
ARTS User Guide

edited by

Patrick Eriksson and Stefan Buehler

March 13, 2024
ARTS Version 2.6.0 (git: 704a55d3)

The content and usage of ARTS are not only described by this document. An overview
of ARTS documentation and help features are given in Section 1.2. For continuous
reports on changes of the source code and this user guide, subscribe to the ARTS
developers mailing list at https://www.radiativetransfer.org/contact/.

We welcome gladly comments and reports on errors in the software or the
document. Send then an e-mail to: patrick.eriksson(at)chalmers.se or
sbuehler(at)uni-hamburg.de.

If you use data generated by ARTS in a scientific publication, then please mention
this and cite the most appropriate of the ARTS publications. The relevant publications
are summarised at https://www.radiativetransfer.org/docs/.

https://www.radiativetransfer.org/contact/
https://www.radiativetransfer.org/docs/

Copyright (C) 2000-2015
Stefan Buehler <sbuehler (at) uni-hamburg.de>
Patrick Eriksson <patrick.eriksson (at) chalmers.se>

The ARTS program is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2, or (at your option) any later version.

This program is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more
details.

You should have received a copy of the GNU General Public
License along with the program; if not, write to the Free
Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.

Contributing authors

Author/email Main contribution(s)
Stefan Buehlera Editor, Sections 1, 6 and 17.
sbuehler (at) uni-hamburg.de
Claudia Emdec Sections 8 and 18.
claudia.emde (at) dlr.de
Patrick Erikssonb Editor, Sections 3, 4, 5, 7, 9, 10, 11, 12, 16,
patrick.eriksson (at) chalmers.se 13, 14, 15, and 20.
Oliver Lemkea Latex fixes.
olemke (at) core-dump.info
Simon Pfreundschuhb Section ??.

The present address is given for active contributors, while for others the address to the
institute where the work was performed is given:

a Meteorological Institute, University of Hamburg, Bundesstr. 55, 20146 Hamburg, Germany.
b Department of Space, Earth and Environment, Chalmers University of Technology,

SE-41296 Gothenburg, Sweden.
c Institute of Environmental Physics, University of Bremen, P.O. Box 33044,

28334 Bremen, Germany.

Contents

I Overview 1

1 Introduction 3
1.1 What is ARTS? . 3
1.2 Documentation . 4

1.2.1 Guide documents . 4
1.2.2 Articles . 4
1.2.3 Built-in documentation . 5
1.2.4 Test and include controlfiles . 5
1.2.5 Build instructions . 5
1.2.6 Command line parameters . 5
1.2.7 Environment variables . 6

1.3 ARTS as a scripting language . 6
1.3.1 Workspace variables . 7
1.3.2 Workspace methods . 7
1.3.3 Agendas . 9

1.4 Include controlfiles . 10
1.5 Test controlfiles . 10
1.6 Verbosity levels . 11

2 Importing and exporting data 13
2.1 Data formats . 13

2.1.1 XML files . 13
2.1.2 NetCDF files . 13
2.1.3 Gridded fields . 13

Naming convention for grids . 13

3 Description of the atmosphere 15
3.1 Altitude coordinates . 15
3.2 Atmospheric dimensionality . 16
3.3 Atmospheric grids and fields . 17
3.4 Geo-location of 1D and 2D . 19
3.5 Hydrostatic equilibrium . 19
3.6 The reference ellipsoid and the surface . 19
3.7 The cloud box . 20
3.8 Wind vector fields . 21
3.9 Magnetic field vector fields . 21

II CONTENTS

4 Radiative transfer basics 23
4.1 Stokes dimensionality . 23
4.2 The radiative transfer equation . 24

4.2.1 Propagation effects . 24
4.2.2 Absorbing species and scattering particles 24
4.2.3 Emission and absorption vectors 25
4.2.4 Main cases . 26

Clear-sky radiative transfer . 26
Radiative transfer with scattering 27

5 Complete calculations 29
5.1 Overview . 29
5.2 Compulsory sensor and data reduction variables 31

5.2.1 Sensor position . 31
5.2.2 Line-of-sight . 32
5.2.3 Sensor characteristics and data reduction 33

5.3 Measurement sequences and blocks . 33

II Atmospheric properties 35

6 Gas absorption 37
6.1 Introduction . 37
6.2 Key physical quantities . 37
6.3 Agendas . 38
6.4 Gas absorption in radiative transfer simulations 38
6.5 Calculating gas absorption . 39

6.5.1 Absorption species . 40
6.5.2 Explicit line-by-line calculations 41
6.5.3 Continua and complete absorption models 41
6.5.4 Collision-induced absorption . 41
6.5.5 Absorption cross section model 44
6.5.6 Zeeman calculations . 46
6.5.7 Internal line-mixing . 46
6.5.8 Faraday rotation . 46
6.5.9 Absorbing particles . 47
6.5.10 Further input data and parameters for calculating gas absorption . . 48

Spectral line data . 48
Isotopologue ratios . 48
Partition functions . 48

6.6 The gas absorption lookup table . 49
6.6.1 Introduction . 49
6.6.2 Lookup table concept . 49

Pressure dependence . 49
Temperature dependence . 50
Trace gas concentration dependence 50
Interpolation . 50

6.6.3 Workspace variables and methods 50

CONTENTS III

6.6.4 Format of the lookup table . 51
6.7 Stand-alone gas absorption calculation . 52

7 Refractive index 53
7.1 Gases . 54
7.2 Free electrons . 54

8 Description of scattering media 55
8.1 Introduction . 55
8.2 Single scattering properties . 56

8.2.1 Scattering data structure . 56
8.2.2 Definition of ptypes . 58

“totally random” . 58
“azimuthally random” . 58
“general” . 59

8.3 Generating single scattering properties . 59
8.4 Generating particle number density fields 60

8.4.1 Externally created particle number density fields 60
8.4.2 Internal calculation of particle number density fields 60
8.4.3 Scattering meta data structure . 61

8.5 Implementation . 62
8.5.1 Work space methods and variables 62

III Radiative transfer: clear-sky + general functionality 65

9 Clear-sky radiative transfer 67
9.1 Overall calculation procedure . 67
9.2 Propagation paths . 69
9.3 The radiative background . 69
9.4 Basic radiative transfer variables and expressions 71

9.4.1 Unpolarised absorption . 71
9.4.2 Polarised absorption . 72
9.4.3 Blackbody and cosmic background radiation 73

9.5 Output unit and the n2-law . 73
9.6 Single pencil beam calculations . 74
9.7 Dispersion . 74
9.8 Auxiliary data . 75
9.9 Calculation accuracy . 76

10 Propagation paths 77
10.1 Practical usage . 77
10.2 Calculation approach . 78
10.3 Spacing of additional path points . 79
10.4 Tangent points . 79
10.5 The propagation path data structure . 80
10.6 Further reading . 81

IV CONTENTS

11 Reference ellipsoid and surface properties 83
11.1 The reference ellipsoid . 83

11.1.1 Ellipsoid models . 83
11.1.2 Geocentric and geodetic latitudes 84

11.2 Surface altitude . 86
11.3 Surface radiative properties . 86

11.3.1 Blackbody surface . 86
11.3.2 Specular reflections . 86
11.3.3 Lambertian surface . 87

12 Sensor characteristics 89
12.1 General . 89
12.2 Some comments . 90

13 Doppler effects and winds 91
13.1 Winds . 91
13.2 Planet rotation . 91
13.3 Sensor velocity . 92
13.4 Limitations . 92
13.5 Equations . 92

14 Faraday rotation 93
14.1 Practical usage . 93
14.2 Theory . 93

15 Transmission calculations 95
15.1 Pure transmission calculations . 95

16 Clear-sky Jacobians 97
16.1 Introduction . 98

16.1.1 Perturbations . 98
16.1.2 Analytical expressions . 98
16.1.3 Workspace variables and methods 98

16.2 Basis functions . 99
16.2.1 Basis functions for piece-wise linear quantities 99
16.2.2 Polynomial basis functions . 100

16.3 Atmospheric variables, common expressions 100
16.3.1 Matrix derivatives . 100
16.3.2 Analytical expression for partial derivation of the propagation matrix 101

Parameterized absorption models 102
Line-by-line absorption . 102

16.3.3 Separation of terms . 102
16.3.4 ∂s/∂xi, general case . 104
16.3.5 Including the surface . 104
16.3.6 ∂s/∂xi, locally unpolarized absorption 104
16.3.7 Limitations . 105

16.4 Absorption species . 105
16.4.1 Common practicalities . 105
16.4.2 Perturbation calculations . 106

CONTENTS V

16.4.3 Analytical expressions . 106
16.5 Winds . 106
16.6 Atmospheric temperatures . 107

16.6.1 Common practicalities . 107
16.6.2 Perturbation calculations . 108
16.6.3 Analytical expressions . 108

Unpolarized absorption . 108
General case . 108
Hydrostatic equilibrium and limitations 109

16.7 Magnetic field . 109
16.7.1 Common practicalities . 109
16.7.2 The analytical solutions . 109

Strength component . 109
Angular components . 110

16.8 Non-LTE effects . 110
16.9 Sensor pointing . 110
16.10Sensor frequencies . 111
16.11Polynomial baseline fit . 111
16.12Sinusoidal baseline fit . 112

17 Batch calculations 113
17.1 Batch calculations of measurement vector y 113
17.2 Control file examples . 113

IV Radiative transfer: dedicated scattering methods 115

18 Scattering calculations – The DOIT module 117
18.1 The 1D control file example . 117
18.2 DOIT frame . 118

18.2.1 The DOIT main agenda . 118
18.2.2 Agendas used in cloudbox field monoIterate 119

Calculation of the scattering integral: 119
Radiative transfer with fixed scattering integral term: 120
Convergence test: . 121

18.2.3 Propagation of the DOIT result towards the sensor 121
18.3 3D DOIT calculations . 121

19 Scattering calculations – The Monte Carlo scattering module 123

20 Radar measurements 125
20.1 Single scattering . 125

20.1.1 Theory . 125
20.1.2 Units . 126
20.1.3 Practical usage . 126
20.1.4 Jacobian calculations . 127

20.2 Multiple scattering . 128

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.cloudbox_field_monoIterate.html

VI CONTENTS

V Retrieval calculations 129

21 Optimal estimation method 131
21.1 Formulation . 131

21.1.1 Fundamental assumptions . 131
21.1.2 The retrieval as optimization problem 131

21.2 Overview . 132
21.3 Usage . 132

21.3.1 Setup . 133
Defining the state space . 133
Defining observations and measurement error 134
Inversion iteration agenda . 134

21.3.2 Running OEM . 135
Gauss-Newton optimization . 135
Levenberg-Marquardt . 136
Conjugate gradient solver . 136
Convergence . 136

21.3.3 Diagnostic quantities . 136
Averaging kernel matrix . 137
Smoothing error . 137
Retrieval noise . 137

VI Bibliography and Appendices 139

VII Index 145

Part I

Overview

Chapter 1

Introduction

This section introduces and describes the basic ideas underlying the ARTS program. It also
presents some terminology. You should read it if you want to understand how the program
works and how it can be used efficiently.

1.1 What is ARTS?

The Atmospheric Radiative Transfer Simulator, ARTS, is a software for performing simu-
lations of atmospheric radiative transfer. ARTS is a relatively general and flexible program,
where new calculation features can be easily added. Originally, the development of ARTS
was initiated to deal with passive mm and sub-mm measurements. The radiation source for
such measurements is emission in the atmosphere or by the Earth’s surface. Thermal IR
radiation is governed by the same basic physical principles and therefore this wavelength
region is also well handled in ARTS now. But ARTS contains so far no dedicated methods
for scattering of solar radiation and there is therefore a restriction to simulations of long-
wave radiation (microwave to thermal IR). However, ARTS can be used for basic studies
of lonwave radiation fluxes, as for example in Buehler et al. [2006] or John et al. [2006].
More lately, some support for handling radio link calculations have been added.

One main application of ARTS should be to perform retrievals for remote sensing data.
A special feature of ARTS in this context is its high flexibility when defining observation
geometry (including scanning features) and sensor characteristics. Jacobians (weighting
functions) are also provided.

There exist two versions of ARTS. This user guide deals with the later of the two ver-
sions [Eriksson et al., 2011], here denoted as just ARTS. ARTS-1, the first version of ARTS
[Buehler et al., 2005], can only handle 1D atmospheres with unpolarised radiation and sit-
uations where scattering can be neglected. These restrictions have been removed in the
current version. A short summary of ARTS’s main features is:

The atmosphere can be 1D, 2D or 3D. That is, atmospheric variables (temperature, gas
concentrations etc.) can be assumed to only vary in the vertical dimension (1D), to

History
110505 Complete revision by Stefan Buehler. Also integrated text from ARTS2

article first submission.
2002-10 Written, mainly by Stefan Buehler, some parts by Patrick Eriksson.

