:
matpackt_data<Numeric, 1> a2(5);

// An object "a3" as a rank 1 vector of current size n:
extern Index nj;
matpackt_data<Numeric, 1> a3 (n);

// An object "b" that holds 6 Index as a 3x2 matrix:
matpack_data<Index, 2> b (3, 2);

// An object "b2" that holds 6 Index as a 3x2 matrix all of value 1:
matpack_data<Index, 2> b2(3, 2, 1);

// An object "c" that holds 120 Complex as a 5x4x3x2 tensor 4:
matpack_data<Complex, 4> c(5, 4, 3, 2);

Note that the same number of Index as the rank of the object has to be given to the construc-

tor for the created object to have an immediate size. If an additional argument is given, it is

converted to type T and set as the value for all of the elements of the tensor. Since the data

is only known at compile time, these objects can all be resized calling the member function

resize. From the example above, calling a.resize (5) ; gives the object the size 5.
These are the named versions of these types inside ARTS:

Name Value Type T Rank N
Vector Numeric 1
Matrix Numeric 2
Tensor3 Numeric 3
Tensor4 Numeric 4
Tensor5 Numeric 5
Tensor6 Numeric 6
Tensor7 Numeric 7
ComplexVector Complex 1
ComplexMatrix Complex 2

matpack_view — non-owning and runtime size

Likewise, the template class that does not own its data but points to runtime allocated set of
data is called

template <typename T, Index N, bool constant, bool strided>
class matpack_view;

All of T, N and constant are as defined above but because of both legacy and practical
reasons, we need an additional boolean argument here: strided. Sometimes the mem-
ory layout in hardware of data is not contiguous or exhaustive, that is you cannot expect
that as long as you are within the total size of the object, that the next data point is al-
ways offset by the same step size. A good example of a strided vector is all the real values
from a complex-valued vector; standard implementations of complex values guarantees that
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the real value is next to the imaginary value in memory, so the next real value is atleast 2
steps away. In analogy for matpack_constant_view, the recommended way to cre-
ate a matpack_view is same or higher ranks of matpack_data or matpack_view.
We also allow viewing a single T as the underlying via explicit conversion. Also as for
matpack_constant_view, you can generate a constant view from a non-constant but
never the reverse. The same is true for strided views: you are able to generate a strided view
from a exhaustive view but never a exhaustive view from a strided view. Be aware that a
matpack_data type is neither constant nor strided, which is why these properties are left
to the type system and not to the type itself.
These are the named versions of these types inside ARTS:
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Name Value Type T Rank N constant strided
VectorView Numeric 1 false true
MatrixView Numeric 2 false true
Tensor3View Numeric 3 false true
Tensor4View Numeric 4 false true
Tensor5View Numeric 5 false true
TensoréView Numeric 6 false true
Tensor/7View Numeric 7 false true
ComplexVectorView Complex 1 false true
ComplexMatrixView Complex 2 false true
ConstVectorView Numeric 1 true true
ConstMatrixView Numeric 2 true true
ConstTensor3View Numeric 3 true true
ConstTensor4View Numeric 4 true true
ConstTensor5View Numeric 5 true true
ConstTensor6View Numeric 6 true true
ConstTensor7View Numeric 7 true true
ConstComplexVectorView Complex 1 true true
ConstComplexMatrixView Complex 2 true true
ExhaustiveVectorView Numeric 1 false false
ExhaustiveMatrixView Numeric 2 false false
ExhaustiveTensor3View Numeric 3 false false
ExhaustiveTensor4View Numeric 4 false false
ExhaustiveTensor5View Numeric 5 false false
ExhaustiveTensor6View Numeric 6 false false
ExhaustiveTensor7View Numeric 7 false false
ExhaustiveComplexVectorView Complex 1 false false
ExhaustiveComplexMatrixView Complex 2 false false
ExhaustiveComplexTensor3View Complex 3 false false
ExhaustiveConstVectorView Numeric 1 true false
ExhaustiveConstMatrixView Numeric 2 true false
ExhaustiveConstTensor3View Numeric 3 true false
ExhaustiveConstTensor4View Numeric 4 true false
ExhaustiveConstTensor5View Numeric 5 true false
ExhaustiveConstTensor6View Numeric 6 true false
ExhaustiveConstTensor/7View Numeric 7 true false
ExhaustiveConstComplexVectorView  Complex 1 true false
ExhaustiveConstComplexMatrixView  Complex 2 true false
ExhaustiveConstComplexTensor3View Complex 3 true false

3.2.2 Access operations of the template classes
The access patterns we allow currently are through these types
* Index — an integer, e.g., "row 5”

* Range — a strided range of values, e.g., "row 1 until row 5, every other item”
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* Joker — an entire dimension, e.g., "all rows”

Since the constant size data and view types cannot be strided, they make use only of Index
and Joker. The runtime size data make use of all three types. If the access operation
would logically reduce the rank to 0, instead of returning a rank O object, something of
the underlying value type T is returned. Generally, this is a copy of the value if the object
is constant or a reference to the value if the object is mutable. Otherwise, if the access
operation does not completely reduce the rank of the object, a view of the remaining rank
is returned. Don’t worry, there are examples below.

Constant size access

There are only two ways to access constant data:

// "a" from earlier example:
matpack_constant_data<Numeric, 5> a;

al0] = 3; // Set the first element of "a" to three
a(l) 4; // Set the second element of "a" to four

// "b" from earlier example
matpack_constant_data<Index, 3, 2> Db;

b(0, 0) = 3; // Set row 0 col 0 of b to 3
b(0, 1) = 4; // Set row 0 col 1 of b to 4

// ¢ is now a matpack_constant_view<Index, false, 2>
auto ¢ = b(l, joker);

// Set the second element of "c¢" to five. b(l, 1) is also 5.
cl[l] = 5;

// We can only access from the left to remain exhaustive so
// we can Jjust skip all the jokers and do

auto d = b[2];

// So that the type of "d" is the same as the type of "c"

const auto e = a; // Create a constant of "a"

// We can do the same accessing as before to create a
// matpack_constant_view<Index, true, 2>
auto £ = e[1];

// But if we try to write to the data we get a compile-error
// The error is difficult to predict, but it will either say
// that writing to a constant is not allowed or that the

// requirements of "not constant" is not fulfilled

f[0] = 2; // compilation error

The same access pattern works for the template class that owns and the template class that
does not own the view of the data
Runtime size access

The access operators for the runtime sized data can be any combination of the three access-
ing types above or just the square-bracket to access the inner-view. Note that the way you
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access an object may change the type returned in subtle ways. Examples:

// For a Vector
Vector a(b);

a[joker] = Vector(5, 1); // Set all of "a" to 1
alll] = 3; // Set the second element of "a" to 3
a[Range (2, 2, 1)] = 4; // Set the 3rd+4th element of "a" to 4

// What are the return types?

al[0]l; // This is a Numeric!

a[joker]; // This is an ExhaustiveVectorView!
a[Range (2, 2, 1)1; // This 1s a VectorView!

// For a Matrix:
Matrix b (3, 2);

b(0, 0) = 10; // Sets b at row 0 and col 0 to 10
b[1l] = 3; // Set b(l, 0) and b(l, 1) to 3
b (joker, 1) = 2; // Set b(0, 1), b(l, 1), and b(2, 1) to 2

// What are the return types?
b(0, 0); // This is a Numeric!

b (
b (1,
bl[1l];
b (
b(

joker, joker); // This is an ExhaustiveMatrixView!

joker);
1; // These are ExhaustiveVectorView!

joker, 0); // This is a VectorView!
1, Range (0, 1)); // This is a VectorView!

These access concepts are extendible the any rank. Note that the last example contains
exhaustive data layout but the returned type is not exhaustive. That is because any access
with range can only be determined at runtime if it is strided or not, but the interface is strict
with regards to types in C++.

It is up to the developer to ensure that you never access out-of-bounds elements. To get

the extent of a dimension we have these member functions

* extent (i) — get the size of the i:th left-most dimension, e.g., rows for¢ = 1 on a

matrix

* nelem — get the size of a rank 1 tensor

* ncols — get the size of the right-most dimension of a rank 2 or higher tensor

* nrows — get the size of the right-most bar 1 dimension of a rank 2 or higher tensor
* npages — get the size of the right-most bar 2 dimension of a rank 3 or higher tensor
* nbooks — get the size of the right-most bar 3 dimension of a rank 4 or higher tensor

* nshelves — get the size of the right-most bar 4 dimension of a rank 5 or higher

tensor

* nvitrines — get the size of the right-most bar 5 dimension of a rank 6 or higher

tensor

* nlibraries — get the size of the right-most bar 6 dimension of a rank 7 or higher

tensor
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* shape — get the sizes of all dimensions of a rank N tensor as a N-long array of
indices

To get the stride of a given dimension, we offer the member function stride (i) for the
stride of dimension 1 or strides to get the all the strides of a rank N tensor as a N-long
array of indices.

3.2.3 Iterate over elements for faster execution time

All template classes in this part of matpack gives 2 very important and very different types
of iterators: elementwise and subviews. This allows us to write composable code that works
for any and all types. For instance

Vector a({1, 2, 3, 4, 5}); // "a" is {1, 2, 3, 4, 5}
for (auto&& x: a) {

x = sin(x); // update x to the sin of itself
} // "a" is {sin(1l), sin(2), sin(3), sin(4), sin(5)}

Note that we have a shorter way of writing this that also could generate better runtime:

Vector a ({1, 2, 3, 4, 5}V); // "a" is {1, 2, 3, 4, 5}
matpack::transform(a, sin, a);

You can read the implementation of transform in matpack_math.h. Here the input and
output is the same, and both are Vector, but this works for any types as long as their total
size is the same. Even if the two types have a different rank...

For matrices, this works a little bit different:

Matrix b(3, 2, 1); // A matrix of {1, 1; 1, 1; 1, 1}
for (auto&& a: b) {

a[0] = 3; // Set the first element of "a" to 3
} // Will now have a matrix of {3, 1; 3, 1;, 3; 1}

This happens because the begin and end iterator pairs are dereferenced to a lower rank
view. This works for any higher rank tensor as well, so a tensor of rank 5 views the pair of
iterators as a tensor view of rank 4, for example. Remember that constness and stridedness
is preserved or decayed-towards in these operations, so the iterators of a constant view can
only ever be constant and the iterator of a strided view can only ever return a strided view
when dereferenced. But iterators of non-constant and non-strided can be dereferenced to
constant or strided views.

Note also that sometimes we just want to do something with all of the elements. For
rank 1 tensors, this is the same, but rank 2 and higher ranked tensors behave differently.
This is actually the trick to t ransform above, we have a pair of iterators elem begin
and elem_end that loops over the individual elements of the tensor. Several functions
and members of the template classes make use of this feature. Again, the recommendation
is to see matpack_math.h as it uses many of these iterators for solving various simple
transformation and reduction problems (e.g., sum, min, transform, etc...).

The subsection also claims that you get faster execution times using these iterators. This
is of course necessary to test on a case-by-case basis. The main benefit we have found in
our testing is for exhaustive data and views. In several settings, the compiler seems to emit
SIMD code for these exhaustive types. Depending on your operating system and compiler
settings, this means some operations may be 2-4 times faster for exhaustive objects when
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operated upon by element-wise iterator logic. If you use index access or view iterators some
additional calculations to get to the internal value element is needed, which might prevent
such SIMD optimizations.

3.2.4 Mathematical and logical operations

All of the normal element-wise mathematical operations are available for objects of the
same rank and shape as well as for scalar operations:

Vector a({1,2,3,4,5});
a += 1; //a: {213/41516}

a —-= 2; // a = {0,1,2,3,4}

a x= 3; // a = {0,3,6,9,12}

a /= 2; // a = {0,1.5,3,4.5,6}
Matrix b(2, 2, 1); // b= {1,1;1,1}
Matrix c(2, 2, 2); // c = {2,2;2,2}
b +=Db; // b={2,2;2,2}

c x=c; // c = {4,4;4,4}

b /= c; // Db {0.5,0.5;0.5,0.5}

c -=Db; // c={3.5,3.5;3.5,3.5}

We also offer more linear algebra implementations in the 1in_.alg.h, lin.alg.cc,
matpack math.h, and matpack_eigen.h files. The first two of these files support
operations such as LU decomposition, solving of linear systems, matrix inversions and diag-
onalizations, matrix exponents, and similar. The matpack_math.h file contains matrix-
vector, matrix-matrix, and dot-product like features as well as a few statistical functions.
The matpack_eigen.h file wraps vectors and matrices with the Eigen3 library so that
more direct math works. Be careful using these convenience functions as they can slow
down code that would be faster if the direct LAPACK-call is used.

Matrix multiplication:

// Matrix—-Vector:
Vector b(a.nrows()), c(a.ncols());
mult (b, a,c); // b =a*x c

// Matrix—-Matrix:
Matrix d(a.nrows(),5), e(a.ncols(),5);
mult (d, a,e); // d = a x e

Note, that the result is put in the first argument, consistent with the general ARTS policy,
but different from the old MTL based multiplication function. Furthermore note, that as you
can see from the first example, a Vector is always considered to be a 1-column Matrix.

Important: The matrices or vectors that you give for the three arguments must not
overlap, or you will get garbage. In particular, this means that

mult (x,Vv,X); // x =y * x FORBIDDEN!!!

does not work. No, even worse: It works, but it gives the wrong result. The reason for this
behavior is that the result is constructed in the first argument variable. If that is also an input
variable it will change while it is multiplied, which will lead to a different result. There is
no efficient way to detect overlap, so the only way to allow input and output arguments to
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be identical would be to use another internal dummy variable to store the result. However,
this would be much less efficient.

Another thing: You can use transpose, of course. These two examples should obviously
give the same result:

// Define b and c¢ as in first example above.
mult (¢, transpose(a),b); // ¢ =a' xb

// Vector—-Matrix:
mult (transpose (c), transpose (b),a); // ¢c' = Db' * a

3.2.5 Notes on minimizing runtime overhead

This is just a list of reminders that anyone coming back to read this should be aware of.
There is no specific order to these recommendations, and they are probably hardware bound,
so take these with a grain of salt but look at the list as a ”best practices” example.

Exhaustive or not? During the implementation of the modern iteration of matpack, we
found that exhaustive views of the data often perform between 2-5 times faster than strided
views. The cost is of course that you have to implement the function twice if you even end
up having to call it with a strided view. Your choice!

3.3 Arrays

The template class Array can be used to make arrays out of anything. I do not know a
good definition for ‘array’, but I guess anybody who has written a computer program in
any programming language is familiar with the concept. Of course, it is rather similar to
the concept of a Vector, just missing all the mathematical functionality like Matrix-Vector
multiplication and sub-range access.

The implementation of our Array class is based on the STL class std: :vector,
whereas the implementation of our Vector class is done from scratch. So the two imple-
mentations are completely independent. Nevertheless, I tried to make Array behave con-
sistently with Vector, as much as possible. There are a number of important differences,
though, hopefully sufficiently explained in this part. A short summary of important differ-
ences:

* An Array can contain elements of any type, whereas a Vector always contains ele-
ments of type Numeric.

* No mathematical functionality for Array (no sub-ranges (nothing like VectorView);
no +=, -=, *=, /=; no scalar product; no t rans form function; no mult function; no
transpose function).

* On the other hand, resizing (for example adding to the end) of an Array is ok. (See
the push_back method below.) It is still rather expensive, though, at least for large
Arrays.
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3.3.1 Constructing an Array
You can construct an object of an Array class like this:

Array<Index> a; // Empty Array of class Index.

Array<String> b (5); // String Array with 5
// elements. Without initialization,
// elements contain random values.
Array<String> c(5,"x"); // The same, but fill with "x"

Array<Index> d=a; // Make d a copy of a;
Array<String> a{"ARTS",
"iS",

"great"}; // Creates an array of String
// with these 3 elements.

There are already a lot of predefined Array classes. The naming convention for them
is: ArrayOfIndex, ArrayOfString, etc.. Normally you should use these predefined
classes. But if you want to define an Array of some uncommon type, you can do it with
‘<>’, as in the above examples.

3.3.2 What you can do with an Array

All examples below assume that a is an ArrayOfString.

Resize:

a.resize(5);

This adjusts the size of a to 5. Resizing is more efficiently implemented than for Vector,
but still expensive.

Get the number of elements:

cout << a.nelem(); // Just as for Vector.

In particular, note that the return type of this method is Index, just as for Vector. This
is an extension compared to std::vector, which just has a method size () that returns the
positive integer type size_t.

Element access:

cout << al[3]; // Print 4th element.
a[0] = "Hello"; // Assign string "Hello" to first element.

In other words, this works just like for Vector.

Copying Arrays:

This works also the same as for Vector. The size of the target must match! In this respect,
I have modified the behavior with respect to the underlying std::vector, which has different
copy semantics.


https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.Index.html
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Assigning a scalar of the base type:

a = "Hello"; // Assign string "Hello" to all elements.

Append to the end:

a.push_back ("Hello"); // Adds this new element at the
// end of a.

This can be an expensive operation, especially for large Arrays. Therefore, use it with
care. Actually, the push_back method comes from the std: : vector class that Array
is based on. You can do a lot more with std: :vector, all of which also works with
Array. However, to explain the Standard Template Library is beyond the scope of this
text. You can read about it in C++ or even dedicated STL textbooks.

3.4 Sparse matrices

The class Sparse implements the mathematical concept of a matrix, same as Matrix does,
but the data is stored in a different manner. Sparse offers a memory saving storage when
most of the matrix is filled with zeros. This means that:

* A Sparse contains floating point values of type Numeric.

* The values are arranged in rows and columns in the same ways as for ordinary matri-
ces, in row-major order.

* A Sparse can be multiplied with a Vector, a Matrix or with another Sparse.
* There exist no views for Sparse.
* Resizing a Sparse is expensive and should be avoided.

To calculate the maximum number of non-zero elements for efficient storage, take the
product of number of columns and number of rows, subtract the number of columns plus
one and then divide by two, (nnz < 0.5 X (ncols x nrows — (ncols + 1)).

3.4.1 Constructing a Sparse

You can construct an object of class Sparse in any of these ways:

Sparse aj; // Create empty Sparse.
Sparse b (3,4); // Create Sparse with 3 rows
// and 4 columns. When
// created like this it will
// contain only zeros, i.e.
// be an empty Sparse.

Sparse d=c; // Make d a copy of c.

3.4.2 What you can do with a Sparse

All examples below assume that a is a Sparse.
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Identity matrix:

a.resize(10,10);
id_mat (a);

This sets a to be the identity matrix of size 10 x 10 (10 rows and 10 columns). Using this
function is much faster than setting the diagonal elements to one by yourself. Note that a
must be a square matrix.

Resize:

a.resize(5,10);

This makes a a 5 x 10 Sparse (5 rows, 10 columns). Note that the previous content will be
completely lost. The new Sparse will be empty.

Get the number of rows, columns or non-zero elements:

cout << a.nrows();
cout << a.ncols();
cout << a.nnz();

Element access:

There are two different ways to access individual elements. One used for read only and
one for read and write. The distinction is necessary since the read and write method creates
elements if they don’t already exist. Note that we use 0-based indexing. For reading only
use:

cout << a.ro(3,4); // Print that element. If it
// it doen't exist a zero will
// be printed.

cout << a(0,0); // Short version of the above.

For reading and writing, such as assigning values to elements, use:

a.rw(0,0) = 1.5; // Assigns the value 1.5 to the
// first row and first column.
cout << a.rw(0,0); // Also returns the value of the
// first row and first column,
// 1f the element doesn't exist
// it will be created and set
// to zero.

Copying Matrices:

Sparse b;
b = a;

The copying of matrices is implemented as deep copy. That means that the complete object
is duplicated including all elements in the matrix. The resulting matrices are completely
independent of each other, but depending on a this may require considerable amount time
and memory.
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Transpose:

The function t ranspose works a bit differently for Sparse than for Vector and Matrix.
This is due to the fact that we don’t have any views for Sparse. Thus, transpose for
a Sparse creates a new Sparse variable that contains the transpose of the original Sparse,
whereas t ranspose for a Matrix just creates a transposed view of the original Matrix.

The target variable for the transposed Sparse has to have the right dimensions before the
function is called.

Sparse b(a.ncols(),a.nrows());
transpose (b, a) ; // Make b the transpose of a.
// Note the argument order!

Matrix addition and subtraction:

The sums and differences of sparse matrices with the same dimensions can be computed
as follows:

Sparse b(a.nrows(),a.ncols());
Sparse c(a.nrows(),a

add( c, a, b )); //

Q
Il
o))
+
o

a += b; // a = + b
sub( c, a, b ); // c=a->b
a —= b; // a=a-Db

Scaling of sparse matrices:

Sparse matrices can be scaled by scalar factors as follows:

a *
a /

* a

2.0; // a= 2.
2.0 0. * a

0
; /) a = 5

Note that the /= scales the matrix by the reciprocal of the given scalar factor.

Matrix multiplication:

// Sparse-Vector
Vector b(a.nrows()), c(a.ncols());
mult (b, a,c); // b =a % c

// Sparse-Matrix
Matrix d(a.nrows(),5), e(a.ncols(),5);
mult (d, a,e); // d = a * e

// Sparse-Sparse
Sparse f(a.nrows(),5), g(a.ncols(),5);
mult (f,a,qg); // £ =axg

The result is put in the first argument, consistent with the Matrix class. Note that for the
Sparse — Matrix multiplication the output is a Matrix. Important: As for Matrix, the
matrices or vectors that you give for the three arguments must not overlap, or you will
get garbage.
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Chapter 4

Gridded Fields

This section describes how gridded fields are implemented in ARTS and how they are used.
Gridded fields consist of a data object like a Vector, Matrix, or Tensor and a grid for each
dimension of its data. For example, a GriddedField1 consists of one grid and a Vector,
whereas a GriddedField3 contains three grids and a Tensor3. Grids can be either numeric,
like a pressure grid, or strings, like channel names.

4.1 Implementation files

The GriddedFieldl, GriddedField2, GriddedField3, GriddedField4 classes and their com-
mon base class GriddedField described below reside in the files:

* gridded_fields.h

e gridded_fields.cc

4.2 Design

4.2.1 The abstract base class GriddedField

The abstract base class GriddedField implements the properties all gridded fields
have in common. These are mostly the methods to create, set, and access the grids. A
GriddedField is never instantiated directly.

4.2.2 Inheritance

The GriddedFieldX classes use indirect inheritance to combine a data object with the
grids, see Figure 4.1.

History
2010-09-28  Oliver Lemke: Updated for implementation changes.
2010-04-12 Created and written by Oliver Lemke.
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Figure 4.1: UML diagram of gridded field inheritance.

4.3 Constructing Gridded Fields

4.3.1 Creation

Each GriddedFieldX offers two constructors. One default constructor that creates an
unnamed gridded field and a second constructor that takes a string with the name of the
gridded field as an argument.

GriddedFieldl gfone("I'm a GriddedFieldl");
GriddedField2 gftwo;

gftwo.set_name ("I'm a GriddedField2");

4.3.2 Initializing the grids

Once a gridded field has been created, we can start setting up the grids. There are two
different types of grids, a numeric grid and a string grid. In the following example we set
up two gridded fields: A GriddedFieldl with a numeric grid and a GriddedField2 with a
numeric grid for the rows and a string grid for the columns. Each grid can be assigned a
name to describe its contents or unit.

Vector gfonegrid(1,5,1); // gfonegrid = [1,2,3,4,5]
gfone.set_grid (0, gfonegrid); // Set grid for the vector elements.