4 INTRODUCTION

have no longitude variation (2D) or vary in all three spatial dimensions (3D).

The surface is by default assumed to be spherical. For 2D and 3D, a complete reference
ellipsoid is used and the surface can have arbitrary shape.

Polarisation is fully described by using the Stokes formalism.

Scattering can be considered in several manners. Extinction from scatterers can be in-
cluded in transmission type calculations. For radiance calculations of thermal emis-
sion (in contrast to solar radiation) there are two modules at hand to take the scattering
into account: DOIT (Chapter 18) and MC (Chapter 19). The scattering particles are
for efficiency reasons confined to a region of the atmosphere denoted as the cloudbox.

Observation geometry is free. That is, the forward model can be used to simulate ground-
based, down-looking, limb sounding and balloon/aircraft measurements.

Sensor characteristics can be incorporated in a flexible and efficient manner.

Jacobians, the partial derivatives of simulated measurement with respect to forward model
variables, can be provided for a number of variables, where analytical expressions are
used as far as possible.

Details are found in later parts of the user guide. Use the table of contents and the index for
navigating through the user guide.

1.2 Documentation

We know that the ARTS documentation is far from perfect. It is quite complete in some
areas, but patchy in others. It also contains bugs and more serious errors. We are struggling
to make it as good as possible, but it is ongoing work, and we do not have any direct funding
for it. All help from users to extend or correct the documentation is highly appreciated!
Having said that, the documentation that already is available for ARTS is described in the
following subsections.

1.2.1 Guide documents

ARTS User Guide: This document.

ARTS Developer Guide: Guide for ARTS developers.

ARTS Theory: Describes the theoretical basis for some parts of ARTS.

1.2.2 Articles

Buehler et al. [2005]: General description of the old ARTS version without scattering.
Many basic features are still the same, so this article is relevant also for the current
ARTS version.

Eriksson et al. [2011]: Introduction and overview to ARTS-2.

Emde et al. [2004]: Describes the Discrete Ordinate Iterative method (DOIT) for handling
scattering.

1.2 DOCUMENTATION 5

Davis et al. [2005]: Describes the Monte Carlo scattering method.

Eriksson et al. [2006]: Describes the calculation approach for the incorporation of sensor
characteristics.

Buehler et al. [2010]: Describes a method to efficiently handle broadband infrared chan-
nels, that is implemented in ARTS.

Buehler et al. [2011]: Describes the absorption look-up table approach used inside ARTS.

1.2.3 Built-in documentation

ARTS contains built-in documentation for all functions and variables that are directly visible
to the user (in ARTS terminology called workspace functions and workspace variables; they
are explained in more depth further below). The easiest way to access this documentation
is on the web page https://atmtools.github.io/arts-docs-2.6/workspace.html. Alternatively,
start ARTS with

arts -s

or

arts --docserver

and then point your browser to http://localhost:9000/.
This user guide also contains links to the built-in documentation. If you are reading

the pdf file on a computer, then names of ARTS objects, such as f grid, will be links to the
corresponding entries in the built-in documentation.

1.2.4 Test and include controlfiles

ARTS calculations are governed by controlfiles (see below). The ARTS distribution already
comes with a large number of controlfiles, which fall into two categories: includes and
tests. They are described in more detail below, but already mentioned here as an important
source of information for new users. In particular, ARTS already comes with controlfiles to
simulate some well-known instruments, such as for example MHS or HIRS.
FIXME: Control file structure changed, update this section!

1.2.5 Build instructions

Instructions on how to configure and compile the ARTS source code can be found in the file
README in the top directory of the ARTS distribution.

1.2.6 Command line parameters

ARTS offers a number of useful command line parameters. In general, there is a short form
and a long form for each parameter. The short form consists of a minus sign and a single
letter, whereas the long form consists of two minus signs and a descriptive name. To get a
full list of available command line parameters, type

arts -h

or

arts --help

https://atmtools.github.io/arts-docs-2.6/workspace.html
http://localhost:9000/
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.f_grid.html

6 INTRODUCTION

Arts2 {
StringCreate(s)
StringSet(s,

"Hello World")
Print(s)
}

arts-1.14.122
Executing Arts
{
- StringCreate
- StringSet
- Print
Hello World
}
This run took 0.03s (0.03s CPU time)
Everything seems fine. Goodbye.

Figure 1.1: Left: A minimal ARTS controlfile example. Right: ARTS output when running
this controlfile.

1.2.7 Environment variables

Environment variables can be used to control the behaviour of ARTS:

• ARTS_DATA_PATH List of search paths for data files. The -D commandline option
takes precedence over this variable.

• ARTS_INCLUDE_PATH List of search paths for include files. The paths will also
be searched for data files. The -I commandline option takes precedence over this
variable.

• ARTS_HEADLESS If set, ARTS will not display any graphical interface elements.
Mostly useful for testing.

1.3 ARTS as a scripting language

One of the main goals in the ARTS development was to make the program as flexible as pos-
sible, so that it can be used for a wide range of applications and new features can be added in
a relatively simple manner. As a result, ARTS behaves like a scripting language. An ARTS
controlfile contains a sequence of instructions. When ARTS is executed, the controlfile is
parsed, and then the instructions are executed sequentially. Controlfile somefile.arts
is executed by running

arts somefile.arts

A minimal ARTS controlfile example (the well-known ‘Hello World’ program) is given in
Figure 1.1. In this example, the variable s is called a workspace variable. We use this name
to distinguish it from the variables that appear internally in the ARTS source code.

In a similar spirit, the functions StringCreate, StringSet, and Print in the example are
called workspace methods. We use this name to distinguish them from the functions that
appear internally in the ARTS source code. For brevity, we may sometimes drop the
workspace qualifier and refer to them just as methods.

ARTS consists roughly of three parts. Firstly, the ARTS core contains the controlfile
parser, and the engine that executes the controlfile. This part is quite compact and consti-
tutes only a small fraction of the total source code. Secondly, there is a large collection of
workspace methods that can be used to carry out various sub-tasks (at the time of writing
approximately 300). Thirdly, there is a large number of predefined workspace variables (at

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.StringCreate.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.StringSet.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.Print.html

1.3 ARTS AS A SCRIPTING LANGUAGE 7

Workspace variable = f_grid

The frequency grid for monochromatic pencil beam
calculations.

Usage: Set by the user.

Unit: Hz

Group = Vector

Figure 1.2: Built-in documentation for variable f grid, obtained by command ‘arts -d
f grid’, or on page https://atmtools.github.io/arts-docs-2.6/stubs/variables/f grid.

the time of writing more than 200). These predefined variables make it easier to set up
controlfiles, since they provide hints on how the different workspace methods fit together.

ARTS has built-in documentation for all workspace methods and variables, which can
be accessed as described in Section 1.2.3. In this user guide, just clicking on the name
of a variable or method will take you directly to the built-in documentation for that object.
Below, we will discuss workspace variables and methods in some more detail and give more
examples.

1.3.1 Workspace variables

Workspace variables (such as the variable s in Figure 1.1) are the variables that are manip-
ulated by the workspace methods during the execution of an ARTS controlfile. Workspace
variables belong to different groups (Index, String, Vector, Matrix, etc.). The built-in docu-
mentation lists all groups, at the time of writing there are approximately 60 of them.

As the example in Figure 1.1 shows, workspace variables can be freely created by the
user with methods like StringCreate, VectorCreate, and so on. Each group has its own create
method.

However, in most cases it is not necessary to create new variables in this way, since
a lot of variables are predefined in ARTS. The built-in documentation describes all prede-
fined variables. As an example, Figure 1.2 shows the description for the variable f grid,
which stores the frequency grid and is used as input by many workspace methods, for ex-
ample those that calculate absorption coefficients. The built-in documentation also lists all
methods that take f grid as input and all methods that produce f grid as output.

1.3.2 Workspace methods

As shown in Figure 1.1, names of workspace methods in an ARTS controlfile are followed
by their output and input arguments (workspace variables) in parentheses. (‘Print(s)’
prints the content of variable s.)

From the methods point of view, arguments can be output, input, or both, and addi-
tionally they can be either specific (= referring to a predefined variable) or generic (= not
referring to a predefined variable). To illustrate this, Figure 1.3 shows the built-in documen-
tation for method WriteXML, the most common method to write ARTS variables to a file.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.f_grid.html
https://atmtools.github.io/arts-docs-2.6/stubs/variables/f_grid
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.StringCreate.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.VectorCreate.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.f_grid.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.f_grid.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.f_grid.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.WriteXML.html

8 INTRODUCTION

Workspace method = WriteXML

Writes a workspace variable to an XML file.

This method can write variables of any group.

If the filename is omitted, the variable is written
to <basename>.<variable_name>.xml.

Synopsis:

WriteXML(output_file_format, v, filename)

Authors: Oliver Lemke

Variables:

IN output_file_format (String): Output file format.
GIN v (Any): Variable to be saved.
GIN filename (String, Default: ""): Name of the XML file.

Figure 1.3: Built-in documentation for method WriteXML, obtained by com-
mand ‘arts -d WriteXML’, or on page https://atmtools.github.io/arts-docs-
2.6/stubs/methods/WriteXML.

The list at the bottom of the documentation shows that output file format is a specific input
argument, and that v and filename are generic input arguments.

What this means is that output file format already automatically exists as a variable,
whereas v and filename do not. The built-in documentation provides descriptions also
of these generic arguments and lists the allowed values.

The predefined variables, combined with specific method arguments, are meant to help
in combining methods into meaningful calculations. Predefined variables are typically rel-
evant for more than one method. For example, variable output file format can be used to
change the format of all produced files at the same time. However, the use of a specific vari-
able in the controlfile is not mandatory, so ‘WriteXML(output file format, v,
"test.xml")’, ‘WriteXML("ascii", v, "test.xml")’, and ‘WriteXML(
my format, v, "test.xml")’ are all allowed. (But in the last example the variable
my format must have been defined before.)

Besides the variable names, the built-in documentation also lists the allowed vari-
able groups (or types). In the example, the groups for workspace variable v are ‘Any’,
which means that v can belong to any of the known groups. The group for filename is
‘String’, which means that a string is expected here. Method arguments can be a literal, as
in ‘WriteXML("ascii", v, "test.xml")’, or a variable, as in ‘WriteXML(
"ascii", v, s)’, where in the latter case variable s must be already defined.

The built-in documentation further states that argument filename has a default value
(in this case the empty string). Because of this, the argument can actually be omitted, so
‘WriteXML("ascii", v)’ will also work.

Alternatively, workspace methods can be called with named arguments. All omitted

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.WriteXML.html
https://atmtools.github.io/arts-docs-2.6/stubs/methods/WriteXML
https://atmtools.github.io/arts-docs-2.6/stubs/methods/WriteXML
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.output_file_format.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.output_file_format.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.output_file_format.html

1.3 ARTS AS A SCRIPTING LANGUAGE 9

Workspace variable = propmat_clearsky_agenda

This agenda calculates absorption coefficients for all gas species
as a function of the given atmospheric state for one point in the
atmosphere. The result is returned in *propmat_clearsky*, the
atmospheric state has to be specified by *rtp_pressure*,

rtp_temperature, *rtp_mag*, and *rtp_vmr*.

The methods inside this agenda may require a lot of additional
input variables, such as *f_grid*, *species*, etc.

Group = Agenda
Output = propmat_clearsky
Input = f_grid, rtp_doppler, rtp_mag, rtp_pressure,

rtp_temperature, rtp_vmr

AgendaSet(
propmat_clearsky_agenda)
{

propmat_clearskyInit
propmat_clearskyAddXsecAgenda
propmat_clearskyAddZeeman

}

AgendaSet(
propmat_clearsky_agenda)
{
Ignore(rtp_mag)
propmat_clearskyInit
propmat_clearskyAddFromLookup

}

Figure 1.4: Top: Built-in documentation for variable
propmat clearsky agenda, obtained by command ‘arts -d
propmat clearsky agenda’, or on page https://atmtools.github.io/arts-docs-
2.6/stubs/pyarts.workspace.Workspace.propmat clearsky agenda.html. Bottom left:
Controlfile agenda definition for line-by-line absorption calculation. Bottom right:
Controlfile agenda definition to extract absorption from a pre-calculated lookup table.

arguments will be set to their default values. WriteXML(in=v) is equivalent to calling
WriteXML(output file format, v). Note that named arguments can not be
mixed with positional arguments.