Vector gftwogridO0(1,5,1); // gftwogrid0 = [1,2,3,4,5]
ArrayOfString gftwogridl{"Chanl", "Chan2", "Chan3"};

gftwo.set_grid (0, gftwogrid0); // Set grid for the matrix rows.
gftwo.set_grid(l, gftwogridl); // Set grid for the matrix columns.

gfone.set_grid_name (0, "Pressure");

gftwo.set_grid_name (0, "Pressure");
gftwo.set_grid_name (1, "Channel");

4.3.3 Initializing the data

The data of a GriddedFieldX can be accessed through its data member. For a Grid-
dedField] data is a Vector, for a GriddedField2 a Matrix, for a GriddedField3 a Tensor3,


https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.GriddedField1.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.GriddedField2.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.GriddedField1.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.GriddedField1.html
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and so on.
The following code shows how to fill the gridded fields from the previous example with
data:

Vector avector(1l,4,0.5); // avector = [1,1.5,2,2.5]
gfone.data = avector;
Matrix amatrix(5,3,4.); // amatrix = [[4,4,4]1,104,4,41,...]

gftwo.data = amatrix;

4.3.4 Consistency check

After initializing or changing either the grids or the data, it can happen that the size of the
grids does not match the size of the data anymore. Each gridded field provides a conve-
nience function which can be called to perform a consistency check.

if (!'gfone.checksize())
cout << gfone.get_name ()
<< ": Sizes of grid and data don't match" << endl;

// This should fail!
if (!'gftwo.checksize())
cout << gftwo.get_name ()
<< ": Sizes of grids and data don't match" << endl;

The complete source code of the examples from this chapter can be found in
src/test_gridded_fields.cc.
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Chapter 5

Interpolation

There are no general single-step interpolation functions in ARTS. Instead, there is a set of
useful utility functions that can be used to achieve interpolation. Roughly, you can separate
these into functions determining grid position arrays, functions determining interpolation
weight tensors, and functions applying the interpolation. Doing an interpolation thus re-
quires a chain of function calls:

1. gridpos (one for each interpolation dimension)
2. interpweights
3. interp

Currently implemented in ARTS is multilinear interpolation in up to 6 dimensions. (Is the
6D case called hexa-linear interpolation?) The necessary functions and their interaction will
be explained in this chapter.

5.1 Implementation files

Variables and functions related to interpolation are defined in the files:
* interpolation.h
* interpolation.cc

* test_interpolation.cc

The first two files contain the declarations and implementation, the last file some usage
examples.

5.2 Green and blue interpolation

There are two different types of interpolation in ARTS:

History
100204  Added documentation of grid checking functions by Stefan Buehler.
020528  Created by Stefan Buehler.
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Figure 5.1: The two different types of interpolation. Green (dotted): Interpolation to a new
grid, output has same dimension as input, in this case 2D. Blue (dashed): Interpolation to a
sequence of points, output is always 1D.

Green Interpolation: Interpolation of a gridded field to a new grid.
Blue Interpolation: Interpolation of a gridded field to a sequence of positions.

Figure 5.1 illustrates the different types for a 2D example.

The first step of an interpolation always consists in determining where your new points
are, relative to the original grid. You can do this separately for each dimension. The posi-
tions have to be stored somehow, which is described in the next section.

5.3 Grid checking functions

Before you do an interpolation, you should check that the new grid is in-
side the old grid. (Or only slightly outside.) = You can use the convenience
function chk_interpolation_grids for this purpose, which resides in file
check_input.cc. The function has the following parameters:

const Stringé& which_interpolation A string describing the
interpolation for which
the grids are intended.

ConstVectorView old_grid The original grid.
ConstVectorView new_grid The new grid.
const Numericé& extpolfac The extrapolation fraction.

See gridpos function for
details. Has a default
value, which is consistent
with gridpos.

There is also a special version for the case that the new grid is just a scalar. What the
function does is check if old and new grid for an interpolation are ok. If not, it throws a
detailed runtime error message.

The parameter extpol fac determines how much extrapolation is tolerated. Its default
value is 0.5, which means that we allow extrapolation as far out as half the spacing of the
last two grid points on that edge of the grid.

The chk_interpolation_grids function is quite thorough. It checks not only the
grid range, but also the proper sorting, whether there are duplicate values, etc.. It is not
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completely cheap computationally. Its intended use is at the beginning of workspace meth-
ods, when you check the input variables and issue runtime errors if there are any problems.
The runtime error thrown also explains in quite a lot of detail what is actually wrong with
the grids.

5.4 Grid positions

A grid position specifies where an interpolation point is, relative to the original grid. It
consists of three parts, an Index giving the original grid index below the interpolation point,
a Numeric giving the fractional distance to the next original grid point, and a Numeric giving
1 minus this number. Of course, the last element is redundant. However, it is efficient to
store this, since it is used many times over. We store the two numerics in a plain C array of
dimension 2. (No need to use a fancy Array or Vector for this, since the dimension is fixed.)
So the structure GridPos looks like:

struct GridPos {

Index idx; /x1< Original grid index below
interpolation point. x/

Numeric f£d[2]; /+x1< Fractional distance to next point
(0<=fd[0]<=1), £d[1l] = 1-£fd[0]. =*/

}i

For example, i dx=3 and £d=0.5 means that this interpolation point is half-way between
index 3 and 4 of the original grid. Note, that ‘below’ in the first paragraph means ‘with a
lower index’. If the original grid is sorted in descending order, the value at the grid point
below the interpolation point will be numerically higher than the interpolation point. In
other words, grid positions and fractional distances are defined relative to the order of the
original grid. Examples:

old grid = 2 3
new grid = 2.25
idx =0
£d[0] = 0.25
old grid = 3 2
new grid = 2.25
idx =0
£fd[0] = 0.75

Note that £d[0] is different in the second case, because the old grid is sorted in de-
scending order. Note also that 1 dx is the same in both cases.

Grid positions for a whole new grid are stored in an Array<GridPos> (called
ArrayOfGridPos).

5.5 Setting up grid position arrays

There is only one function to set up grid position arrays, namely gridpos:

void gridpos( ArrayOfGridPosé& gp,
ConstVectorView old_grid,
ConstVectorView new_grid
const Numeric& extpolfac=0.5 );
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Some points to remember:
* As usual, the output gp has to have the right dimension.

* The old grid has to be strictly sorted. It can be in ascending or descending order. But
there must not be any duplicate values. Furthermore, the old grid must contain at least
two points.

* The new grid does not have to be sorted, but the function will be faster if it is sorted
or mostly sorted. It is ok if the new grid contains only one point.

* The beauty is, that this is all it needs to do also interpolation in higher dimensions:
You just have to call gridpos for all the dimensions that you want to interpolate.

* Note also, that for this step you do not need the field itself at all!

 If you want to use the returned gp object for something else than interpolation, you
should know that gridpos guarantees the following:
For the ascending old grid case:

old_grid[tgp.idx]<=tng || tgp.idx==
And for the descending old grid case:
old_grid[tgp.idx]>=tng || tgp.idx==

* Finally, note that parameter extpolfac plays the same role as explained above in
Section 5.3.

5.6 Interpolation weights

As explained in the ‘Numerical Recipes’ [Press et al., 1997], 2D bi-linear interpolation
means, that the interpolated value is a weighted average of the original field at the four
corner points of the grid square in which the interpolation point is located. Taking the
corner points in the order indicated in Figure 5.2, the interpolated value is given by:

y(t,u) = (I1—t)*x(1—u)*xy
+tx (1 —u)*yo
+(1—t)*xux*xys
+Txu*xyy
= wi kY1 + wz kY2 + w3 x Y3z + wa* Ya (5.1

where ¢ and u are the fractional distances between the corner points in the two dimensions,
y; are the field values at the corner points, and w; are the interpolation weights.

(By the way, I have discovered that this is exactly the result that you get if you first
interpolate linearly in one dimension, then in the other. I was playing around with this a bit,
but it is the more efficient way to pre-calculate the w; and do all dimensions at once.

How many interpolation weights one needs for a multilinear interpolation depends on
the dimension of the interpolation: There are exactly 2" interpolation weights for an n
dimensional interpolation. These weights have have to be computed for each interpolation
point (each grid point of the new grid, if we do a ‘green’ type interpolation. Or each point
in the sequence, if we do a ‘blue’ type interpolation).
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Figure 5.2: The grid square for 2D interpolation. The numbers 1...4 mark the corner points,
IP is the interpolation point, ¢ and u are the fractional distances in the two dimensions.

This means, calculating the interpolation weights is not exactly cheap, especially if one
interpolates simultaneously in many dimensions. On the other hand, one can save a lot by
re-using the weights. Therefore, interpolation weights in ARTS are stored in a tensor which
has one more dimension than the output field. The last dimension is for the weight, so this
last dimension has the extent 4 in the 2D case, 8 in the 3D case, and so on (always 2").

In the case of a ‘blue’ type interpolation, the weights are always stored in a matrix, since
the output field is always 1D (a vector).

5.7 Setting up interpolation weight tensors

Interpolation weight tensors can be computed by a family of functions, which are all called
interpweights. Which function is actually used depends on the dimension of the input
and output quantities. For this step we still do not need the actual fields, just the grid
positions.

5.7.1 Blue interpolation
In this case the functions are:

void interpweights( MatrixView itw,
const ArrayOfGridPos& cgp );
void interpweights ( MatrixView itw,
const ArrayOfGridPos& rgp,
const ArrayOfGridPos& cgp );
void interpweights( MatrixView itw,
const ArrayOfGridPosé& pgp,
const ArrayOfGridPosé& rgp,
const ArrayOfGridPos& cgp );
void interpweights ( MatrixView itw,
const ArrayOfGridPosé& vgp,
const ArrayOfGridPosé& sgp,
const ArrayOfGridPosé& bgp,
const ArrayOfGridPos& pgp,
const ArrayOfGridPosé& rgp,
const ArrayOfGridPos& cgp );

In all cases, the dimension of i tw must be consistent with the given grid position arrays
and the dimension of the interpolation (last dimension 2"). Because the grid position arrays
are interpreted as defining a sequence of positions they must all have the same length.
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5.7.2 Green interpolation

In this case the functions are:

void interpweights( Tensor3View itw,
const ArrayOfGridPosé&
const ArrayOfGridPos&
void interpweights( Tensor4View itw,
const ArrayOfGridPos&
const ArrayOfGridPosé&
const ArrayOfGridPosé&
void interpweights( Tensor5View itw,
const ArrayOfGridPos&
const ArrayOfGridPos&
const ArrayOfGridPos&
const ArrayOfGridPosé&
void interpweights( Tensor6View itw,

const
const
const
const
const

ArrayOfGridPosé&
ArrayOfGridPosé&
ArrayOfGridPosé&
ArrayOfGridPosé&
ArrayOfGridPosé&

void interpweights( Tensor7View itw,

const
const
const
const
const
const

ArrayOfGridPosé&
ArrayOfGridPosé&
ArrayOfGridPosé&
ArrayOfGridPosé&
ArrayOfGridPosé&
ArrayOfGridPosé&

rgp,
cgp );

pap,
rap,
cgp )i

bgp,
Pap,
rgpl
cgp )i

Sgpl
bgp,
Pgp,
rgpl
cgp )i

Vgpl
sgpl
bgp,
PapP,
rgpl
cgp )i

In this case the grid position arrays are interpreted as defining the grids for the inter-
polated field, therefore they can have different lengths. Of course, itw must be consistent
with the length of all the grid position arrays, and with the dimension of the interpolation

(last dimension 2").

5.8 The actual interpolation

For this final step we need the grid positions, the interpolation weights, and the actual fields.
For each interpolated value, the weights are applied to the appropriate original field values
and the sum is taken (see Equation 5.1). The interp family of functions performs this

step.

5.8.1 Blue interpolation

void interp( VectorView ia,
ConstMatrixView itw,
ConstVectorView a,
const ArrayOfGridPosé& cgp);

vold interp( VectorView ia,
ConstMatrixView itw,
ConstMatrixView a,

const ArrayOfGridPosé& rgp,
const ArrayOfGridPos& cgp);
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void interp( VectorView

ConstMatrixView
ConstTensor3View
const ArrayOfGridPosé&
const ArrayOfGridPos&
const ArrayOfGridPos&

void interp( VectorView

ConstMatrixView
ConstTensor4View
const ArrayOfGridPosé&
const ArrayOfGridPos&
const ArrayOfGridPos&
const ArrayOfGridPos&

void interp( VectorView

ConstMatrixView

ConstTensor5View

const ArrayOfGridPos&
const ArrayOfGridPos&
const ArrayOfGridPos&
const ArrayOfGridPosé&
const ArrayOfGridPos&

void interp( VectorView

ConstMatrixView

ConstTensor6View

const ArrayOfGridPosé&
const ArrayOfGridPosé&
const ArrayOfGridPos&
const ArrayOfGridPos&
const ArrayOfGridPos&
const ArrayOfGridPosé&

5.8.2 Green interpolation

void

void

void

void

interp( MatrixView

interp(

interp(

interp(

ConstTensor3View
ConstMatrixView

const ArrayOfGridPos&
const ArrayOfGridPos&
Tensor3View
ConstTensor4View
ConstTensor3View
const ArrayOfGridPos&
const ArrayOfGridPos&
const ArrayOfGridPos&
Tensor4View
ConstTensor5View
ConstTensor4View
const ArrayOfGridPos&
const ArrayOfGridPos&
const ArrayOfGridPos&
const ArrayOfGridPosé&
TensorbView
ConstTensor6View
ConstTensor5View

ia,
itw,

pap,
rgp,

cgp) i

ia,
itw,

bgp,
jslejelt
rgp,

cgp) i

ia,
itw,

Sgpl
bgp,
jslej i
rgp,

cgp) i

ia,
itw,

vgp,
sgp,
bgp,
Pap,
rgpl

cop) ;

ia,
itw,

rgp,

cgp) i

ia,
itw,

pap;,
rgp,

cgp) i

ia,
itw,
al

bgp,
Pgp,
rgpl

cgp) ;

ia,
itw,
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const ArrayOfGridPos& sgp,
const ArrayOfGridPos& bgp,
const ArrayOfGridPosé& pgp,
const ArrayOfGridPos& rgp,
const ArrayOfGridPosé& cgp)

~.

void interp( Tensor6View ia,
ConstTensor7View itw,
ConstTensor6View a,

const ArrayOfGridPos& vgp,
const ArrayOfGridPosé& sgp,
const ArrayOfGridPos& bgp,
const ArrayOfGridPos& pgp,
const ArrayOfGridPosé& rgp,
const ArrayOfGridPosé& cgp);

5.9 Examples

5.9.1 A simple example
This example is contained in file test_interpolation.cc.

void test05()
{

cout << "Very simple interpolation case\n";

Vector og(l,5,+1); // 1, 2, 3, 4, 5
Vector ng(2,5,0.25); // 2.0, 2,25, 2.5, 2.75, 3.0

cout << "Original grid:\n" << og << "\n";
cout << "New grid:\n" << ng << "\n";

// To store the grid positions:
ArrayOfGridPos gp(ng.nelem());

gridpos (gp, 09, ng) ;
cout << "Grid positions:\n" << gp;

// To store interpolation weights:

Matrix itw(gp.nelem(),2);

interpweights (itw, gp);

cout << "Interpolation weights:\n" << itw << "\n";
// Original field:

Vector of (og.nelem(),0);

of[2] = 10; // 0, 0, 10, 0, O

cout << "Original field:\n" << of << "\n";

// Interpolated field:
Vector nf(ng.nelem());

interp(nf, itw, of, gp);



5.9 EXAMPLES 49

}

cout << "New field:\n" << nf << "\n";

Ok, maybe you think this is not so simple, but a large part of the code is either setting up
the example grids and fields, or output. And here is how the output looks like:

Very simple interpolation case
Original grid:

1 2 3 4 5

New grid:

2 2.25 2.5 2.75 3

Grid positions:

1
.25 0.75
.5 0.5
.75 0.25
11 0

e
o o oo

Interpolation weights:

1 0

0.75 0.25
0.5 0.5
0.25 0.75

0 1

Original field:

0 0 10 0 0

New field:

0 2.5 5 7.5 10

5.9.2 A more elaborate example

What if you want to interpolate only some dimensions of a tensor, while retaining others?
— You have to make a loop yourself, but it is very easy. Below is an explicit example for a
more complicated interpolation case. (Green type interpolation of all pages of a Tensor3.)
This example is also contained in file test_interpolation.cc.

void test04 ()

{

cout << "Green type interpolation of all "
<< "pages of a Tensor3\n";

// The original Tensor is called a, the new one n.

// 10 pages, 20 rows, 30 columns, all grids are: 1,2,3

Vector a_pgrid(1,3,1), a_rgrid(1,3,1), a_cgrid(1,3,1);

Tensor3 a( a_pgrid.nelem(),
a_rgrid.nelem(),
a_cgrid.nelem() );

a = 0;

// Put some simple numbers in the middle of each page:

a(0,1,1) = 10;

a(l,1,1) 20;

a(2,1,1) = 30;

// New row and column grids:
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// 1, 1.5, 2, 2.5, 3

Vector n_rgrid(l1,5,.5), n_cgrid(l,5,.5);

Tensor3 n( a_pgrid.nelem(),
n_rgrid.nelem(),
n_cgrid.nelem() );

// So, n has the same number of pages as a,
// but more rows and columns.

// Get the grid position arrays:
ArrayOfGridPos n_rgp (n_rgrid.nelem()); // For rows.

ArrayOfGridPos n_cgp (n_cgrid.nelem()); // For columns.

gridpos( n_rgp, a_rgrid, n_rgrid );
gridpos( n_cgp, a_cgrid, n_cgrid );

// Get the interpolation weights:
Tensor3 itw( n_rgrid.nelem(), n_cgrid.nelem(), 4 );
interpweights ( itw, n_rgp, n_cgp );

// Do a "green" interpolation for all pages of a:
for ( Index 1=0; i<a.npages(); ++1i )

{
// Select the current page of both a and n:

ConstMatrixView ap = a( i,

Range (joker), Range (joker) );
MatrixView np = n( i,

Range (joker), Range (joker) );

// Do the interpolation:
interp( np, itw, ap, n_rgp, n_cgp );

// Note that this is efficient, because interpolation

// weights and grid positions are re-used.

cout << "Original field:\n";

for ( Index i=0; i<a.npages(); ++i )
cout << "page " << 1 << ":\n"
<< a(i,Range (joker),Range (joker)) << "\n";

cout << "Interpolated field:\n";
for ( Index i=0; i<n.npages(); ++1i )
cout << "page " << 1 << ":\n"
<< n(i,Range (joker),Range (joker)) << "\n";

}
The output is:

Green type interpolation of all pages of a Tensor3
Original field:
page 0:

0 0 0

0 10 0
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0 0 0
page 1:
0 0 0
0 20 0
0 0 0
page 2:
0 0 0
0 30 0
0 0 0
Interpolated field:
page O:
0 0 0 0 0
0 2.5 5 2.5 0
0 5 10 5 0
0 2.5 5 2.5 0
0 0 0 0 0
page 1:
0 0 0 0 0
0 5 10 5 0
0 10 20 10 0
0 5 10 5 0
0 0 0 0 0
page 2:
0 0 0 0 0
0 7.5 15 7.5 0
0 15 30 15 0
0 7.5 15 7.5 0
0 0 0 0 0

5.10 Higher order interpolation

Everything that was written so far in this chapter referred to linear interpolation, which uses
two neighboring data points in the 1D case. But ARTS also has a framework for higher
order polynomial interpolation. It is defined in the the file

* matpack/interp.h

5.10.1 Weights

We define interpolation order O as the order of the polynomial that is used. Linear interpo-
lation, the ARTS standard case, corresponds to O = 1. O = 2 is quadratic interpolation,
O = 3 cubic interpolation. The number of interpolation points (and weights) for a 1D in-
terpolation is O + 1 for each point in the new grid. So, linear interpolation uses 2 points,
quadratic 3, and cubic 4.

As a special case, interpolation order O = 0 is also implemented, which means ‘nearest
neighbor interpolation’. In other words, the value at the closest neighboring point is chosen,
so there is no real interpolation at all. This case is particularly useful if you have a field that
may be interpolated in several dimensions, but you do not really want to do all dimensions
all the time. With O = 0 interpolation and a grid that matches the original grid, interpolation
can be effectively ‘turned off” for that dimension.
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Note, that if you use even interpolation orders, you will have an unequal number of
interpolation points ‘to the left’ and ‘to the right’ of your new point. This is an argument
for preferring O = 3 as the basic higher order polynomial interpolation, instead of O = 2.

Overall, higher order interpolation works rather similarly to the linear case. The main
difference is that grid positions for higher order interpolation are stored in an object of type
my_interp: :Lagrange<>, instead of GridPos. A my_interp::Lagrange<>
object contains the grids first index, interpolation weights for all interpolation points, and
on demand the linear derivative of the interpolation at the grid position. For each point in
the new grid, there is 1 index, O + 1 weights, and 0 or O + 1 weight derivatives.

The my_interp: :Lagrange<> type is a template and requires instantiation upon
use of several compile-time parameters. The template signature is:

template <
Index PolyOrder=-1,
bool do_derivs=false,
GridType type=GridType::Standard,
template <cycle_limit lim> class Limit=no_cycle>
requires (test_cyclic_limit<Limit>())
struct Lagrange;

The PolyOrder Index informs the type about its interpolation order. If it is negative,
the object’s polynomial order is determined at runtime. If it is positive, the value of the
polynomial order has been determined at compile time. The difference between runtime
and compile time objects is that you tend to to get orders of magnitude faster execution
times if the value is known at compile time.

The do_derivs bool tells the type to also compute the derivatives of the weights. If
this is false, fewer calculations are performed but you cannot compute the derivatives. In
general, computing the derivatives add an overhead of in worst case 2, as there’s often quite
a lot less work to do to compute the derivatives.

The shortcodetype GridType selects the grid transformation. GridType is described
more below for options, but there are two special grid types that are important to distinguish:
cyclic and non-cyclic grid types. If the type is inherently cyclic, special care is taken to cycle
the indices and weights so that you can interpolate over the “borders” of the input vector
grid.

The template <cycle_limit 1lim> class Limit template class over
the 1lim cycle_limit determines the cyclicity of the grid. It has to be
my_interp::no_cycle for all non-cyclic grids. The template class itself is very sim-
ple. It needs to be possible to instantiate the class with cycle_limit: :lower and
cycle_limit: :upper such that the class has a static constexpr Numeric
member called bound. If the class is instantiated with the cycle_ limit::lower,
the value of bound must be strictly lower than the value of the class as in-
stantiated by cycle_limit: :upper. Three examples of cyclic bounds are
provided as my_interp::cycleml80.pl80, my_-interp::cycle_0_p360, and
my_interp::cycle_0_p2pi, which respectively represents the cyclic bounds of
[—180, 180), [0, 360), and [0, 27).

In contrast to GridPos, my_interp: :Lagrange<> stores weights 1x rather than
fractional distances £d. For the linear case:

Ix[0] = £d[1]
Ix[1] = £d4[0]
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So the two concepts are almost the same. Because the 1x are associated with each
interpolation point, they work also for higher interpolation order, whereas the concept of
fractional distance does not.

The weights along any dimension is calculated according to

o @) - )
b= 11 = rem) 62

mj

where f is a grid scaling function and « is a combination of sign-reversal and cyclic minima.
The f can be a logarithm, reverse cosine, circular constraints, or, most commonly, just the
input. The provided options are part of the my_interp: : GridType enum class and are:

Standard f(t) =t. u(t) =t.

Cyclic f(t) =t+mn(t1 —to), where ¢ <t + n(c1 —cp) < c1, with n as an integer and
[co, ¢1) as the cyclic limits so that g (co) = g (co + m [c1 — ¢p]) holds true for a valid
function ¢(¢) and any integer m. u(t) = t + X. X is found as whichever has the
absolute minimum of ¢t 4+ ¢y — ¢, t, ort + ¢y — cq.

Log f(t) =1In(t), wheret > 0. u(t) =t.
Logl0 f(t loglo( ), where t > 0. u(t) = t.

Log2 f(t g (t), where t > 0. u(t) = t.

t

75t), where —90 < t < 90. u(t) =t.

(1
in (t),

SinRad f (¢

(
(

SinDeg f(
( where —7/2 <t < /2. u(t) = t.
(

) =
)=
)
)
)

CosDheg f(t

0s (155 [180 — #]), where 0 < ¢ < 180. u(t) = —t.

CosRad f(t) =cos(m —t), where 0 <t < . u(t) = —t.

The derivatives are computed as

l' .
ZO: % if z#w
Xr—X : . . . .
- 1L 70 st if omAd, G i# 0 (53)
i=0 T —; Hm:() { i‘ﬂ z i omei i if z=ua4

Note that the upper branch speedup is only available for Standard and for Cyclic code.
Other cases must use the lower branch to get linear derivatives.