One additional rule has to be mentioned here. If all arguments to a method are specific,
and the user wants to use all the predefined variables, then the entire argument list (including
parentheses) may be omitted.

1.3.3 Agendas

Agendas are a special group of workspace variables, which allow to modify how a calcula-
tion is performed. A variable of group agenda holds a list of workspace method calls. It can
be executed, which means that the method calls it contains are executed one after another.

Figure 1.4 gives an example, for the agenda propmat clearsky agenda. Several radia-
tive transfer methods use this agenda as input variable. When they need local absorption
coefficients for a point in the atmosphere, they execute the agenda with the local pressure,
temperature, and trace gas volume mixing ratio values as inputs. The agenda then provides
absorption coefficients as output.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky_agenda.html

10 INTRODUCTION

The bottom of Figure 1.4 shows two different ways how this agenda could be defined in
the controlfile. In the first case a line-by-line absorption calculation is performed when the
agenda is executed (every time absorption coefficients are needed). In the second case the
absorption coefficients are extracted from a pre-calculated lookup table.

On invocation, an agenda executes its methods one after the other. The inputs and
outputs defined for the agenda must be satisfied by the invoked workspace methods. E.g.,
if an agenda has propmat clearsky in its list of output workspace variables, at least one
workspace method which generates propmat clearsky must be added to the agenda in the
controlfile.

1.4 Include controlfiles

ARTS controlfiles can include other ARTS controlfiles, which is achieved by statements
such as INCLUDE "general.arts". This mechanism is used to predefine gen-
eral default settings, settings for typical applications, and/or settings for the simulation
of well-known instruments. A variety of include controlfiles are collected in directory
controlfiles of the ARTS distribution.

You should normally at least include the file general.arts, which contains general
default settings. Because giving the full path for every include file is inconvenient, ARTS
will look for include files in a special directory. This can be set by the command line
option -I <includepath>, or by the environment variable ARTS INCLUDE PATH. If
none of these are set, ARTS will assume the include path to point to the includes directory
in the ARTS distribution. The file agendas.arts is also useful, because it predefines
agendas with settings suitable for many applications. FIXME: Revise this section after
general.arts has been changed.

1.5 Test controlfiles

The directory controlfiles in the ARTS distribution contains some test and example
controlfiles. You should study them to learn more about how the program works. You can
run these controlfiles like this:

arts TestAbs.arts

This assumes that you are in the directory where the control file resides, and that the arts
executable is in your path.

Alternatively, you can run a standard set of the test controlfiles by going to the build
directory, and say

make check

This standard set of test is run by us on every automatic build, that means every time a new
ARTS version is submitted to the GitHub repository. If your ARTS installation is healthy,
make check should run through without any errors. (See file README in the ARTS
distribution for detailed instructions on how to build ARTS.)
FIXME: The tests are now structured differently. Update the text.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky.html

1.6 VERBOSITY LEVELS 11

1.6 Verbosity levels

The command line parameter

arts -r

or

arts --reporting

can be used to set how much output ARTS produces. You can supply a three-digit integer
here. Each digit can have a value between 0 and 3.

The last digit determines, how verbose ARTS is in its report file. If it is 0, the report file
will be empty, if it is 3 it will be longest.

The middle digit determines, how verbose ARTS is on the screen (stdout). The meaning
of the values is exactly as for the report file.

The first digit is special. It determines how much you will see of the output of agendas
(other than the main program agenda). Normally, you do not want to see this output, since
many agendas are called over and over again in a normal program run.

The agenda verbosity applies in addition to the screen or file verbosity. For example, if
you set the reporting level to ‘123’, you will get:

• From the main agenda: Level 1-2 outputs to the screen, and level 1-3 outputs to the
report file.

• From all other agendas: Only level 1 outputs to both screen and report file.

As another example, if you set the reporting level to ‘120’ the report file will be empty.
The default setting for ARTS (if you do not use the command line flag) is ‘010’, i.e.,

only the important messages to the screen, nothing to the report file, and no sub-agenda
output.

12 INTRODUCTION

Chapter 2

Importing and exporting data

Sorry, so far just a few words about supported data formats.

FIXME: Extend this chapter.

2.1 Data formats

2.1.1 XML files

XML is the default file format for exchanging data with ARTS. Two flavors are supported:
Plain text and binary. In the plain format all data is stored in the XML file. For binary,
the structure of the data is stored in the XML file and the data itself in binary format in a
separate file.

2.1.2 NetCDF files

NetCDF input and output is supported for a subset of the data types available in ARTS.

2.1.3 Gridded fields

Naming convention for grids

% Grid names for GriddedField variables.
% Keep the description short and on one line.
% Sort alphabetically.

Complex Complex number "grid" (i.e. exactly 2 elements: real and imaginary)
Frequency Frequency dimension for spectral dependent fields.
Latitude Latitude dimension for atmospheric fields (z,T,VMRs,winds,Ne,B,pnd).
Longitude Longitude dimension for atmospheric fields (z,T,VMRs,winds,Ne,B,pnd).
Pressure Pressure dimension for atmospheric fields (z,T,VMRs,winds,Ne,B,pnd).

History
? ?.

14 IMPORTING AND EXPORTING DATA

% Data field names
% mere suggestions and not tested anywhere in ARTS
Temperature Temperature field
VMR Volume mixing ratio field
Altitude Altitude/height field
pnd_field Particle number density field

Chapter 3

Description of the atmosphere

This section discusses the model atmosphere: how it is defined, its boundaries and the
variables describing the basic properties. One aspect that can cause confusion is that several
vertical coordinates must be used (Sec. 3.1). The main vertical coordinate is pressure and
atmospheric quantities are defined as a function of pressure (Sec. 3.3), but the effective
vertical coordinate from a geometrical perspective (such as the determination of propagation
paths) is the radius (Sec. 3.2). Pressures and radii are linked by specifying the geometrical
altitudes (z field).

3.1 Altitude coordinates

Pressure The main altitude coordinate is pressure. This is most clearly manifested by the
fact that the vertical atmospheric grid consists of equal-pressure levels. The vertical
grid is accordingly denoted as the pressure grid and the corresponding workspace
variable is p grid. The choice of having pressure as main altitude coordinate results
in that atmospheric quantities are retrieved as a function of pressure.

Pressure altitude A basic assumption in ARTS is that atmospheric quantities (tempera-
ture, geometric altitude, species VMR etc.) vary linearly with the logarithm of the
pressure. This corresponds roughly to assuming a linear variation with altitude.

Radius Geometrical altitudes are needed to determine the propagation path through the at-
mosphere etc. The main geometrical altitude coordinate is the distance to the centre
of the coordinate system used, the radius. This is a natural consequence of using a
spherical or polar coordinate system. The radius is used inside ARTS for all geomet-
rical calculations.

Geometrical altitude The term geometrical altitude signifies here the difference in radius
between a point and the reference ellipsoid (Sec. 11.1) along the vector to the centre
of the coordinate system (Equation 11.6). This is consistent with the usage of geocen-
tric latitudes (see below). Hence, the altitude is not measured along the local zenith
direction.

History
130219 Revised by Patrick Eriksson.
020315 First version by Patrick Eriksson.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.z_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.p_grid.html

16 DESCRIPTION OF THE ATMOSPHERE

Atmospheric grids
Ground
Geoid
Cloud box
Atmospheric field

Figure 3.1: Schematic of a 1D atmosphere. The atmosphere is here spherically symmetric.
This means that the radius of the ellipsoid, the surface and all the pressure levels are constant
around the globe. The fields are specified by a value for each pressure level. The extension
of the cloud box is either from the surface up to a pressure level, or between two pressure
levels (which is the case shown in the figure). The figure indicates also that the surface must
be above the lowermost pressure level. (“Geoid” in the legend should be “Ellipsoid”.)

3.2 Atmospheric dimensionality

The structure of the modelled atmosphere can be selected to have different degree of com-
plexity, the atmospheric dimensionality. There exist three options, 1D, 2D and 3D, where
1D and 2D can be seen as special cases of 3D. The significance of these different atmo-
spheric dimensionalities and the geometrical coordinate systems used are described below
in this section. The atmospheric dimensionality is selected by setting the workspace vari-
able atmosphere dim to a value between 1 and 3. The atmospheric dimensionality is most
easily set by the functions AtmosphereSet1D, AtmosphereSet2D and AtmosphereSet3D.

1D A 1D atmosphere can be described as being spherically symmetric. The term 1D
is used here for simplicity and historical reasons, not because it is a true 1D case
(a strictly 1D atmosphere would just extend along a line). A spherical symmetry
means that atmospheric fields and the surface extend in all three dimensions, but they
have no latitude and longitude variation. This means that, for example, atmospheric
fields vary only as a function of altitude and the surface constitutes the surface of a
sphere. The radial coordinate is accordingly sufficient when dealing with atmospheric
quantities. The latitude and longitude of the sensor are normally of no concern, but
when required the sensor is considered to be placed at latitude and longitude zero
([α, β] = [0, 0]). The sensor is assumed to by directed towards the North pole, corre-
sponding to an azimuth angle of 0◦. A 1D atmosphere is shown in Figure 3.1.

2D In contrast to the 1D and 3D cases, a 2D atmosphere is only strictly defined inside a
plane. More in detail, this case be seen as observations restricted to the plane where
the longitude equals 0◦ or 180◦. A polar system, consisting of a radial and an angular
coordinate, is applied. The angular coordinate is denoted as latitude, and matches the
3D latitude in the range [−90◦,+90◦], but for 2D there is no lower or upper limit for
the latitude coordinate. The 2D case is most likely used for satellite measurements
where the atmosphere is observed inside the orbit plane. The 2D “latitude” can then

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.atmosphere_dim.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.AtmosphereSet1D.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.AtmosphereSet2D.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.AtmosphereSet3D.html

3.3 ATMOSPHERIC GRIDS AND FIELDS 17

Atmospheric grids
Ground
Geoid
Atmospheric field

Figure 3.2: Schematic of a 2D atmosphere. The radii (for the surface and the pressure levels)
vary here linear between the latitude grid points. The atmospheric fields vary linearly along
the pressure levels and the latitude grid points (that is, along the dotted lines). Inside the grid
cells, the fields have a bi-linear variation. No cloud box is included in this figure. (“Geoid”
in the legend should be “Ellipsoid”.)

be taken as the angular distance along the satellite track. A 2D-latitude of e.g. 100◦

will then correspond to a 3D-latitude of 80◦. The atmosphere is normally treated to
be undefined outside the considered plane, but some scattering calculations may treat
the surrounding atmosphere in an simplified manner. A 2D atmosphere is shown in
Figure 3.2.

3D In this, the most general, case, the atmospheric fields vary in all three spatial co-
ordinates, as in a true atmosphere (Figures 3.3). A spherical coordinate system is
used where the dimensions are radius (r), latitude (α) and longitude (β), and a po-
sition is given as (r, α, β). With other words, the standard way to specify a geo-
graphical position is followed. The valid range for latitudes is [−90◦,+90◦], where
+90◦corresponds to the North pole etc. Longitudes are counted from the Greenwich
meridian with positive values towards the east. Longitudes can have values from -
360◦to +360◦. When the difference between the last and first value of the longitude
grid is 360◦ then the whole globe is considered to be covered. The user must ensure
that the atmospheric fields for β and β + 360◦ are equal. If a point of propagation
path is found to be outside the range of the longitude grid, this will results in an error
if not the whole globe is covered. When possible, the longitude is shifted with 360◦

in the relevant direction.

3.3 Atmospheric grids and fields

As mentioned above, the vertical grid of the atmosphere consists of a set of layers with
equal pressure, the pressure grid (p grid). This grid must of course always be specified.
The upper end of the pressure grid gives the practical upper limit of the atmosphere as
vacuum is assumed above. With other words, no absorption and refraction take place above
the uppermost pressure level.