Instead of gridpos, you have to use the constructor my_interp: : Lagrange<>
for higher order interpolation with a single interpolation point, and
my_-interp::lagrange_interpolation_list<my_-interp::Lagrange<>>
for multiple outputs. The constructor requires a start-position guess, the value at
which to interpolate towards, and the original grid as inputs. In the version of
my_interp::Lagrange<> that has its polynomial order determined at runtime,
and addition number representing this polynomial order has to also be passed (so that the
choice of runtime rather than compile time polynomial order is explicit). The multiple
outputs function takes the new grid followed by the old grid as arguments. Again, the
runtime polynomial order has to also explicitly be set when the runtime when calling this
function. An optional but crucial final parameter can be passed to the function to determine
if the extrapolation outside of a grid is acceptable. By default, the new grid is only allowed
to be half a step size beyond the upper and lower edges of the old grid.
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5.10.2 Interpolation

So far we have not computed any interpolation but just the weights. For the interpolation,
the code using one or more (list of) my_interp: :Lagrange<> can both mimic, but
also differs in parts significantly from, the linear interpolation discussed above. Perhaps the
most important difference is that there are no blue interpolation schemes. This was not used
anywhere at the time of implementation, so it was deemed less useful. Instead, there are
only two types of interpolation offered: full interpolation that goes from a N-dimensional
tensor input to a scalar, and full re-interpolation that goes from one N-dimensional tensor
and outputs another N-dimensional tensor. Note that we say “scalar” and not Numeric,
because we can handle a much wider variety of input value type, perhaps most notable

Complex.
The call order after you have a list of (lists of) my_interp: : Lagrange<> is simple.
Given lag. .. as this list and in as the input field, the call-order for scalar interpolation

18

auto itw interpweights (lag...);

auto out = interp(in, itw, lag...);

where out is a scalar. It is very important that the rank of in is the same as the count of the
number of lag. ... If you want to have the derivative instead of the interpolation along
some dimension dim, the call is

auto ditw = dinterpweights<dim> (lag...);
auto dout interp(in, itw, lag...);

where again dout is a scalar but now represents the derivative along the select dimension.
The dim must be O or higher but strictly less than the rank of in. The two interpolation
weight tensors itw and ditw will here have the rank as in with a shape that is the polyno-
mial order plus one in the same order as 1ag. . .. It is possible to pre-allocate these sizes
and call these two functions directly with d/itw as the first input. For re-interpolation, the
call order is very similar

auto ritw = interpweights(lag...);
auto rout = reinterp(in, itw, lag...);

where rout is a tensor the same rank as in. If you want to have the derivative instead of
the interpolation along some dimension dim, the call is

auto dritw = dinterpweights<dim> (lag...);
auto drout = reinterp(in, itw, lag...);

where again drout is a tensor the same rank as in but now represents the derivative along
the select dimension. The rank of ritw and dritw is twice that of the rank of in. The
inner half of the shape is exactly the same as in the scalar interpolation. The outer half of
the shape is the same as the length of the lists that makes up the 1ag. . ..

Note that for convenience and for an unknown effect on the speed of the calculations,
it is optional to compute the interpolation weights. You can call interp and reinterp
directly, omitting the calls to interpweights and dinterpweights. We are to this
date (2023-02-27) not sure what that does to execu5Stion speed and cannot give any recom-
mendation either way on how to use it. Different compilers seem to prefer different solu-
tions, so it is better for code consistency to stick with the same approach as the gridpos
does of demanding a call to interpweights and dinterpweights first.
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5.11 Summary

Now you probably understand better what was written at the very beginning of this chapter,
namely that doing an interpolation always requires the chain of function calls:

1. gridpos or my_interp::Lagrange<> or
my_interp::lagrange_interpolation_list<> (one for each inter-
polation dimension)

2. interpweights
3. interporreinterp

If you are interested in how the functions really work, look in file interpolation.cc
ormatpack/interp.h. The documentation there is quite detailed. When you are using
interpolation, you should always give some thought to whether you can re-use grid positions
or even interpolation weights. This can really save you a lot of computation time. For
example, if you want to interpolate several fields — which are all on the same grids — to
some position, you only have to compute the weights once. However, also be aware that
sometimes reallocating might be preferred to passing views.
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Chapter 6

Integration functions

A radiative transfer model which takes into account the effect of scattering involves inte-
gration of certain quantities over the angles of observation. For example, from Section ??
it is clear that computing scattering cross-section and scattering integral term requires in-
tegration over zenith and azimuth directions. There are a wide range of methods that can
be used for numerical integration. They can be used depending on various factors starting
from how accurate the result should be to the behaviour of the function. The one which is
implemented in ARTS is the trapezoidal integration method.

6.1 Implementation files

The integration functions can be found in the files:
e math_funcs.h
* math_funcs.cc

The implementation function AngIntegrate_trapezoidis discussed in the second
file.

6.2 Trapezoidal Integration

Trapezoidal Integration method comes under the Newton-Cotes formulas where integra-
tion of a function is approximated by the area under the curve described by the function.
Trapezoidal integration assumes that the area under the curve is trapezoid.

Trapezoidal rule :

| f@xds = htsi+ 1)+ 00 ) 6.1

This is a two-point formula (z; and z3). It is exact for polynomials upto and including
degree 1, i.e., f(x) = x. O(h3f") signifies how far is the true answer from the estimate.

History

220802 Created and written by Sreerekha T.R.

220103 Included mathematical description for implemented integration
method(CE).
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If we use eq. 6.1 N — 1 times, to do the integration in the intervals (x1, x2), (22, x3),
..y (TN—1,2N), and then add the results, we obtain extended formula for the integral from
r1toxry.

Extended Trapezoidal rule :

/J:N fla)de = Sh{fi+ 2o+ fs o fyoa) + I +O

Q)3
W] (6.2)

The last term tells how much the error will be decreased by taking more number of
steps.

6.3 Solid Angle Integration

In our scattering problem, we are often encountered with a double integration of functions
over zenith and azimuth angles (see Chapter ??). One way to achieve double integration is
to use repeated one-dimensional trapezoidal integration. This is effective of course only if
the boundary is simple and the function is very smooth. If the function is strongly peaked
and if know where it occurs, integral should be broken into smaller regions so that the
integrand is smooth in each. Another thing is to take into account the symmetry of the
function as well as the boundary. For example in our case, if the radiation is symmetric
about the azimuth, the integration in that direction returns constant value of 27 and we need
to do only integration over zenith directions.
The general form of a solid angle integration is

S = f(w)dw (6.3)
4

In spherical coordinates we can write:

S = /07r /027T f(0,¢)sinf dbde (6.4)

A double integration can be splitted into two single integrations:
S = /07r < 02Tr f(0,9) sin@dqb) do (6.5)
= /0 ) g(6)do (6.6)

If we have to integrate a vector, we can apply this method componentwise.

To solve the integral numerically we discretize 6 and ¢ and obtain two angular grids (
(00,01, ,0y] and [¢o, P1,- - , dm]). Then we can first calculate g(¢;) for all §; unsing
the trapezoidal method.

9(6;) = Zsin 0, 1105: 00 +2f(9j’ Gus). (Pit1 — &i) (6.7)
i=1

The final step is to sum up all g(6;), again applying the trapezoidal method.

" q(0:) + g(0;
S = ;W (0541 — 6;) (6.8)
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If the radiation is symmetric about the azimuth we just calculate:

Saym = 27 / " 1(0) sin(0)d6 (6.9)
0

Unsing the trapezoidal method this can be written as:

Seym =21y o) +2h(9j“) (041 — ) (6.10)
j=1

where h(6) = sinf - f(0).

The function AngIntegrate_trapezoid takes as input the integrand and the an-
gles over which the integration has to be done. For example in this case it can be the zenith
and azimuth angle grid.

Numeric AngIntegrate_trapezoid(MatrixView Integrand,
ConstVectorView za_grid,
ConstVectorView aa_grid)

The integrand has the same number of rows as zenith angle grid and columns as azimuth
angle grid. The inner loop does trapezoidal integration of the integrand over all azimuth
angles and the result is stored in a Vector res1[i]. Note that the integrand at every point has
to be multiplied with sin (za_grid[i] % DEG2RAD) since we are integrating over
solid angles. The outer loop does an integration of res1[i] over all zentih angles. The result
of this is returned back to the calling function.
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Chapter 7

Linear algebra functions

Solving the vector radiative transfer equation requires the computation of linear equation
systems and the matrix exponential. This section describes the functions which are imple-
mented in ARTS and it gives instructions how these functions can be used, also for other
purposes than the radiative transfer calculations.

7.1 Implementation files

All the functions described below can be found in the files:
* linalg.h
e linalg.cc

The template class Array and the classes Matrix and Vector are used, therefore the linear
algebra functions require the files:

* matpackI.h
* make_vector.h
* array.h
* matpackI.cc
* make_vector.cc
* array.cc
Furthermore logical functions contained in
* logic.h
e logic.cc

are used to check the dimensions of input matrices for various functions.

History
020502  Created and written by Claudia Emde.


https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.Matrix.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.Vector.html
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7.2 Linear Equation Systems

For solving a set of linear equations
Ax=Db (7.1)

the LU decomposition method is implemented. A slightly modified version of the algorithm
described in [Press et al. [1997]] is used here. An alternative method is the Gauss-Jordan
elimination, but this method is three times slower than the LU decomposition method [Press
et al. [1997], p.36]. The LU decomposition method reqires two functions, ludcmp and
lubacksub, which will be decribed below.

The following example for a three dimensional equation sytem demonstrates how to solve
a linear equation sytem of the type (7.1):

¢ Create matrix A, vector b:
A = Matrix(3,3);
A(l,1) = 4;
A(2,1) = 3;

b = Vector (3);
b(l) =7;

* Initialize solution vector x and two other variables needed for storing intermediate
results:
x = Vector (3);
LU = Matrix (3, 3);
indx = ArrayOfIndex(3);

* Call LU decomposition function (see Section 7.2.1):
ludcmp (LU, indx, A);

e Call LU backsubstitution function (see Section 7.2.2):
lubacksub (x, LU, b, indx);

¢ Print the solution vector:
cout << x;
7.2.1 LU Decomposition

A LU decomposition is a procedure for decomposing a square matrix A with dimension n
into a product of a lower triangular matrix L (has elements only on the diagonal elements
and below) and an upper triangular matrix U (has elements only on the diagonal and above):

LU=A (7.2)
For a 3 x 3 matrix equation 7.2 would look like this:

liy 0 0 ull wip w13 a1 a2 a3
log Il O : 0 wuxp was | =| a1 az aog
l31 32 33 0 0 us3 asy azz2 as3
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The decomposition can be used to rewrite the linear set of equations (7.1) in the following
way:

A x=(L-U)-x=L-(U-x)=b (7.3)
First
L-y=b (7.4)

is solved for the vector y which can be done by forward substitution (see section 7.2.2).
Then

U-x=y (7.5)

is solved again by backsubstitution. The advantage in breaking up one linear set into two
successive ones is that the solution of a triangular set of equations is quite trivial.

The function 1udcmp requires a square matrix of arbitrary dimension n as input and
performs the LU decomposition. It returns one matrix which contains both matrices, L and
U. For the lower triangular matrix L the diagonal elements are chosen to be 1, then the
other elements of L and U are determined. This is possible, as the LU decomposition is
an under determined equation sytem with n? equations for n? + n unknowns. The output
matrix does not include the diagonal of L, in the three-dimensional case it has the following
elements:

Uil w2 U13
lo1 w22 w23
31 l32 w33

This special arrangement of the LU decomposition is named Crout’s algorithm and a matrix
arranged in this form is named Crout matrix in this context.

Another output variable of the function 1udcmp is an index vector which contains in-
formation about pivoting which is absolutely essential for the stability of Crout’s algorithm.
Here partial pivoting, i.e. interchange of rows is implemented. That means that not A is
decomposed into LU-form but a rowwise permutation of A. If the index vector contains for
example the elements (2, 1, 0) the first and the last row of a three dimensional matrix would
be exchanged.

7.2.2 Forward- and Backsubstitution

An equation system of the form

all a12 Qi3 I b1
0 ap a |- | =2 | =| b2
0 0 ass I3 b3

can be solved very easy. The last element, here x3, is already isolated, namely

r3 = b3/a33 (76)

As x3 is known x5 can be calculated using the second row of the eqautions. Then, finally, z;
can be calculated as well using the first row. This procedure is called backsubtitution. The
same method applied for an equation system including a lower triangular matrix is named
forward substitution.
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The function 1ubacksub does forward and backward substitution to solve the equa-
tion system described in 7.2.1. As input it requires the output variables of 1udcmp which
are the Crout matrix and the index vector. Output of the function is the solution vector x to
the equation system.

7.2.3 More Applications of the LU Decomposition

* Inverse of a matrix:
To compute (K)~* - b, which is a part of the solution to the vector radiative transfer
equation (Equation ?? in ARTS User Guide) the LU decomposition method can be
used. The following equations show, that the problem is equivalent to solving a linear
equation system of the type 7.1.

K'b = x (7.7)
& K-x = b (7.8)

* To solve the equation system
A-X = B (7.9)

where A, B and X are matrices of dimension n, the LU decomposition functions can
be applied as well. Assume that A and B are known and you want to solve for X. First
you should do a LU decomposition of A and then backsubstitute with the columns of
B and you get the columns of X as solution vectors.

7.3 Matrix Exponential Function

A very important function for solving differential equations is the matrix exponential:

o0 k
A=Y (As) (7.10)

k!
k=0

In principle it could be computed using the Taylor power series but this method is not
efficient. MOLER and VAN LOAN have shown for the simple example [Moler and Loan
[1979]]

—49 24
A= ( —64 31 >
that convergence is obtained not until 59 terms. And if a relative accuracy of only 1079 is
taken, the method even leads to a wrong result due to rounding errors.

7.3.1 Padé Approximation

One of the better algorithms for computing the matrix exponential is the Padé approximation
which is also shortly described in [Moler and Loan [1979]] and outlined in the book “Matrix
Computations” by Golub and Loan [1991]. The method uses perturbation theorie as well
as the so called Padé functions. It is possible to derive an algorithm which calculates

F = ATE (7.11)
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where
|Ellco < d[A]l. (7.12)

The accuracy of the computation given by ¢ can be chosen. The parameter q has to be the
smallest non-negative integer such that €(q, ¢) < § where

1!
_ 93— (pta) s _ 7.13
“p9) G alp+arD) (719

The following table shows values of epsilon for different values of q.

q €(q,9)
1 0.1667
2 | 6.9444 .10
3| 1.2401-10°6
4| 1.2302-1079
51 7.7667 - 10713
6 | 3.3945. 10716

The algorithm is implemented in the function mat rix_exp. Input to this function is the
matrix A and the parameter q. As output it gives the matrix F' which is defined above.
The following example shows how to use the mat rix_exp function:

* Initialize A and assign values:
Matrix A(3,3);
A(l,1) = 45;
A(l,2) = 3;

e Initialize F:
Matrix F(3,3);

* Give a paramater for the accuracy:
Index g=6;

* Call the matrix exponential function:
matrix exp(F,A,q);

¢ Print the result:
cout << "exp(A) = " << Fy;



66

LINEAR ALGEBRA FUNCTIONS




Chapter 8

Include ARTS in third-party C++

It is possible to include ARTS in another C++ program using the
public_arts_interface and linking to autoarts.h. This will pull in the ARTS
public API defined in agendas.cc, groups.cc, methods.cc, workspace.cc as
well as an automatically generated ARTS namespace to your project.

FIXME: a private Module that imports only the ARTS namespace should be added
as soon as soon as C++20 becomes norm

8.1 Linking the public interface

To link the public interface, you need to add_subdirectory (arts) anywhere in your
CMake project, where the art s directory should contain a current version of ARTS.
An example (in your projects CMakeLists.txt):

ifdsdstiasdstddd i dExada AR AR ERRAEEEEAEEEEEE

# ARTS Custom Executable

add_executable (arts_interface interface.cpp)

target_link_libraries(arts_interface PUBLIC
public_arts_interface)

it LSS E LSRR EEEEEEEEEEE S

At this point, your interface.cpp musthave #include <autoarts.h>asone
of its headers and you are good to go.

8.2 Using the C++ namespace interface

The ARTS namespace contains all the interfaces you will need to perform all operations
supported by ARTS. The namespace defines only a single top level function call, the
init (...) function and a single top-level type, the ARTS Workspace. The function
is used to generate the ARTS Workspace upon which all your function calls are made. The
ARTS namespace has several sub-namespaces for various purposes. These are in short:

Group Defines the ARTS public type-system.

History
2020-10-06 Created and written by Richard Larsson.
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Internal Defines the ARTS internal type-system.

Var Defines the ARTS interface type-system, create variables for the ARTS interface, and
access automatic variables that are defined in the ARTS Workspace from the start.

Method Defines the ARTS methods. The ARTS methods can only be called using their generic
inputs and outputs.

AgendaMethod Defines the ARTS methods that can be used by agendas. They return an internal type
and are best used directly, with no manual modification.

AgendaDefine Defines methods to set the different ARTS agendas. The agendas are checked and
ready to be used after these methods are called.

AgendaExecute Executes an agenda.

If you are using the public interface, you need not be concerned with the types in the
sub-namespaces Group and Internal. FIXME: Otherwise, these define the basic types
you need to use ARTS easily. These sub-namespaces are used the same as any other C++
type-system. The other namespaces are domain specific.

An interface will generally start with a call to the initialize function. This could look
like:

auto ws = init ();

After this the order and set of commands that are placed is up to the user. For sake of
ease, ws will be used below to indicate a defined Workspace. Also, the access to each
sub-namespace will be written as if operating in the ARTS namespace itself.

8.2.1 Var

The Var namespace, short for Variable namespace, have three purposes
1. Type the Method and Agenda interface
2. Access common Workspace variables
3. Create new variables on the Workspace

The types that are defined correspond to the types in Group. The purpose of these types
is to pass input to the functions of Method and AgendaMethod. The main way to gener-
ate instances of these variables is by their corresponding «Create function or by simply
accessing them via their common Workspace names. The only constructor that is recom-
mended to use is the construction from the corresponding Group, as this can simplify the
access to several methods. The other two constructors risk accessing out-of-bound memory,
or to deference a null-pointer.

It is highly recommended to not discard created variables, as they will still occupy
memory in the Workspace until the end of the program and they become impossible to
access once discarded.

Examples:
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// Define an index that is not in the workspace
Var::Index x{Group::Index(1l)};

// Access an index that is in the workspace
Var::Index y = Var::stokes_dim(ws);

// Create a new index on the workspace
Var::Index z{Var::IndexCreate(ws, Group::Index{l},
"new_index_name") };

Note that x will not work as an input to AgendaMethod functions but it will work as an
input to Method functions. It does not append to the Workspace. The other two will work
both as inputs to AgendaMethod and to Method functions.

8.2.2 Method

The Method namespace contains all but the Agenda manipulating methods defined in
methods.cc. These can all be called using the generic input and outputs. The inputs
and outputs are not guaranteed to be the same as in the ARTS methods however, because
C++ requires inputs with default values be placed last in the calling order. Note that all
standard inputs and outputs taken from the Workspace must be set on the Workspace itself
and cannot be passed as inputs. This creates a few idiosyncrasies compared to how ARTS
is used in python or in a normal controlfile.
Examples:

// Call yCalc (no GIN/GOUT)
Method::yCalc (ws) ;

// Call Touch on the wind field (Pure GOUT)
Method: :Touch (ws, Var::wind_u_field(ws));
Method: : Touch (ws, Var::wind_v_field(ws));
Method: :Touch (ws, Var::wind_w_field(ws))

’

// Set p_grid by VectorNLogSpace
Var::nelem(ws) = 51;
Method: :VectorNLogSpace (ws, Var::p_grid(ws), 1le+05, 1le-4);

// Save x, y, z from the Var example

Var::output_file_format (ws) = Group::String{"ascii"};

Method: :WriteXML (ws, X);

Method: :WriteXML (ws, y, Group::String{"extra.xml"});
(

Method: :WriteXML (ws, 2z);

All methods requires a Workspace (ws) to work. The first case of the examples calls a
function with neither generic input nor generic output — it cannot take anything other than
the Workspace. The second triplet case of the examples calls Touch on all wind-field vari-
ables. They will have been default-initialized after this process. The third example shows
the idiosyncrasies to other methods of using ARTS. The Workspace variable nelem has
been used instead of a generic input index to define VectorNLogSpace — thus nelem
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must be set manually by the user of the interface. The last examples uses the fact that many
of WriteXML’s inputs are default defined. Since the default value of filename is empty and
since the interface then infers it has the variable name input, the first call to WriteXML
will generate a file called arts.in.xml, the second call will generate a file called
extra.xml, and the last call will generate a file called art s .new_index_name.xml.
The first part of the name can be changed by calling init () with the corresponding argu-
ments.

As a last note. Several inputs above automatically generates inputs from standard C++
types, such as VectorNLogSpace generating two Var: : Numeric from two doubles.
This is a convenient way to use the methods but the user should be aware that these methods
will end up deleting variables in the end, so some care has to be taken when the scope of
such automatic variables is long.

8.2.3 AgendaMethod, AgendaDefine, and AgendaExecute

The Agenda namespaces deal with setting and defining Workspace Agendas. It is only
possible to set Workspace Agendas that have been defined as part of the Workspace at com-
pilation time. The AgendaMethod namespace contains the same functions as the Method
namespace but returns an Internal::MRecord. The user of this interface is expected to never
manually construct an MRecord. Instead, this type is meant to only be used when Agen-
das are defined in the AgendaDefine namespace. The AgendaDefine namespace defines a
variadic function per Agenda in the common Workspace and expects a list of MRecord to
set this Agenda’s methods. Finally, AgendaExecute exists to execute a single Agenda. Nor-
mally, this is not preferred since Agendas should generally just be used inside methods, but
the option still exists.
Examples:

// Define the basic iy_main_agenda emission agenda
AgendaDefine::iy_main_agenda (ws,

AgendaMethod: :ppathCalc (ws),

AgendaMethod: :iyEmissionStandard (ws)) ;

// Define an empty geo positioning agenda
AgendaDefine: :geo_pos_agenda (ws,
AgendaMethod: : Ignore (ws, Var::ppath(ws)),
AgendaMethod: :VectorSet (ws, Var::geo_pos (ws),
Var: :VectorCreate (ws, {}, "Default")));

The first example simply sets its agenda by using two functions that complete the in-
puts/outputs expected of the agenda. The second example does not need or want to
use Var::ppath(ws) so it ignores it. It also has the need of a default empty
Var: :Vector. This variable has to first be created onto the Workspace before it can
be used as an input. Had a pure vector been used instead of the create-function, a runtime
error would occur. The create function is only invoked once, since the internal workings of
the Agenda just need to have defined the variable.

Lastly, each AgendaMethod function that has a default generic input will create a static
const Workspace variable of this type upon first call to the method. This means that calling
such a method will incur a memory cost that lasts until the end of the program.



Chapter 9
GUI — simple plotting

ARTS provides a simple debug plotting tool for developers to see their results in-place.
To build and use the plotting tool you need to activate ~-DENABLE_GUI=1 in your cmake
settings. The plotting debug tool is now available by using #include <gui/plot.h>
in your desired file. The plotting routines that are available are quite simple. You get these
interfaces

plot (const Vectors& y) // Plots y evenly spaced
plot (const Vector& x, const Vectoré& vy)
plot(...) // Plots any number of pairs of X-Y

These are all available via the ARTSGUI namespace. Figure 9.1 shows a fullscreen
example produced by the templated version of plot on Ubuntu.

The features of the plotting tool is limited but intuitive enough to access and view the
data.

There are three components to the plotting tool. The plot frame is where your data is
displayed. The plot axis shows the scales of the data. The menu bar offers some options to
manipulate the window. Each of these have limited operations listed below.

¢ Menu bar

— File — access meta information about the window and data

* Fullscreen (shortcut F11) takes the plotting window fullscreen. The
exit fullscreen mode, use escape, F11, quit the application or press the
fullscreen menu item again.