A latitude grid (lat grid) must be specified for 2D and 3D. For 2D, the latitudes shall be
treated as the angular distance along the orbit track, as described above in Section 3.2. The

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.p_grid.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.lat_grid.html

18 DESCRIPTION OF THE ATMOSPHERE

Figure 3.3: Schematic of a 3D atmosphere. Plotting symbols as in Figure 3.2. Radii and
fields are here defined to vary linearly along the latitude and longitude grid points. This
means that the radius of a pressure level has a bi-linear variation inside the area limited
by two latitude and longitude grid values, while the atmospheric fields have a tri-linear
variation inside the grid cells.

latitude angle is throughout calculated for the vector going from the centre of the coordinate
system to the point of concern. Hence, the latitudes here correspond to the definition of the
geocentric latitude, and not geodetic latitudes (Sec. 11.1.1). This is in accordance to the
definition of geometric altitudes (Sec. 3.1). For 3D, a longitude grid (lon grid) must also
be specified. Valid ranges for latitude and longitude values are given in Section 3.2. If the
longitude and latitude grids are not used for the selected atmospheric dimensionality, then
the longitude grid (for 1D and 2D) and the latitude grid (for 1D) must be set to be empty.

The atmosphere is treated to be undefined outside the latitude and longitude ranges
covered by the grids, if not the whole globe is covered. This results in that a propagation
path is not allowed to cross a latitude or longitude end face of the atmosphere, if such exists,
it can only enter or leave the atmosphere through the top of the atmosphere (the uppermost
pressure level). See further Section 9.2. The volume covered by the grids is denoted as the
model atmosphere.

The basic atmospheric quantities are represented by their values at each crossing of the
involved grids (indicated by thick dots in Figure 3.2), or for 1D at each pressure level (thick
dots in Figure 3.1). This representation is denoted as the field of the quantity. The field
must, at least, be specified for the geometric altitude of the pressure levels (z field), the
temperature (t field) and considered atmospheric species (vmr field). The content and units
of vmr field are discussed in Section 4.2.2.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.lon_grid.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.z_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.t_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.vmr_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.vmr_field.html

3.4 GEO-LOCATION OF 1D AND 2D 19

All the fields are assumed to be piece-wise linear functions vertically (with pressure
altitude as the vertical coordinate), and along the latitude and longitude edges of 2D and 3D
grid boxes. For points inside 2D and 3D grid boxes, multidimensional linear interpolation
is applied (that is, bi-linear interpolation for 2D etc.). Note especially that this is also valid
for the field of geometrical altitudes (z field). Fields are rank-3 tensors. For example,
the temperature field is T = T (P, α, β). That means each field is like a book, with one
page for each pressure grid point, one row for each latitude grid point, and one column for
each longitude grid point. In the 1D case there is just one row and one column on each
page. The representation of atmospheric fields, and other quantities, is discussed further
in Section 16.2, where the concept of basis functions is introduced. In short, the basis
functions give the mapping from the set of discrete values to the continuous representation
of the quantity.

3.4 Geo-location of 1D and 2D

For 1D and 2D atmospheres, lat grid and lon grid do not contain true geographical positions
(they are either empty or lat grid contains transformed data). However, some operations
require that the positions is known, and this is handled by lat true and lon true. See the
built-in documentation for further information on how to specify these variables.

3.5 Hydrostatic equilibrium

There is no general demand that the model atmosphere fulfils hydrostatic equilibrium. That
is, t field and z field can be specified independently of each other. On the other hand, ARTS
provides means for ensuring that a model atmosphere matches hydrostatic equilibrium by
the method z fieldFromHSE. The method considers that gravitation varies with latitude and
altitude, and lat true and lon true must be set for 1D and 2D.

Hydrostatic equilibrium gives only constrain for the distance between the pressure lev-
els, not for the absolute geometrical altitudes. For this reason, a “reference point” must be
introduced. This is done by setting the pressure of this point by p hse (common for all lati-
tude and longitudes). The geometrical altitudes matching p hse are taken from the original
values in z field.

3.6 The reference ellipsoid and the surface

Geometrical altitudes are specified as the vertical distance to the reference ellipsoid (refel-
lipsoid), discussed further in Section 11.1. The lower boundary of the atmosphere is de-
noted as the surface. The surface is specified by its geometrical altitude on the latitude and
longitude grids. The workspace variable holding these data is called z surface.

It is not allowed that there is an altitude gap between the surface and the lowermost
pressure level. That is, the surface pressure must be smaller than the pressure of the lower-
most vertical grid level. On the other hand, it is not necessary to match the surface and the
first pressure level, the pressure grid can extend below the surface level.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.z_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.lat_grid.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.lon_grid.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.lat_grid.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.lat_true.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.lon_true.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.t_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.z_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.z_fieldFromHSE.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.lat_true.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.lon_true.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.p_hse.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.p_hse.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.z_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.refellipsoid.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.refellipsoid.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.z_surface.html

20 DESCRIPTION OF THE ATMOSPHERE

Figure 3.4: A latitudinal, or longitudinal, cross section of a 3D atmosphere. Plotting sym-
bols as in Figure 3.1. Radii and fields inside the cross section match the definitions for 2D.
The vertical extension of the cloud box is defined identical for 1D and 3D. The horizontal
extension of the cloud box is between two latitude and longitude grid positions, where only
one of the dimensions is visible in this figure.

3.7 The cloud box

In order to save computational time, calculations involving scattering are limited to a special
atmospheric domain. This atmospheric region is denoted as the cloud box. The distribution
of scattering matter inside the cloud box is specified by pnd field, see further Section 4.2.2.

The cloud box is defined to be rectangular in the used coordinate system, with limits
exactly at points of the involved grids. This means, for example, that the vertical limits of
the cloud box are two pressure levels. For 3D, the horizontal extension of the cloud box
is between two points of the latitude grid and likewise in the longitude direction (Fig. 3.4).
The latitude and longitude limits for the cloud box cannot be placed at the end points of
the corresponding grid as it must be possible to calculate the incoming intensity field. The
cloud box is activated by setting the variable cloudbox on to 1. The limits of the cloud
box are stored in cloudbox limits. It is recommended to use the method cloudboxOff when
no scattering calculations shall be performed. This method assigns dummy values to all
workspace variables not needed when scattering is neglected.

FIXME: add info on available cloudbox setting methods. particularly manual and
automatic methods and which fields the latter look at

When the radiation entering the cloud box is calculated this is done with the cloud box
turned off. This to avoid to end up in the situation that the radiation entering the cloud box
depends on the radiation coming out from the cloud box. It is the task of the user to define
the cloud box in such way that the link between the outgoing and ingoing radiation
fields of the cloud box can be neglected. The main point to consider here is radiation
reflected by the surface. To be formally correct there should never be a gap between the
surface and the cloud box. This is the case as radiation leaving the cloud box can then
be reflected back into the cloud box by the surface. If it is considered that the surface is
a scattering object it is clear that the surface should in general be part of the cloud box.
However, for many cases it can be accepted to have a gap between the surface and the cloud
box, with the gain that the cloud box can be made smaller. Such a case is when the surface is
treated to act as blackbody, the surface is then not reflecting any radiation. Reflections from
the surface can also be neglected if the zenith optical thickness of the atmosphere between

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.pnd_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.cloudbox_on.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.cloudbox_limits.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.cloudboxOff.html

3.8 WIND VECTOR FIELDS 21

the surface and cloud box is sufficiently high.

3.8 Wind vector fields

The atmospheric fields discussed above are scalar quantities, while some atmospheric vari-
ables can be seen as vector fields. However, in ARTS input vector fields are broken down
into the zonal, meridional and vertical components and are given as three scalar fields. This
division into scalar values is used to allow that one or several of the components easily can
be set to zero, which is done by setting the corresponding workspace variable to be empty.
Following the standard naming scheme for winds, the components are denoted as

u The zonal component. A positive value signifies an Eastward direction.

v The meridional component. A positive value signifies a Northward direction.

w The vertical component. A positive value signifies an upward direction.

The workspace variables to describe the wind vector field are wind u field, wind v field
and wind w field. To clarify the definition of the vector components above, the winds
components are defined as follows

vu A positive wind is defined as air moving from west to east, i.e. towards higher longi-
tudes.

vv A positive wind is defined as air moving from south to north, i.e. towards higher
latitudes.

vw A positive wind is defined as air moving upwards, i.e. towards higher altitudes.

As described above, one, two or all of these variables can be set to be empty, if the corre-
sponding wind component is zero.

Winds affect the radiative transfer by inducing Doppler shifts, see further Chapter 13.
Note that vu causes no Doppler shift for 1D and 2D atmospheric setups. Considering the
sensor viewing conventions in the 1D atmosphere case as laid out in Sec. 3.2, positive vv
correspond to tail winds, negative to head winds.

3.9 Magnetic field vector fields

To consider Faraday rotation (Sec. 14) and Zeeman splitting (Sec. 6.5.6), the magnetic
field must be specified. The same strategy of specifying the vector field by three scalar
components is applied as for the winds field (see above).

The three component fields are mag u field, mag v field and mag w field. All three
components must be specified (but can be set to zero for a part of, or the complete, atmo-
sphere). However, some component can be irrelevant for the calculations. For example, the
u-component has no influence on Faraday rotation for 1D and 2D cases. (The internal rep-
resentation of the magnetic field at a specific point is handled by rtp mag. For this variable
the three components are stored together, and thus the local magnetic field is represented as
a vector.)

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.wind_u_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.wind_v_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.wind_w_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.mag_u_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.mag_v_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.mag_w_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.rtp_mag.html

22 DESCRIPTION OF THE ATMOSPHERE

Chapter 4

Radiative transfer basics

This chapter introduces some basic radiative transfer nomenclature and equations. The ra-
diative transfer equation is here presented in general terms, while special cases and solutions
are discussed in later parts of the document.

4.1 Stokes dimensionality

The full polarisation state of radiation can be described by the Stokes vector, and is the
formalism applied in ARTS. The vector can be defined in different ways, but it has always
four elements. The Stokes vector, s, is here written as

s =

I
Q
U
V

 , (4.1)

where the first component (I) is the full intensity of the radiation, the second component
(Q) is the difference between vertical and horizontal polarisation, the third component (U)
is the difference for ±45◦ polarisation and the last component (V) is the difference between
left and right circular polarisation. That is:

I = Iv + Ih = I+45◦ + I−45◦ = Ilhc + Irhc, (4.2)

Q = Iv − Ih, (4.3)

U = I+45◦ − I−45◦ , (4.4)

V = Ilhc − Irhc, (4.5)

where Iv, Ih, I+45◦ , and I−45◦ are the intensity of the component linearly polarised at
the vertical, horizontal, +45◦ and -45◦ direction, respectively, and Irhc, and Ilhc are the
intensity for the right- and left-hand circular components. Further details on polarisation
and the definition of the Stokes vector are found in ARTS Theory, Section 5.

ARTS is a fully polarised forward model, but can be run with a smaller number of
Stokes components. The selection is made with the workspace variable stokes dim. For
example, gaseous absorption and emission are in general unpolarised, and if not particle

History
130218 First version by Patrick Eriksson.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.stokes_dim.html

24 RADIATIVE TRANSFER BASICS

and surface scattering have to be considered it is sufficient to only include the first Stokes
components in the simulations (ie. stokes dim set to 1). In this case, to include higher order
Stokes components results only in slower calculations. Simulations where stokes dim is
two or higher are denoted as vector radiative transfer, while scalar radiative transfer refers
to the case when only the first Stokes component is considered.

4.2 The radiative transfer equation

The radiative transfer problem can only be expressed in a general manner as a differential
equation. One version for vector radiative transfer is

ds(ν, r, n̂)

dl
= −K(ν, r, n̂)s(ν, r, n̂) + je(ν, r, n̂) + js(ν, r, n̂), (4.6)

where ν is frequency, r represents the atmospheric position, n̂ is the propagation direction
(at r), l is distance along n̂, K is the propagation matrix, je represents the emission at the
point, and js covers the scattering from other directions into the propagation direction.

4.2.1 Propagation effects

Three mechanisms contribute to the elements of the propagation matrix: absorption, scat-
tering and magneto-optical effects. Absorption and scattering can together be denoted as
extinction, referring to that these two mechanisms result in a decrease of the intensity (I).
A common name for K is also the extinction matrix. The extinction processes also affect
the Q, U and V elements of the Stokes vector. If the degree of polarisation (p)

p =

√
Q2 + U2 + V 2

I
(4.7)

is kept constant or not depend on symmetry properties of the attenuating media. For ex-
ample, absorption of atmospheric gases is not changing p as long as the molecules have no
preferred orientation, which is a valid assumption beside when there is a significant Zeeman
effect. Non-polarising absorption corresponds to that the propgation matrix can be written
as α1, where α is the absorption coefficient and 1 is the identity matrix.

There are also examples on effects that change the polarisation state of the Stokes vector
without affecting I . These effects are caused by an interaction with the magnetic field, and
are thus denoted magneto-optical. Ionospheric Faraday rotation can (approximately) be
seen as a pure magneto-optical effect, while the Zeeman effect cause both non-isotropic
absorption and has magneto-optical aspects.

As Equation 4.6 indicates, there are two source mechanisms that can act to increase the
intensity: emission and scattering.

4.2.2 Absorbing species and scattering particles

The complexity of the radiative transfer is largely dependent on whether scattering must be
considered or not. For this reason, ARTS operates with two classes of atmospheric matter:

Absorbing species This class covers atmospheric matter for which scattering can be ne-
glected. The set of “species” to consider is described by the workspace variable
abs species, and the associated atmospheric fields are gathered into vmr field. As the

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.stokes_dim.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.stokes_dim.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.abs_species.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.vmr_field.html

4.2 THE RADIATIVE TRANSFER EQUATION 25

name indicates, this later variable is mainly containing volume mixing ratio (VMR)
data, but as this unit is not applicable in all cases also other units are accepted. That is,
the unit for the fields varies, for gases it is VMR, while particle mass concentrations
are given in kg/m3 and electron density in m−3.

Particles This second class treats all matter causing significant scattering (and likely also
adding to the absorption). The amount of scattering matter is given as particle number
density fields (m−3), denoted as pnd field. The pnd field is provided per scattering
element (see Chapter 8 for definition). The corresponding optical properties of the
particles are given by scat data containing one set of single scattering properties for
each scattering element. Particles can be grouped into scattering species, each char-
acterized by a mass density (kg/m3) or flux (kg/(m2s) field that is converted into
particle number density fields before solving the radiative transfer equation.

Atmospheric quantities are not hard-coded to belong to any of these matter classes, as the
practical division depends on the conditions of the simulations. The general rule is that for
the shorter the wavelengths, a higher number of atmospheric constituents must be treated
as “particles”. For thermal infrared and microwave calculations, molecules and electrons
(and likely also aerosols) can be treated as absorbing species. It can also be possible to
place some hydrometeors in this class. For example, non-precipitating liquid clouds can
be treated as purely absorbing in the microwave region. Related to the division between
absorbing species and particles is:

Clear-sky In ARTS, the term “clear-sky” refers to the case when the influence of “parti-
cles” can be ignored, and only “absorbing species” are of relevance. Hence, a clear-
sky calculation can involve e.g. cloud water droplets, but on the condition that the
wavelength is such that scattering can be neglected.

The propagation effects of absorbing species and of (scattering) particles are kept separated.
The total propagation matrix is

K = Aa +Kp, (4.8)

where a and p refers to absorbing species and particles, respectively, and the symbol A
is used for the first term to remind about that the only extinction process covered by this
matrix is absorption (but including magneto-optical effects). As workspace variable, Aa

is denoted as propmat clearsky, obtained by the propmat clearsky agenda agenda. Kp is
obtained internally from scat data.

4.2.3 Emission and absorption vectors

One of the general assumptions in ARTS is that local thermodynamic equilibrium (LTE)
can be assumed. For the moment there exists no method in ARTS to handle deviations from
LTE, but this can be changed in the future. On the condition of LTE, the emission vector
(je) in Equation 4.6 can be written as

je = Ba, (4.9)

where B is the Planck function (a scalar value), describing blackbody radiation. For non-
LTE, the emission vector is instead

je = Bas, (4.10)

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.pnd_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.pnd_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.scat_data.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.scat_data.html

26 RADIATIVE TRANSFER BASICS

where the source term as contains both LTE and non-LTE effects. We code non-LTE not
as above but with the concept of “relative additional” non-LTE effects. This additional
non-LTE effect is named nlte source and it has the form

jn = B (as ⊘ a− 1) . (4.11)

(Note that the operator means that we are using element-wise division. Below, the dot means
element-wise multiplication.) The idea here is that je in Equation 4.13 is never directly used
but instead

je = a⊙ (B + jn) . (4.12)

The quantity a is denoted as the absorption vector. For clear-sky calculations the ab-
sorption vector is given by Aa, as in this case the emission vector can be calculated as

je = Aab, (4.13)

where b can be seen as the emission source vector, defined as

b = [B, 0, 0, 0]T . (4.14)

Hence, as only the first element of b is non-zero, the absorption vector is in this case equal
to the first column of Aa. The absorption vector can not be extracted from Kp as this
propagation matrix covers also scattering and scat data must also contain such data.

In summary, the total absorption vector in ARTS is obtained as

a = aa + ap (4.15)

where aa is the first column of Aa and ap is the absorption vector due to particles.

4.2.4 Main cases

The two equations below are discussed thoroughly in 6 of ARTS Theory. This including that
for some conditions also the “n2-law of radiance” must be considered to obtain completely
exact results (see also Section 9.5).

The equations below treat a single frequency and a single direction, at a time, and can be
said to describe monochromatic pencil beam radiative transfer. For simplicity, the frequency
and direction are left out from many of the equations in this user guide.

Clear-sky radiative transfer

If we for the moment assume that scattering can be totally neglected, then Equation 4.6 can
be simplified to

ds(ν, r, n̂)

dl
= Aa(ν, r, n̂) [b(ν, r, n̂)− s(ν, r, n̂)] (= −Aas+Baa) . (4.16)

Cases where Equation 4.16 is valid, are in ARTS denoted as clear-sky radiative transfer (im-
plying LTE if nothing else is stated). The discussion of such radiative transfer calculations
is continued in Section 9.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.nlte_source.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.scat_data.html

4.2 THE RADIATIVE TRANSFER EQUATION 27

Radiative transfer with scattering

Some additional conditions are required to put scattering into the picture. If scattering is of
incoherent and elastic nature, the extension of Equation 4.16 is

ds(ν, r, n̂)

dl
= −K(ν, r, n̂)s(ν, r, n̂) +Ba(ν, r, n̂) + (4.17)

+

∫
4π

Z(ν, r, n̂, n̂′)s(ν, r, n̂′) dn̂′,

where Z is the scattering (or phase) matrix. ARTS includes several modules to handle
scattering, introduced in the last part of this document.

28 RADIATIVE TRANSFER BASICS

Chapter 5

Complete calculations

This chapter outlines how complete radiative transfer simulations are performed. ARTS
is not only performing atmospheric radiative transfer, also sensor characteristics can be
considered. As a consequence, the topics of this chapter include the distinction between
monochromatic pencil beam and “full” calculations, and how the sensor is introduced.

5.1 Overview

An attempt to illustrate a “standard” ARTS calculation is found in Figure 5.1. The figure
shows that most calculation tasks are handled by an agenda. For example, ppath agenda
has the task of determining the propagation path for the given observation geometry. In
principle, the agenda could solve the task by loading data from a file, but most likely it
will use some of the dedicated workspace methods. These workspace methods are targeted
towards different observation types, for example, radio link calculations require special
consideration. Anyhow, the main message here is that by using the agenda concept, a very
high degree of flexibility can be achieved and new features can be added fairly simply. On
the other hand, the concept require that the user actually apply methods that make sense for
the agenda. The code of ARTS performs some consistency checks of the agenda output, but
this can only catch some types of mistakes.

Complete radiative transfer calculations are normally performed by yCalc. This method
incorporates sensor responses and has the variable y as main output. The letter y here refers
to the measurement vector, y, found in the formalism of Rodgers [1990, 2000] (see also
Sec. 1.3 of ARTS Theory). The vector can hold anything from a single value, to a high
number of spectra appended. The spectra in the last case can correspond to a limb sounding
sequence (hence measured for different zenith angles), or even be measured by different
sensors. In any case, the data in y contain likely significant impact of different parts of the
sensor used, such as the angular weighting by the antenna pattern.

On the other hand, atmospheric radiative transfer is performed for monochromatic fre-
quencies, along pencil beam directions. The outcome of one such calculation is the Stokes
vector for each frequency considered, and as workspace variable this quantity is denoted
as iy. Please, note the distinction to y, that can contain information from a number of
monochromatic pencil beam calculations, as shown in Section 5.3.

History
130219 First version by Patrick Eriksson.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppath_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.yCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.y.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.y.html

30 COMPLETE CALCULATIONS

yCalc

sensor_pos
sensor_los

Sensor characteristics
(sensor_response ...)

y, y_aux, y_f …,
jacobian

iy, iy_aux,
ppath

iy_sub_agenda

ppath_step_agenda

propmat_clearsky_
agenda

iy_space_agendaiy_space_agenda

iy_cloudbox_
agenda

iy_surface_agenda

surface_rtprop_
agenda

ppath_agenda

Atmospheric
data

Spectroscopic data
Isotopologue ratios

...

abs_lookup

Skin temperature
Surface reflectivity

refr_index_agenda

DOIT

MC

ppath_lmax

iyCalc

rte_pos
rte_los

iy_main_agenda

(For caption see top of the next page.)

5.2 COMPULSORY SENSOR AND DATA REDUCTION VARIABLES 31

Figure 5.1: A flowchart of a radiative transfer calculation (on previous page), using yCalc or
iyCalc. The figure assumes that iy main agenda holds iyEmissionStandard, that represents
the most complex case. Some important input data are shown in orange, and main output are
shown in green. The two main methods are plotted as grey boxes, while agendas are shown
as ovals. For connections between methods and agendas the arrows show the direction of
output (calculated) data. Every call of an agenda involves also some input data (settings), but
this aspect has been ignored for clarity reasons. Data entering an agenda along a common
line indicates mutually independent options. For example, absorption can be calculated
”on-the-fly” from basic spectroscopic data or be extracted from a pre-calculated look-up
table (see bottom-right corner). The dotted lines indicate that some methods and agendas
can make further calls of iy main agenda.

Further, the term “iy” is not restricted to the final outcome of atmospheric radiative
transfer, it is also used to indicate that quantities and operations are of monochromatic pen-
cil beam character. For example, the agenda returning the radiation entering the atmosphere
from space is named as iy space agenda to indicate that the agenda output is directly asso-
ciated with the calculation of iy. If only a single iy is of concern, the radiative transfer can
be performed by iyCalc, having a smaller set of input arguments than yCalc.

The output is not restricted to y or iy, also some auxiliary data can be extracted as de-
scribed in Section 9.8. In addition, yCalc can also provide weighting functions (Chapter 16).

5.2 Compulsory sensor and data reduction variables

The instrument real or hypothetical, that detects the simulated radiation is denoted as the
sensor. The forward model is constructed in such way that a sensor must exist. For cases
when only monochromatic pencil beam radiation is of interest, the positions and directions
for which the radiation shall be calculated are given by specifying an imaginary sensor
with infinite frequency and angular resolution. The workspace variables for the sensor
that always must be specified are sensor response, sensor pos, sensor los and mblock dlos.
These variables are presented separately below.

5.2.1 Sensor position

The observation positions of the sensor are stored in sensor pos. This is a matrix where
each row corresponds to a sensor position. The number of columns in the matrix equals the
atmospheric dimensionality (1 column for 1D etc.). The columns of the matrix (from first
to last) are geometrical altitude, latitude and longitude. Accordingly, row i of sensor pos
for a 3D case is (zi, αi, βi). The sensor position can be set to any value, but the resulting
propagation paths (also dependent on sensor los) must be valid with respect to the model
atmosphere (see Section 9.2). An obviously incorrect choice is to place the senor below
the surface altitude. If the sensor is placed inside the model atmosphere, any sensor line-
of-sight is allowed, this including the cases that the sensor is placed on the surface looking
down, and that the sensor is placed inside the cloud box.

One or several spectra can be calculated for each position as described in Section 5.3.
The corresponding workspace variable for single pencil beam calculations is rte pos, that is
an input argument to e.g. iy main agenda and iyCalc.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.yCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iyCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_main_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iyEmissionStandard.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_main_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_space_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iyCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.yCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.y.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.yCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.sensor_response.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.sensor_pos.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.sensor_los.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.mblock_dlos.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.sensor_pos.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.sensor_pos.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.sensor_los.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.rte_pos.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_main_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iyCalc.html

32 COMPLETE CALCULATIONS

zenith

northsouth

line−of−sight

ω
ψ

Figure 5.2: Definition of zenith an-
gle, ψ, and azimuth angle, ω, for
a line-of-sight. The figure shows a
line-of-sight with a negative azimuth
angle.