* Export Data (shortcut Ctrl+S) saves the Y-axis data to an XML-file.
In the templated code, the new file will be an ArrayOfVector, in the non-
templated code it will be a simple Vector.

* Quit (shortcut Ctrl+X) quits the application.
* Plot axis

— Double left-click: Resets the clicked axis to the maximum possible value. Note
that for values very small or very large, this might fail and you need to manually
fix the axis.

History
201203  First version Richard Larsson
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Figure 9.1: Example plot. Here we show the absorption versus frequency for some O»
absorption models.

— Double right-click: Opens the axis dropdown-menu with the following options:

k

*k

Min: Select the minimum value by writing the number in the text box, or
lock the axis by ticking the checkbox.

Max: Select the maximum value by writing the number in the text box, or
lock the axis by ticking the checkbox.

Invert: Check the box to switch the order of high-and-low along the respec-
tive axis.

Log Scale: Check the box to show the axis in logarithmic scale.

Time (X-axis only): Check the box to interpret the X axis as Unix time and
display the relevant as dates.

Grid Lines: Uncheck the box to remove grid lines in the plot frame for the
axis.

Tick Marks: Uncheck the box to remove tick marks in the plot frame for
the axis.

Labels: Uncheck the box to remove the labels from the axis.

— Left-click and drag: Moves the axis in the direction dragged.

— Vertical scroll: Extends or contracts the axis range around the value where the
scroll began.

¢ Plot frame

— Double left-click: Scales both X-and-Y to a best-fit scenario (still with the
caveat that very small and very large numbers might not work properly)

— Double right-click: Opens a dropdown-menu with access to the plot axis
dropdown-menues and some settings

— Scroll: Extend or contract both axis around the point where the scoll began
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— Left-click and drag: Moves the axis around

— Right-click and drag: Selects a region and zooms in when the right-click is let
go. If Shift is held, the zoom window is modified to include the entire Y-axis. If
Alt held, the zoom window is modified to include the entire X-axis.

— Legends: In the upper left corner of the plot frame are the legends of the plot. If
hovered, the hovered line will be enlarged inside the plot frame. If the colored
check box is pressed, the line will be removed from the plot frame.

The debug GUI is based on the Dear ImGui GUI framework, with ImP1lot drawing
the plots and uses imgui-filebrowser to deal with the filesystem.
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Chapter 10

The Python interface

This section is devoted to describing various techniques and code used to enhance the
Python-ARTS interface: pyarts. It will not be exhaustive but will go over the basic ideas
of how to add and modify classes and functions.

The basic section will explain where the files are located in an ARTS directory and what
the general build steps involved. The classes section described how new classes are added
and modified. The workspace and agenda classes are special and so they get their own
section. The functions section will be short and go over how functions are added.

10.1 Basics

A pyarts installation consists of two parts: the pure Python code available in the main
directory python/pyarts/ folder and the C++ interface. The C++ interface re-
lies on the pybind11l Python bindings package available via https://github.com/
pybind/pybindll. We keep a local copy of the latest release of pybindil around
in 3rdparty/pybindll/. pybindll is a pure headers only library and these head-
ers can be found at 3rdparty/pybindll/includes/pybindll. The CMake set-
tings ensure that these can be included by any file compiled as part of the pyarts cpp
target using #include <pybindl1/+.h> The ARTS side of C++ linkage is available in the
src/python_interface folder. There are two parts: the auto-generated files that are
only available after compiling the target, and the other static files.

The py_module. cpp file links everything together. It is responsible for passing a
module reference object along to all other functions. To keep things simple, we avoid
creating a py_module. h file and simply declare that the functions from the other files are
available to the linker down-the-line.

The steps to add a new file with new functionality are as follows (for
py_my_file.cpp as the file and my_new_functionality as function):

1. Create the py_my_file.cpp file

2. Add py_my_file.cpp to the pyarts_cpp target in the
src/python_interface/CMakelLists.txt.

3. Fill the file with the relevant includes (see below).

4. Within namespace Python setup void my new_functionality (py::module_& m) {x}.


https://github.com/pybind/pybind11
https://github.com/pybind/pybind11
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5. Replace » with your new functionality (and run the automatic formatter)

6. Add void my_new_functionality (py::module_& m); directly within the Python
namespace of py_module. cpp.

7. Add my_new_functionality (m); within the PYBIND11_MODULE (pyarts_cpp, m)
function definition of py_module. cpp.

8. Compile. The new functionality is available via pyarts.pyarts_cpp. *.

9. Add a continuous integration test that tests the new functionality in a limited fashion.

10.1.1 Includes

To keep a consistent experience across the code, it is recommended to put either
#include "python interface.h" Or #include <py_auto_interface.h> at the top of
the files. This ensures that you have access to almost all of pybind11 and artscore. If you
need any of the headers that are not included from artscore, the src/ folder is also linked
to the pyarts_cpp target so you can include it without using relative paths.

Note that the documentation of the Python functions and classes that are generated
depends on the order of calls within py_module. cpp. If your class depends on matpack
and on gridded fields, place the call after these. If in turn the Jacobian calculations depends
on your type, place the call above it. This only applies to the call to your functionality (not
the declaration above the module creation macro).

10.1.2 Limitations

There are many limitations. Most of these are weeded out by keeping a constantly up-to-
date set of tests available to be run as part of the continuous integration. Any feature not
tested that way will be considered unwanted as part of the Python interface. Add new tests
as you add new functionality! This is very important as pybind11 links directly to Python,
meaning that new features might work on your computer but not on others. Even worse,
changes in the future might break your feature.

One limitation we cannot work around is that there are no references to int and float
in Python. The ARTS Index and Numeric map directly to these Python types. As we need
references to these variables, wrappers known as Index_ and Numeric_ have been created.
If you need references, ensure that you are returning these types instead of the pure types.
Note that there exist a helper function as_ref that can deal with this problem for you. Only
use this if you know that you have a reference that will persist to a base-type.

A limitation that we can work around is that Python and pybindi1 does not have the
concept of constants and references in general. If the output of a function is a reference, we
need to mark that that variable is not allowed to be converted. More about this below.

Lastly, we often compile ARTS without debug information, turning off several sanity
checks inside the classes. These might cause segmentation fault if encountered in Python.
Please ensure that you do proper input/output error handling manually when mapping to
these functionalities.
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10.2 Classes, structs, and enums

These are the core data holders in ARTS and the Python interface aims to wrap them in
the way that their use in Python mostly mimics their use in ARTS. Of course, you might
sometimes need to modify ARTS classes to get the desired Python behaviour.

It is important that all classes that can be returned or used as arguments in the Python
interface are defined as such. The only exceptions to this rule are inputs that can be automat-
ically converted from standard types to Python types and back by the pybind11 automatic
conversion functions.

10.2.1 Adding new class or struct

A new class and struct is registered as

C++
auto ¢ = py::class_<NewClassOrStruct>(m, "NameInPython");

This new class will be registered as the type pyarts.pyarts_cpp.NameInPython. It is
also mapped via pyarts.classes.NameInPython. Here NewClassOrStruct is a class or
struct that the compiler is aware of from C++, m is the common module name (see above),
and c variable can accessed to modify the functionality of the class as seen in Python. Most
of these modifications returns =t his as a reference. It is thus often more convenient to write

C++
py::class_<NewClassOrStruct> (m, "NameInPython")
.def(...)
.def_property(...)

.def_readwrite(...)

Below the use of these def« will be discussed.

The main reason to use the former rather than the latter technique to define classes and
structs is if you need the name registered in the module early on. As mentioned above,
this changes how the Python documentation looks, so it is important to register names in a
timely fashion.

10.2.2 Adding new enum

There are two types of enumeration in C++. Enum classes and C-style enums. It is strongly
recommended to make use of the ARTS ExuMcLASS macro when creating new enum classes
in the future. These behave very much like normal classes, providing both stream operators
and conversions from and to string views.

If you want to add an enum class created by this macro, the following should help

(from py_jac.cpp):

C+t
py::class_<Jacobian: :Atm>(m, "JacobianAtm")
.def(py::init ([] () { return new Jacobian::Atm{}; }))
.def(py::init ([] (const std::string& c) {

return Jacobian::toAtmOrThrow(c);



78 THE PYTHON INTERFACE

}), py::arg("str") .none(false))
.PythonInterfaceCopyValue (Jacobian: :Atm)
.PythonInterfaceBasicRepresentation (Jacobian: :Atm)

.def (py::pickle(
[] (const Jacobian::Atm& t) {
return py::make_tuple (std::string(Jacobian::toString(t)));
by

[] (const py::tuple& t) {

ARTS_USER_ERROR_IF (t.size () != 1, "Invalid state!")
return new Jacobian: :Atm{
Jacobian: :toAtm(t[0] .cast<std::string>()) };

1)

py::implicitly_convertible<std::string, Jacobian::Atm>();

This will allow you to read and write to the enum using Python str.
If you have an enum class that does not derive from ENuMCLASS or a pure C-style enum,
the following example should help:

c++

py::enum_<PType>(m, "PType")
.value ("PTYPE_GENERAL", PType::PTYPE_GENERAL)
.value ("PTYPE_AZIMUTH_RND", PType::PTYPE_AZIMUTH_RND)
.value ("PTYPE_TOTAL_RND", PType::PTYPE_TOTAL_RND)
.PythonInterfaceCopyValue (PType)
.def (py::pickle(
[] (const PType& self) {
return py::make_tuple(static_cast<Index> (self));
s
[] (const py::tuple& t) {
ARTS_USER_ERROR_IF (t.size() != 1, "Invalid state!"™)

return static_cast<PType> (t[0].cast<Index>());
P)) i

This allows values to be accessed using, e.g., pyarts.pyarts_cpp.PTYPE_GENERAL. The
.value register a name of a value of the enum.

10.2.3 Conversion from Python to ARTS types

As said about the "Jacobianatm™ example above, it is possible and quite easy to initialize
ARTS types from Python types. This works by making use of the def (py::init (x))
method. The « should be replaced by a lambda that takes any number of arguments and
returns a raw pointer or a value of the type that is being initialized. (Note that it does not
work to use smart pointers here as the Python interface needs to take ownership.)

The def (py::init ([] (const std::strings c) {x}) call from the example above,
for instance, makes it possible to call

Python

import pyarts.pyarts_cpp as cxx

x = cxx.JacobianAtm("Temperature")
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in Python. A std::string is not a Python type, but pybindi1 provides several automatic
conversions between Python and some standard C++ types. These conversions generally
depend on the right files being included. Likewise, we can define our own automatic conver-
sions using py::implicitly_convertible<From, To>();. Since we registered the con-
version from a C++ string to a Jacobian: :Atm above, almost any functionality that takes
this type (e.g., a call to a function) also accepts a Python string. The one exception here is
if the function argument has been explicitly marked to not allow any conversions.

The lambda function initializing a class can take any number of variables. These can
also have default values. More about that later.

Feel free to add as many implicit conversions to a class as you see fit, but remember to
always have the accompanying initialization function defined when you do so. The more
implicit conversions we can guarantee to work, the easier it will be to use ARTS from
Python.

10.2.4 Modifying an existing class

We can add pretty much any functionality to a Python class. This section will list the ones
we use. For more details on how function arguments work, see the relevant section further
down. This section assumes you have c defined as in subsection 10.2.1. For short we will
say that the C++ class c represents is MyClass.

Note that this subsection will only deal with non-static modifications. These must al-
ways have the class itself as the first argument, just as Python. All of these options have
static versions as well, where the only difference is that there is no first property. The ex-
ception here is the py: :init function, which does not require an object already but must
return it.

Several of these methods can be modified for documentation and other purposes. These
are detailed in the function subsection below. Also in this subsection, there will be more
advanced variable usage demonstrated.