5.2.2 Line-of-sight

The viewing direction of the sensor, the line-of-sight, is described by two angles, the zenith
angle (ψ) and the azimuth angle (ω). The zenith angle exists for all atmospheric dimension-
alities, while the azimuth angle is defined only for 3D. The term line-of-sight is not only
used in connection with the sensor, it is also used to describe the local propagation direction
along the path taken by the observed radiation (Section 9.2). The zenith and azimuth angles
are defined in an identical way in both of these contexts (sensor pointing direction; local
propagation direction). This is expected as the position of the sensor is the end point of the
propagation path. The sensor line-of-sight is the direction the antenna is pointed to receive
the radiation. The line-of-sight for propagation paths is defined likewise, it is the direction
in which a hypothetical sensor must be placed to receive the radiation along the propagation
path at the point of interest. This means that the line-of-sight and the photons are going in
opposite directions. As a true sensor has a finite spatial resolution (described by the antenna
pattern), theoretically there is an infinite number of line-of-sights associated with the sen-
sor, but in the forward model, spectra are only calculated for a discrete set of directions. If a
sensor line-of-sight is mentioned without any comments, it refers to the direction in which
the centre of the antenna pattern is directed.

The zenith angle, ψ, is simply the angle between the line-of-sight and the zenith direc-
tion (Figure 5.2). The valid range for 1D and 3D cases is [0, 180◦]. In the case of 2D, zenith
angles down to -180◦ are also allowed, where the distinction is that positive angles mean
a viewing direction towards higher latitudes, and negative angles mean a viewing direction
towards lower latitudes. It should be mentioned that the zenith and nadir directions are here
defined to be along the line passing the centre of the coordinate system and the point of
concern (Section 11.1.1). A nadir observation, ψ = 180◦, is thus a measurement towards
the centre of the coordinate system.

The azimuth angle, ω, is given with respect to the meridian plane. That is, the plane
going through the north and south poles of the coordinate system (α = ±90◦) and the
sensor. The valid range is [−180◦, 180◦] where angles are counted clockwise; 0◦means
that the viewing or propagation direction is north-wise and +90◦ means that the direction
of concern goes eastward. This definition does not work for position on the poles. To
cover these special cases, the definition is extended to say that for positions on the poles the
azimuth angle equals the longitude along the viewing direction. For example, if standing on

5.3 MEASUREMENT SEQUENCES AND BLOCKS 33

any of the poles and the viewing direction is towards Greenwich, the azimuth angle is 0◦.
The sensor line-of-sights are stored in sensor los. This workspace variable is a matrix,

where the first column holds zenith angles and the second column is azimuth angles. For 1D
and 2D there is only one column in the matrix, while for 3D a row i of the matrix is (ψi, ωi).
The number of rows for sensor los must be the same as for sensor pos. The correspondance
to rte pos is rte los.

5.2.3 Sensor characteristics and data reduction

The term “sensor characteristics” is used here as a comprehensive term for the response of
all sensor parts that affect how the field of monochromatic pencil beam intensities are trans-
lated to the recorded spectrum. For example, the antenna pattern, the side-band filtering
and response of the spectrometer channels are normally the most important characteristics
of a microwave heterodyne radiometer. Any processing of the spectral data that takes place
before the retrieval is denoted as data reduction. The most common processing is to rep-
resent the original spectra with a smaller set of values, that is, a reduction of the data size.
The most common data reduction techniques is binning and Hotelling transformation by an
eigenvector expansion.

In ARTS, the influence of sensor characteristics and data reduction is incorporated by
transfer matrices. The application of these transfer matrices assumes that each step is a
linear operation, which should be the case for the response of the parts of a well designed
instrument. Non-linear data reduction could be handled by special workspace methods.

The sensor and data reduction are described as a series of units, each having its own
transfer matrix. There is only one compulsory transfer matrix and it is sensor response.
There are several workspace variables associated with this transfer matrix where an-
tenna dim and mblock dlos are the compulsory ones.

The variable antenna dim gives the dimensionality of the antenna pattern, where the
options are 1 and 2, standing for 1D and 2D, respectively. A 1D antenna dimensionality
means that the azimuth extension of the antenna pattern is neglected, there is only a zenith
angle variation of the response. A 2D antenna pattern is converted to a 1D pattern by
integrating the azimuth response for each zenith angle.

See further Chapter 12, where inclusion of sensor characteristics is described in .

5.3 Measurement sequences and blocks

The series of observations modelled by the simulations is denoted as the measurement se-
quence. That is, a measurement sequence covers all spectra recorded at all considered
sensor positions. A measurement sequence consists of one or several measurement blocks.
A measurement block can be treated as a measurement cycle that is repeated, an integer
number of times, to form the measurement sequence.

A measurement block covers one or several recorded spectra, depending on the mea-
surement conditions and the atmospheric dimensionality. A block can consist of several
spectra when there is no effective motion of the sensor with respect to the atmospheric fields.
It should be noted that for 1D cases, a motion along a constant altitude has no influence on
the simulated spectra as the same atmospheric fields are seen for a given viewing direction.
It is favourable, if possible, to handle all spectra as a single block, instead of using a block
for each sensor position. This is the case as the antenna patterns for the different line-of-
sights are normally overlapping and a pencil beam spectrum can be used in connection with

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.sensor_los.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.sensor_los.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.sensor_pos.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.rte_pos.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.rte_los.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.sensor_response.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.antenna_dim.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.antenna_dim.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.mblock_dlos.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.antenna_dim.html

34 COMPLETE CALCULATIONS

several measurement spectra to estimate the intensity field. If a measurement sequence is
divided into several blocks even if a single block would be sufficient, pencil beam spectra
for basically identical propagation paths can be calculated several times, which of course
will increase the computational time. To summarise, for cases when the sensor is not in
motion, or with a 1D atmosphere and a sensor not moving vertically, the aim should be to
use a single block for the measurement sequence.

If not a single block is used, the standard option should be that the blocks cover one
spectrum each. There could exist reasons to select an intermediate solution, to let the extent
of the blocks be several spectra (but not the full measurement sequence). This could be the
case when the atmospheric dimensionality is 2D or 3D, and the sensor is moving but the
movement during some subsequent spectra can be neglected.

The pencil beam spectra for each line-of-sight are appended vertically to form a com-
mon vector, ib. Values are put in following the order in f grid. Hence, the frequencies for
this vector are

ib =

 ν1
...
νn

... ν1
...
νn

(5.1)

where νi is element i of f grid and n the length of the same vector. The order of the angles
inside mblock dlos is followed when looping the pencil beam directions

The workspace variable sensor response is here denoted as Hb. It is applied on each ib
and the results are appended vertically, following the order of the positions in sensor pos

y =

Hbib,1
Hbib,2

...
Hbib,n

 (5.2)

where 1 indicates the first sensor position etc.
It should be noted that the compulsory sensor variables give no information about the

content of the obtained y, as it is not clear which parts and features the block transfer matrix
covers. If Hb only incorporates the antenna pattern, the result is a set of hypothetical spectra
corresponding to a point inside the sensor. On the other hand, if Hb includes the whole of
the sensor and an eigenvector data reduction, the result is not even a spectrum in traditional
way, it is just a column of coefficients with a vague physical meaning.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.f_grid.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.f_grid.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.mblock_dlos.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.sensor_response.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.sensor_pos.html

Part II

Atmospheric properties

Chapter 6

Gas absorption

6.1 Introduction

When calculating radiative transfer, the local absorption at each point in the atmosphere
has to be known. Furthermore, if one also wants to calculate Jacobians, then the partial
absorption for different atmospheric components (different absorption species) also has to
be known.

This chapter discusses different practical aspects of absorption in ARTS. Sections 6.2
and 6.3 introduce the main physical quantities and the main agendas, respectively. Section
6.4 explains how absorption is handled inside radiative transfer calculations. Section 6.5
discusses how absorption is actually calculated, and how the calculation is set up. Finally,
Section 6.6 describes how absorption is stored in a lookup table, and how it is extracted
again.

Here in the User Guide we focus on practical aspects of absorption in ARTS. But ab-
sorption calculations also have a deep theoretical background, particularly the line-by-line
calculations and the continuum models. Some of this background is discussed in ARTS
Theory, Chapter 2.

6.2 Key physical quantities

The scalar gas absorption coefficient α has units of 1/m. You can think of it as being defined
by the Lambert-Beer law

I1 = I0e
−αl, (6.1)

History
2013-06-21 New intro and general revision. Added CIA part. — Stefan Buehler
2012-08-28 Updated to propmat clearsky — by Richard Larsson.
2011-07-05 Added intro and sections on abs in RT and abs calculation. Also revised

lookup table section. First attempt of a complete absorption chapter for
ARTS2. — Stefan Buehler

2003-03-28 Documentation for WSM abs fieldCalc extended by Stefan Buehler af-
ter comment from Sreerekha T. R..

2003-03-10 Lookup tables added by Stefan Buehler.
2002-06-04 Restarted for ARTS-1-1 by Stefan Buehler.

38 GAS ABSORPTION

Table 6.1: Examples of symbols used in this chapter, the corresponding notation in the
ARTS source code and a short description of the quantity.

Here Unit In ARTS Description

α m−1 Scalar gas absorption coefficient
I W

m2 Hz sr
iy Intensity

l m Path length element
ni molec/m−3 Number density of species i
κi,j m5/molec2 abs cia data Binary absorption cross-section of

absorbing species pair (i,j)
K m−1 (4×4) propmat clearsky Clear-sky propagation matrix

where I is intensity and l is the distance through a homogeneous medium with absorption
coefficient α.

Absorption is additive, so the total absorption is the sum of the partial absorptions of
all absorbers. For an individual absorber, we can define another important quantity, the
absorption cross-section κi, as

κi =
αi

ni
, (6.2)

where subscript i denotes the absorber and ni is the partial number density of that absorber.
Absorption cross-sections depend less strongly on pressure than absorption coefficients, and
are therefore more suitable for storing in a lookup table.

Some processes create polarized absorption, which is described by a 4×4 matrix, in
ARTS called propagation matrix (propmat clearsky, already introduced in Section 4.2).
This variable is used by the ARTS RT functions to describe absorption. In the absence
of polarizing effects it is simply equal to α14, where 14 is the 4×4 identity matrix.

Both, gases and particles in the atmosphere absorb, and the total absorption is the sum
of these two contributions. This chapter only deals with absorption of non-scattering matter,
i.e., gas absorption in the first place (but can also include absorption by grey-body particles
and polarization changes by electrons).

6.3 Agendas

There is one key agenda related to absorption in ARTS: propmat clearsky agenda is called
by RT methods when they need absorption (more precisely the clear-sky propagation matrix,
as defined above).

6.4 Gas absorption in radiative transfer simulations

The interface between the RT part of ARTS and the absorption part of ARTS is the agenda
propmat clearsky agenda (see Figure 6.1). RT functions execute this agenda whenever they
need local absorption matrices. In a typical ARTS run, the agenda will be executed many
times over, for different points in the atmosphere. See the built-in documentation for the ex-
act input and output arguments of the agenda. The idea is that input arguments are the local

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.abs_cia_data.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky_agenda.html

6.5 CALCULATING GAS ABSORPTION 39

All RT Methods

propmat_clearsky

f_grid
rt_mag

...

propmat_clearsky_agenda

Figure 6.1: An outside view of propmat clearsky agenda.

atmospheric conditions (temperature, pressure, trace gas volume mixing ratios, magnetic
field, etc.).

The output of the agenda is a single variable, propmat clearsky, a tensor with dimen-
sions of absorption species, frequency, Stokes dimension and Stokes dimension (Stokes
dimension of one thus emulates scalar absorption). The physical quantity corresponding to
this variable is the clear-sky propagation matrix Aa as defined in Equation 4.8. It describes
all non-scattering extinction effects, that is, absorption and related polarization effects.

The agenda can contain a number of different workspace methods that in some way
or another compute propmat clearsky. See the built-in documentation of the individual
methods to learn more. File agendas.arts, one of the standard include-controlfiles,
predefines some typical alternatives how propmat clearsky agenda can be set for different
purposes.

The method propmat clearsky agendaAuto constructs a propmat clearsky agenda that
contains all required absorption methods. The list of methods is determined automatically
from the species present in abs species. This agenda can then be used for RT calculation
with one-the-fly absorption or the preparation of an absorption lookup table. The method
propmat clearsky agendaAuto can also constructs a propmat clearsky agenda that uses a
lookup table in RT calculations if given the correct flag (see method description).

6.5 Calculating gas absorption

This section deals with calculating gas absorption matrices in ARTS. This can typically
occur in three different contexts: as on-the-fly absorption matrix calculation within the
radiative transfer calculation (see above), when preparing a gas absorption lookup table
(see Section 6.6), or when the user is only interested in the absorption itself (see Section
6.7).

In all these cases, the same agenda is used to actually calculate absorption: prop-
mat clearsky agenda.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky_agendaAuto.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.abs_species.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky_agendaAuto.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky_agenda.html

40 GAS ABSORPTION

6.5.1 Absorption species

Absorption is additive, so the total absorption is simply the sum of all partial absorptions.
The partial absorption for gases can be calculated as a sum over the absorption of each
spectral line, plus some more or less empirical continuum terms or over empirical absorption
cross section.

An absorption species in ARTS is an abstract entity that has a partial absorption ma-
trix associated with it, and that usually can be associated with a volume mixing ratio of a
corresponding gas (the VMRs are stored in variable vmr field). Total absorption is the sum
of the partial absorptions of all absorption species. Absorption species are defined in the
ARTS controlfile by special ‘tags’, which are stored in the variable abs species, and set by
the method abs speciesSet.

The absorption species tags specify the different considered absorbers, which can be
gaseous species but also free electrons and (grey-body) particles. For gaseous species, they
also describe the model that should be used to calculate the absorption for each of the
species. There are four types of tags, those for explicit line-by-line calculations, those
for continua and complete absorption models, those for empirical cross section model,
and a special Zeeman effect tag. An example of the first kind is "H2O-18", which
identifies a particular isotopologue of water vapor. An example of the second kind is
"H2O-ForeignContCKDMT100", which identifies a particular continuum model. An
example of the third is "CFC11-XFIT", which identifies the empirical absorption cross
section model of CFC11. An example of the fourth is "O2-Z", which identifies that special
Zeeman routines should be used. Tags can be combined, if they refer to the same molecule
(different isotopologues are allowed). Even continuum tags can be combined with explicit
line-by-line tags, if they refer to the same molecule.

It should be noted that isotopologue ratios are taken into account implicitly when line
strengths are calculated, so even if you make calculations for individual isotopologues, the
VMR numbers in the variable vmr field should not be adjusted for the isotopologue ratio
(the isotopologue ratio can be changed instead; see Section 6.5.10). As an example, to make
a line-by-line calculation for all ozone isotopologues, you could represent them in different
ways by abs speciesSet.

a) abs_speciesSet(species=["O3"])
b) abs_speciesSet(species=

["O3-666, O3-668, O3-686, O3-667, O3-676"])
c) abs_speciesSet(species=

["O3-666", "O3-668", "O3-686", "O3-667", "O3-676"])

Options (a) and (b) are equivalent, you will have one ozone species that represents all iso-
topologues, and that will be associated with a single VMR field in vmr field. With option
(c) you have five different ozone species, so you have to supply five different VMR fields.
If those five fields are identical (exactly same numerical values), you will get the same total
absorption as with options (a) and (b).

Overall, the tag mechanism allows quite complex absorption setups. The built-in docu-
mentation for abs speciesSet gives a detailed explanation of the tag syntax and some exam-
ples.

Particularly note, that order of the species list matters as absorption line data is assigned
to species in their order within the abs species list and no line record is assigned to more
than one species. It is furthermore important to note that there is no ‘intelligence’ in ARTS

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.vmr_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.abs_species.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.abs_speciesSet.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.vmr_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.abs_speciesSet.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.vmr_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.abs_speciesSet.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.abs_species.html

6.5 CALCULATING GAS ABSORPTION 41

that checks that the chosen tag combinations make sense, so the user should know what s/he
is doing, or follow one of the many examples in the ARTS controlfiles directory.

6.5.2 Explicit line-by-line calculations

For absorption species with explicit line-by-line calculation the calculation involves the
steps summarized in Table 6.2, which contains the steps that are common to all the three
contexts in which explicit line-by-line calculations can occur as well as the steps that are
specific to each of those cases. The list of variables and methods in the table is not complete.
The idea is to give an overview over the important ones and show how they work together.
Missing are particularly the input variables that describe the atmospheric conditions, and
continuum description variables, which normally do not have to be set by the user anyway.

See the built-in documentation of the various variables and methods for more informa-
tion. It is on purpose not repeated here, for better maintainability. If you are viewing this pdf
file on a computer, just click on a variable or method name to get to the corresponding built-
in documentation. Further input data and parameters required (not only) for line-by-line
calculations is described in Section 6.5.10.

6.5.3 Continua and complete absorption models

ARTS includes many absorption continua and complete absorption models, which are de-
scribed in ARTS Theory, Chapter 2. The common property of all of these is that they do
not use the standard ARTS line-by-line calculation mechanism. They may include spectral
lines, but then these lines are hardwired into the absorption model itself. Consequently, the
first four steps in Table 6.2 are not needed for these models.

The pure continua are intended to be used together with an explicit ARTS line-by-line
calculation, the complete models are intended to be used alone. To select a continuum or
complete absorption model, simply use the corresponding tag with abs speciesSet. Cur-
rently available models are listed in Table 6.3.

The names should be fairly self-explanatory and can be used to find background infor-
mation on the various models in ARTS Theory. The condensate absorption models are a bit
special and perhaps need some extra explanation. They are absorption parameterizations
by Liebe, and allow the inclusion of condensate in the (rare) cases where scattering is not
important. Their general applicability is therefore fairly limited.

The core method to calculate continua and complete absorption models is prop-
mat clearskyAddPredefined. Users normally do not have to call this method explicitly,
since it is used implicitly by higher level methods, such as propmat clearsky fieldCalc
or the RT methods via propmat clearsky agenda, which is easiest set using prop-
mat clearsky agendaAuto.

6.5.4 Collision-induced absorption

Collisions of centro-symmetric molecules, e.g., O2, N2, H2, CO2, and CH4, possessing
no permanent electric dipole create a transient dipole, which causes so-called collision-
induced absorption (CIA). Absorption strength of CIA is characterized by its dependency
on the molecular density of both molecular species involved in the collision.

Recently, the well-known HITRAN spectral line catalogue has started to offer also tab-
ulated binary absorption cross-sections for CIA. This is described in detail in Richard et al.
[2012], and also in the documentation that comes with the data themselves.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.abs_speciesSet.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearskyAddPredefined.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearskyAddPredefined.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky_fieldCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky_agendaAuto.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky_agendaAuto.html

42 GAS ABSORPTION

Step Variables and Methods

1 Read spectral line data
(the order of the first
two steps does not
matter).

Variable: abs lines.
Methods: ReadArrayOfARTSCAT (legacy catalog format),
ReadARTSCAT (legacy catalog format), ReadHITRAN, ReadJPL,
(different methods are for different catalogue formats). For the ARTS
internal format, the standard method ReadXML works also, but does not
allow to select a frequency range, as the others do.

2 Split line data for
different absorption
species.

Variable: abs lines per species.
Methods: abs lines per speciesCreateFromLines.

3 Optimize line data.
(optional)

Variable: abs lines per species.
Methods: Add mirror lines for VVW line shape with abs linesMirroring
(see ARTS Theory, Chapter 2).

The first four steps are preparation, and typically have to be done only once per ARTS run. The
fifth step is the actual absorption calculation, which can occur in different contexts.

4a Calculate absorption
on-the-fly.

Agenda: propmat clearsky agenda.
Variable: propmat clearsky, which is initialized in propmat clearskyInit.
Methods: propmat clearskyAddCIA computes collision-induced
absorption,
propmat clearskyAddLines compute line-by-line absorption,
propmat clearskyAddZeeman (see Sec. 6.5.6),
propmat clearskyAddFaraday (see Sec. 6.5.8),
propmat clearskyAddParticles (see Sec. 6.5.9).
propmat clearskyAddPredefined computes legacy continua or full
absorption models,
Alternative: propmat clearskyAddFromLookup (extract absorption from
pre-calculated lookup table, see Sec. 6.6). Note that the lookup table
cannot contain absorption for Zeeman tagged species, Faraday rotation,
and particles due to their directional dependencies.
Recommendation: propmat clearsky agendaAuto can be used to setup
all propmat clearsky agenda calculations

4b Calculate absorption
lookup table.

Variable: abs lookup.
Methods: abs lookupCalc. Alternative: Load lookup table from file with
ReadXML, it then has to be adapted to the current calculation (and
checked) with abs lookupAdapt.

4c Calculate absorption
only (no RT).

Variable: propmat clearsky field.
Methods, high level: propmat clearsky fieldCalc.
Methods, low level: See 4a.

Table 6.2: Steps for line-by-line absorption calculation, and associated ARTS workspace
variables and methods.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.abs_lines.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ReadArrayOfARTSCAT.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ReadARTSCAT.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ReadHITRAN.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ReadJPL.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ReadXML.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.abs_lines_per_species.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.abs_lines_per_speciesCreateFromLines.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.abs_lines_per_species.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.abs_linesMirroring.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearskyInit.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearskyAddCIA.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearskyAddLines.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearskyAddZeeman.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearskyAddFaraday.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearskyAddParticles.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearskyAddPredefined.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearskyAddFromLookup.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky_agendaAuto.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.abs_lookup.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.abs_lookupCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ReadXML.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.abs_lookupAdapt.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky_fieldCalc.html

6.5 CALCULATING GAS ABSORPTION 43

Class Tag name
Water vapor continua H2O-SelfContStandardType

H2O-ForeignContStandardType
H2O-ForeignContMaTippingType
H2O-ContMPM93
H2O-SelfContCKD222
H2O-ForeignContCKD222
H2O-SelfContCKD242
H2O-ForeignContCKD242
H2O-SelfContCKD24
H2O-ForeignContCKD24
H2O-SelfContCKDMT100
H2O-ForeignContCKDMT100
H2O-SelfContCKDMT252
H2O-ForeignContCKDMT252
H2O-SelfContCKDMT320
H2O-ForeignContCKDMT320
H2O-SelfContCKDMT350
H2O-ForeignContCKDMT350
H2O-ForeignContATM01

Complete water vapor models H2O-CP98
H2O-MPM87
H2O-MPM89
H2O-MPM93
H2O-PWR98

Carbon dioxide continua CO2-CKD241
CO2-CKDMT100
CO2-CKDMT252
CO2-SelfContPWR93
CO2-ForeignContPWR93
CO2-SelfContHo66
CO2-ForeignContHo66

Oxygen continua O2-CIAfunCKDMT100
O2-v0v0CKDMT100
O2-v1v0CKDMT100
O2-visCKDMT252
O2-SelfContStandardType
O2-SelfContMPM93
O2-SelfContPWR93

Complete oxygen models O2-PWR98
O2-PWR93
O2-PWR88
O2-MPM93
O2-MPM92
O2-MPM89
O2-MPM87
O2-MPM85
O2-TRE05

Nitrogen continua N2-SelfContMPM93
N2-SelfContPWR93
N2-SelfContStandardType
N2-SelfContBorysow
N2-CIArotCKDMT100
N2-CIAfunCKDMT100
N2-CIArotCKDMT252
N2-CIAfunCKDMT252
N2-DryContATM01

Condensate absorption models liquidcloud-MPM93
icecloud-MPM93
rain-MPM93

Table 6.3: ARTS continua and complete absorption models. The molecular species can be
inferred from the start of the tag name. See ARTS Theory, Chapter 2 for more information
on the various models.

44 GAS ABSORPTION

Binary absorption cross-sections κi,j have to be multiplied with the number densities of
both involved molecular species to yield absorption coefficients:

αi,j = κi,j ni nj , (6.3)

where i and j denote the two different absorbing species. As a consequence, κi,j has units
of m5/molec2 in ARTS (the original HITRAN units are different).

Using CIA in ARTS is easy. First of all, include one or more CIA tags in your absorption
species list (abs species). All valid tags are listed in Table 6.4. Secondly, read in WSV
abs cia data, which contains the tabulated binary absorption cross-sections, from a file.
This will usually be the file hitran cia2012 adapted.xml.gz, which is included in
the arts-xml-data, but the original HITRAN data files can also be read. Finally, use
WSM propmat clearskyAddCIA in propmat clearsky agenda to add the CIA absorption.
For usage examples, look in directory controlfiles/artscomponents/cia that is
part of the ARTS distribution.

Figure 6.2 shows all CIA continua that are currently available in ARTS (left) and sep-
arately the ones that are relevant for Earth’s atmosphere (right). The valid frequency and
temperature ranges for these data, as available in ARTS, are listed in Table 6.4. Outside
the covered frequency ranges, the binary absorption cross-sections are set to zero, while
exceeding the valid temperature range will produce NaN values and eventually trigger a
runtime error.

To make the HITRAN data work in ARTS, some modifications were necessary, specifi-
cally:

N2-N2: The two high-frequency datasets were merged into one.