Adding a Property

Properties are added as

C++
c.def_property ("property_name", reading, writing);

This property is now available as a normal Python property in all instances of c in Python.
Here reading and writing are instances of py: :cpp_function. This class can be con-
structed from a simple lambda function or be allowed more arguments. Note that if reading
is constructed from a lambda function, it will return a copy of the object. It might be better
to allow it to return a reference to the object. This can be done by changing the return value
policy as

C++
c.def_property ("property_name", py::cpp_function (reading,

py::return_value_policy::reference_internal), writing);

Here, reading is again just a lambda function that returns a reference. The writing func-
tion should not return anything.
Syntax for reading and returning a value:
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C++
// lambda:
reading := [] (MyClassé& x) {return x.my_property_value();}
// pointer:
reading := &MyClass::my_property_value

Syntax for reading and returning a reference to a value:

c++

// lambda:
reading := py::cpp_function([] (MyClass& x) —>
std: :remove_cv_t<std::add_lvalue_reference_t<
decltype (x.my_property_value())>> {
return x.my_property_value();

}, py::return_value_policy::reference_internal)

// pointer (if x.my_property_value() 1s a non-constant reference):
reading := py::cpp_~function (&MyClass: : :my_property_value,

py::return_value_policy::reference_internal)

Note that the long term to the right of the right arrow (->) is just C++ type-trait deduction to
enforce that the return type has to be a non-constant reference. This is mostly a compile time
test in case at any point the implementation of MyClass: :my_property_value changes. It
does not need to be there. Unless you have an identically named x .my_property_value ()
that also returns a constant reference.

The writing lambda should be defined as

C++
// lambda (if x.my_property_value() is a reference) :

writing := [] (MyClassé& x, decltype(x.my_property_value()) y) {

x.set_my_property_value() = y;

// lambda (if x.set_my_property_value(y) sets the value):
writing := [] (MyClassé& x, decltype(x.my_property_value()) y) {

x.set_my_property_value(y);

// pointer (if x.set_my_property_value(y) sets the value):

writing := &MyClass::set_my_property_value

It might be worth here to play around with the input type. Some input is better as copies
with a corresponding std: :move, others might need a constant reference instead.

Note that properties are sometimes weird workarounds around for C++ classes that
provides get- and set-functions instead of exposing member variables. If you really want to
have properties on your class, it might be worth the effort to modify the original ARTS class
to expose its members variables in public instead. Why would you allow direct manipulation
of data this way in Python but not in C++ if the setter does not perform any additional logic
or checks on the set value?
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Adding a modifiable value

Any publically exposed variable of a class can be read from or written to in Python using

C++
c.def_readwrite ("readwrite_name", &MyClass::value)

As for with properties, you can also add a return value policy if you wish the reading to not
return a copy. This is done as:

C++
c.def_readwrite ("readwrite_name", &MyClass::value,

py::return_value_policy::reference_internal)

Note that from Python, this will look exactly like a standard property.

Adding a function

A function is defined as

C++

// lambda:

c.def ("function_name", [] (MyClass& £, ...) {
return f.function(...);

1)

// pointer:

c.def ("function_name", &MyClass::function);

where the ellipsis indicates any number of arguments in the first example. Of course, you
have to match this to the number of arguments that are actually required.

Helper macros

The file py_macros.h contains several helper macros. They all look like
PythonInterfacex. Their use is not required but it is recommended to make use of them
if you want to reproduce functionality. This document will not go through these macros at
all. Tt is advised to copy their usage from already defined classes.

10.2.5 Using previously declared options

It is possible to use previously defined functions by passing the class itself into C++ as a
py: :objects. For instance:

C+t
c.def ("call_function_name_with_readwrite_name",\

[](py::objects& self) {
return self.attr ("function_name") (
self.attr ("readwrite_name"));

})

will call the function defined above with the read-write property also defined above.
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10.2.6 Monkey patching

Monkey patching is when a functionality is added to a class at runtime. We need to make
use of this to simplify features such as conversions to xarray or to make use of numpy or
scipy when deemed necessary. If possible, this should be avoided as far as possible because
it has several drawbacks, one of which is that it is relatively slow.

Anyways, the solution for monkey patching we have gone with in ARTS is to retain
static function pointers that are overwritten when pyarts is imported and, crucially, reset
when pyarts is destroyed. The latter is important to not create segmentation faults.

In C++, the following code is required as one of the functions defined for the Myclass
interface:

C++
c.def ("monkey_function", [](py::object& self, ...) {
return details::MyClass: :monkey_function(...);

})

This will call a function that must have been defined statically inside a struct called MyClass
that’s part of the details namespace. Outside the function that is declaring the MyClass
interface but still within the Python namespace, this struct may be defined as:

Ct++
namespace details {
struct MyClass {
inline static std::function<py::object (py::objects&, ...)>

monkey_function{
[1(py::objects, ...) {
throw std::logic_error ("Not implemented");

return py::none();

}i
}i
} // namespace details

Note that we provide the details.h file to help this, so in case the function takes two
arguments, you can write

C++

namespace details {
struct MyClass {

inline static auto monkey_function{two_args};
bi

} // namespace details

Now again inside the function we need to define a way to overwrite this from Python and to
cleanly destroy it. To overwrite the function, we consider it best practice to hide the class
from normal users by defining it as

C++
py::class_<details::MyClass>(m, "MyClass::details")

.def_readwrite_static ("monkey_function",
&details::MyClass: :monkey_function);
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This can only be overwritten in Python using the getattr built-in function such as

Python

import pyarts.pyarts_cpp as cxx
def print two(a, b): print(a, b)

getattr (cxx, "MyClass::details") .monkey_function = print_two

The importance to actually destroy the variable upon deleting pyarts also exist. We can do
this as

C++
m.add_object ("_cleanupMyClass", py::capsule([] () {

details::MyClass: :monkey_function =
details::two_args;
1))

The trick here is that there will exist a "_cleanupMyClass" on the pyarts.pyarts_cpp
namespace. This is ugly and technically users can overwrite it. However, it is guaranteed
that when a module (like pyarts) is destroyed, it will first destroy all variables beginning
with a single underscore. Thus the first thing that will happen is that the details: :MyClass
struct will be restored to its original state and it will not have dangling pointers when the
Python function print_two is destroyed.

Note: do not define any monkey patch Python function with a name containing a leading
underscore. This might lead to segmentation faults when closing down pyarts.

10.3 Workspace and Agenda

The workspace and agenda are special classes in ARTS. An agenda can only exist on a
workspace but the linkage to that workspace is implicit and not explicit.

Normally, there should be no problems adding new types and functions to the workspace
within the scope of the current implementations. The file gen_auto_py . cpp will gen-
erate the interface for you.

Note that each new workspace group has to define a large set of functionality defined
by the TestClassesBasic.py continuous integration test.

10.4 Functions

Functions can be defined on the Python module in C++. Given the module m as used above,
this is done with

Ct+t

// lambda:
m.def ("module_level_function",

[1(...) {return module_level_function(...);});

// pointer:

m.def ("module_level_ function", &module_level_function);
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Here again the ellipsis means any number of arguments. This is pretty much identical to
how functions are defined for classes, but the first variable does not have to be a reference
to self Or this.

Note again that all the classes and types that this function accept must have been defined
either as automatically convertible from standard Python types, or as classes or enums in
the way detailed above.

The main point of this section is to go over some of the additional options that can be
given to the function definition to change and modify their behaviour.

10.4.1 Keep alive

This is defined as
C++
// lambda:
m.def ("module_level_function",
[1(...) {return module_level_function(...);},
py::keep_alive<Nurse, Patient>());
pointer:
m.def ("module_level_ function", &module_level_ function,

py::keep_alive<Nurse, Patient>());

where the nurse and the patient are indices indicating the value which keeps another value
alive. (The nurse keeps the patient alive.) The indices here are important to keep track of.
An index of 0 means the function’s return value. An index of 1 means the first input of the
function (for classes, this means the object itself). 2, 3, 4, and so on is thus the number of
the argument as passed to the function.

The main effect of keeping an object alive with the help of another is that it stops you
from having dangling references. Most of the time you do not want pure functions returning
references, but it is common practice for classes. For instance, the matpack types can all
return a non-owning numpy array using the value property. This array is not a reference to
any value inside the type, yet the numpy array needs the matpack type to remain alive for as
long as it exists. It thus sets py: :keep_alive<0, 1> () so that the return value of the value
getter keeps the main object alive for as long as it exists.

10.4.2 Return value policy

This is defined as
C++
// lambda:
m.def ("module_level_function",
[1(...) {return module_level_function(...);},

py::return_value_policy::x);

// pointer:
m.def ("module_level_ function", &module_level_function,

py::return_value_policy::x);
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where the = is replaced by the policy. This determines how Python views the ownership
of the returned object. For instance, the policy: reference_internal is used by all array
access getters. This ensures that the returned Python object keeps the array alive and that
also that the Python object is not the owner of itself. The difference with pure keep alive is
small but still there.

10.4.3 Function arguments

This is defined as:
C++
// lambda:
m.def ("module_level_function",
[1(...) {return module_level_ function(...);},

py::arg("val"),
py::arg("foo")=1,
py::arg_v ("bar", nullptr, "None"),

py::arg_v ("foobar", 5, "5").noconvert (),
py::arg_v("valfoo", 5.0, "4").none(false),
py::arg_v ("valbar", Vector(5),

"JustAVector") .noconvert () .none (false)
)i

// pointer:

m.def ("module_level_function", &module_level_function,
py::arg("val"),
py::arg("foo")=1,
py::arg_v ("bar", nullptr, "None"),

py::arg_v ("foobar", 5, "5").noconvert (),
py::arg_v("valfoo", 5.0, "4").none(false),
py::arg_v ("valbar", Vector(5),

"JustAVector") .noconvert () .none (false)

)i

for a function that takes 6 arguments.

 The first argument will be named "va1". It has have no default value. The documen-
tation will give no default.

* The second argument will be named "foo". It has the default value of 1. The docu-
mentation will give an automatic default format.

* The third argument will be named "bar". It has the default value of None and the
documentation text will say so.

* The fourth argument will be named "foobar". It has the default value of 5 and the
documentation text will say so. It cannot be implicitly converted to the type it has but
must have an exactly matching type to whatever module_level_function takes as a
fourth argument.

* The fifth argument will be names "valfoo". It has the default value 5.0 but the
documentation will say it is 4. It cannot be set from None.



86 THE PYTHON INTERFACE

* The sixth argument will be names "valbar". It has the default value of vector (5)
but the documentation will say it is JustAvector. It cannot be None. It is
also not possible to set the sixth argument from any other type than whatever
module_level_function takes as a sixth argument.

Variant

The C++ interface allows using std::variant to represent that a function can have more
than one type as input. You are able to do this:

C++
m.def ("varfun", [] (std::variant<Numeric_,
Index_,
Vector> x) {...} );
or this
C++
m.def ("varfun", [] (Numeric_ x) {...} );
m.def ("varfun", [] (Index_ x) {...} );
m.def ("varfun", [] (Vector x) {...} );

to state this in C++. The main difference is that the latter will generate a lot more documen-
tation.

Note that there is a small problem with the functions above. This is what will happen in
both cases

Python
import pyarts.pyarts_cpp as cxx
cxx.varfun (1) # calls m.def ("varfun", [] (Numeric_ x)
cxx.varfun (cxx.Index (1)) # calls m.def ("varfun", [] (Index_ X)

The reason is that the constant 1 is a Python int. Since we allow the numerical class of
ARTS to be created from integers, and since it is declared before the integer version of the
function, the numerical call to the function has precedence. To call the integer version of
the function, you have to place it above or match its type exactly. The order of resolution
for function calls with overloads are:

1. Check if an exact overload for this type exists and use it.
2. Try to convert the input to one of the overloads starting from the first declared over-
load and working through the rest until any such conversion works. Call that function.
Optional
Values can be made optional using

C++
m.def ("optfun", [] (std::optional<Numeric> x) {...} );

This allows calling the function with None as input, which will simply leave x valueless.
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Documentation

To add documentation to a function do this

C++
// lambda:
m.def ("module_level_function",
[1(...) {return module_level_ function(...);},

py::doc("..."));

// pointer:
m.def ("module_level_function", &module_level_ function,

py::doc("..."));

The function will now have the ellipsis as its Python documentation. Please follow best
practices for Python documentation while writing these strings. Also note that it is very
convenient to just

C+t
m.def ("module_level_function",
[1(...) {return module_level_function(...);},
py::doc (R"-—(Write multi-line comments

using a raw string. Even " will appear correct!

)"
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