O2-O2: Three apparently separate datasets that really belong together were merged.
UV/Vis dataset were removed.

CO2-CO2: Caveat: This is only the self continuum of CO2. The CO2-air continuum has
strong features above 250 cm−1 that are present in CKD MT (also available in ARTS
as one of the continuum and full absorption models), but are missing here. Further-
more, Richard et al. [2012] point out that for molecules with more than two atoms
further mechanisms affecting CIA exist, which are not covered by the simple models
used. They hence state that “these data should be used very carefully”. Conclusion:
No changes, but use with care.

Also note that no data exists at frequencies below 30 GHz (1 cm−1) though some sig-
nificant absorption is still present at the limiting frequency. For those low frequencies,
the CO2-SelfContPWR93 continuum (see Table 6.3) can be used as an alternative
(we estimated that to be valid at least up to about 100 GHz, but deviating significantly
above 500 GHz).

O2-N2, O2-CO2: These UV/Vis-only datasets were removed.

6.5.5 Absorption cross section model

The empirical absorption cross sections are calculated in the method prop-
mat clearskyAddXsecFit. If this method is included in the propmat clearsky agenda,
then species with the tag ”-XFIT” will be calculated as empirical cross section model

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.abs_species.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.abs_cia_data.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearskyAddCIA.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearskyAddXsecFit.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearskyAddXsecFit.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky_agenda.html

6.5 CALCULATING GAS ABSORPTION 45

Table 6.4: Absorption species tags, frequency ranges, and temperature ranges for HITRAN
CIA data as implemented in ARTS. (These data contain some modifications from the origi-
nal HITRAN data, which are described in the text.)

CIA tag Spectral range [cm−1] Temp range [K] No. of datasets
N2-CIA-N2-0 0.02 – 554.00 40.00 – 400.00 10
N2-CIA-N2-1 1850.00 – 3000.09 228.20 – 362.50 10
N2-CIA-H2-0 0.02 – 1886.00 40.00 – 400.00 10
N2-CIA-CH4-0 0.02 – 1379.00 40.00 – 400.00 10
H2-CIA-H2-0 20.00 – 10000.00 200.00 – 3000.00 113
H2-CIA-He-0 20.00 – 20000.00 200.00 – 9900.00 334
H2-CIA-CH4-0 0.02 – 1946.00 40.00 – 400.00 10
H2-CIA-H-0 100.00 – 10000.00 1000.00 – 2500.00 4
He-CIA-H-0 50.00 – 11000.00 1500.00 – 10000.00 10
O2-CIA-O2-0 1150.00 – 1950.00 193.40 – 353.40 15
CO2-CIA-CO2-0 1.00 – 250.00 200.00 – 800.00 7
CH4-CIA-CH4-0 0.02 – 990.00 40.00 – 400.00 10
CH4-CIA-Ar-0 1.00 – 697.00 70.00 – 296.00 5

0 500 1000 1500 2000 2500
10−30

10−29

10−28

10−27

Wavenumber [cm−1]

Ab
s.

 C
ro

ss
−s

ec
tio

n
[m

2 m
ol

ec
−1

]

Temperature: 310 K, partial pressure of each gas: 1000 hPa

N2−CIA−N2−0, N2−CIA−N2−1
N2−CIA−H2−0
N2−CIA−CH4−0
H2−CIA−H2−0
H2−CIA−He−0
H2−CIA−CH4−0
O2−CIA−O2−0
CO2−CIA−CO2−0
CH4−CIA−CH4−0
CH4−CIA−Ar−0

0 500 1000 1500 2000 2500
10−38

10−36

10−34

10−32

10−30

10−28

10−26

10−24

Wavenumber [cm−1]

Ab
s.

 C
ro

ss
−s

ec
tio

n
[m

2 m
ol

ec
−1

]

Earth midlatidue−summer, T = 294 K, p = 1000 hPa

N2−CIA−N2−0, N2−CIA−N2−1
N2−CIA−CH4−0
O2−CIA−O2−0
CO2−CIA−CO2−0
CH4−CIA−CH4−0
N2−CIAfunCKDMT100−*−*, N2−CIArotCKDMT100−*−*
O2−CIAfunCKDMT100−*−*
CO2−CKDMT100−*−*

Figure 6.2: Left: All HITRAN CIA continua that are implemented in ARTS (each gas here
has a partial pressure of 1000 hPa). Right: Only the ones that are relevant for Earth (for
Earth surface conditions).

46 GAS ABSORPTION

species. The absorption cross section model is based on HITRAN cross-section data,
which are described in detail in Gordon et al. [2017]. For the details on the empirical cross
section model, see ARTS Theory, Section 2.4.

6.5.6 Zeeman calculations

The Zeeman effect is calculated in the method propmat clearskyAddZeeman. If this method
is included in the propmat clearsky agenda, then species with the tag ”-Z” will be calcu-
lated as Zeeman species. Note that the order within the tag string is important: the Zeeman
tag must directly follow the molecular species tag. That is, O2-Z-66 will be counted as
Zeeman splitting on the O16O16 molecule.

The physics and internal workings of the Zeeman calculations follow the scheme pre-
sented in Larsson et al. [2014]. However, Larsson et al. [2014] only presents the correct
solution for ground-state 3Σ (e.g., molecular oxygen in millimeter). For other states, more
appropriate expressions should be used. Also note that there is one additional error in
Larsson et al. [2014], where the table representing the relative line strengths is incorrectly
normalized to 2 rather than 1 for ∆J = 0.

In order to calculate Zeeman splitting, additional line parameters are necessary. These
are attached to the line-by-line. There are many ways to compute these. An update from
Larsson et al. [2014] for O2 is available in Larsson et al. [2019], and precise calculations
for ClO, OH and NO is available in Larsson and Lankhaar [2020].

Beside the additional line parameters, it is also necessary to input the magnetic field
into the model. This can be done either by calling MagFieldsCalcIGRF (earth only model),
or by manually supplying raw magnetic field measurements on a gridded field and use
the combination of MagRawRead and one of MagFieldsCalc, MagFieldsCalcExpand1D, or
MagFieldsFromAltitudeRawCalc. Since altitude and not pressure is the natural coordinate
for magnetic fields, it is required that z field and/or the refellipsoid are defined. Note that it
is possible but absolutely not recommended to use pressure as your altitude coordinate.

6.5.7 Internal line-mixing

Line mixing is provided together with the line-by-line data and is then computed naturally
during line-by-line calculations. If no such data is provided, line mixing is not computed.

You can deactivate line mixing calculations manually using one of the methods that sets
the line mixing limit. As an example, abs linesLinemixingLimit sets the line mixing limit
for all lines in abs lines. Only at pressures higher than this line mixing limit will the line
mixing calculations be available, so setting this much higher than the pressure will ensure
that no line mixing is computed.

6.5.8 Faraday rotation

Faraday rotation is a change of polarization state of radiation in interaction with (free) elec-
trons in presence of a static magnetic field. For further details on theory and usage in ARTS
see Section 14. Here we only give a short summary how to setup the calculation of Faraday
contribution to the absorption (or better: propagation) matrix propmat clearsky.

First, to include Faraday rotation effects propmat clearskyAddFaraday must be included
in the propmat clearsky agenda. Second, a species tag "free_electrons" needs to
be contained in abs species. Correspondingly, a field of electron densities is required in
vmr field.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearskyAddZeeman.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.MagFieldsCalcIGRF.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.MagRawRead.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.MagFieldsCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.MagFieldsCalcExpand1D.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.MagFieldsFromAltitudeRawCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.z_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.refellipsoid.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.abs_linesLinemixingLimit.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.abs_lines.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearskyAddFaraday.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.abs_species.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.vmr_field.html

6.5 CALCULATING GAS ABSORPTION 47

For usage examples, check controlfiles/artscomponents/faraday that is
part of the ARTS distribution.

6.5.9 Absorbing particles

As pointed out before, this chapter deals with absorption by non-scattering matter. In first
place this refers to gases, while particles (aerosols, clouds, precipitation) are considered to
(also) scatter radiation and are handled differently (see Chapters 8, 18, and 19). However,
when particles are small compared to the wavelength of the radiation they act as broadband
grey-body absorbers and can be treated similarly to continuum absorption by gases.

This is reflected in ARTS providing a few continuum models for condensed matter (see
Tab. 6.3), which essentially are particles, too. It is tedious, though, to implement those kind
of particle continua for a wide range of different base materials as become of interest when
being interested in other than the Earth’s atmosphere.

In the ARTS scattering modules, particles are represented by single scattering property
data (scat data) and particle concentrations (particle number densitity fields pnd field). The
single scattering data originate from scattering theory programs (e.g., Mie theory, T-matrix
model, Discrete Dipole Approximation) and their preparation typically requires significant
efforts. Comprehensive data for hydrometeors in the Earth atmosphere, but also clouds,
dust and the like for other planets is available from the arts-xml-data package. It is
appealing to apply this data in non-scattering calculations (e.g. at low frequencies, where
the scattering contribution is negligible) in a consistent manner. The ARTS method for that
is propmat clearskyAddParticles and its application is described in the following.

To consider grey-body particle absorption, the user has to include prop-
mat clearskyAddParticles in the propmat clearsky agenda. Furthermore, for each scatter-
ing element (see Section 8.1 for how a scattering element is defined) 1) a "particles"
tag needs to be added to abs species, 2) the corresponding concentration field has to be
added to vmr field, and 3) its single scattering data have to be added to scat data. This
can be done each-by-each using ReadXML and Append methods, but a dedicated method
ScatElementsToabs speciesAdd is available performing these three steps for one scatter-
ing element at once. ScatElementsToabs speciesAdd adds the raw number density field to
vmr field raw, i.e., the raw concentration fields can be converted to internal atmospheric
grids together with the gas concentration fields using, e.g., AtmFieldsCalc. Single scat-
tering data of all individual scattering elements is added to one and the same scattering
species, specifically to the last one of these in the scat data array. Note that ScatEle-
mentsToabs speciesAdd is essentially doing the same as ScatElementsPndAndScatAdd, but
for non-scattering instead for scattering-in-cloudbox cases (where in non-scattering setups
the concentration data is stored together with gas concentrations in vmr field, while for
scattering setups it is stored separately in pnd field), and that for the single scattering data
and concentration fields the exact same data can be applied.

Beside being able to re-use particle data from scattering cases, this method is also ad-
vantageous compared to the particles-as-continuum-models implementations as it allows
for directional dependent absorption and for polarization effects that occur, e.g., with non-
spherical particles.

In the default case, absorption by particles is applied both in the extinction and emission
terms of the radiative transfer equation, i.e. both right hand terms in Equation 4.16. How-
ever, using a flag, propmat clearskyAddParticles can apply total particle extinction instead.
It shall be noted, that while this applies the correct extinction, it also creates an unphysical

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.scat_data.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.pnd_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearskyAddParticles.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearskyAddParticles.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearskyAddParticles.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.abs_species.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.vmr_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.scat_data.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ReadXML.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.Append.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ScatElementsToabs_speciesAdd.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ScatElementsToabs_speciesAdd.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.vmr_field_raw.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.AtmFieldsCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.scat_data.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ScatElementsToabs_speciesAdd.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ScatElementsToabs_speciesAdd.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ScatElementsPndAndScatAdd.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.vmr_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.pnd_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearskyAddParticles.html

48 GAS ABSORPTION

emission term. Hence, this option shall only be applied when the source term is negligible,
as e.g. for occultation measurements.

Be aware that both propmat clearskyAddParticles and the scattering methods use
scat data to store the particle single scattering data. Hence, it is straight-forward that these
methods can not be applied simultaneously. In one ARTS run, all particles are handled
either as scattering entities (when using the scattering modules) or as grey-body absorbers
(when applying propmat clearskyAddParticles). Trying to use both in parallel results in a
runtime error.

For a setup example check TestAbsParticle.arts in
controlfiles/artscomponents/absorption/. See the built-in documen-
tation of the individual methods for further information.

6.5.10 Further input data and parameters for calculating gas absorption

Spectral line data

Important input to the line-by-line calculations is the spectral line data, usually provided
by spectroscopic catalogues. ARTS has its own format for the spectral line data, but is
also capable of handling data from other catalogues like HITRAN (both pre- and post-
2004 formats) and JPL (see Table 6.2, step 1). Section ?? of ARTS Theory contains more
information on the internal format of the spectral line data. It also contains theoretical
background for the calculation itself.

Isotopologue ratios

Isotopologue ratios (mostly) from HITRAN and valid for Earth atmosphere are stored in
ARTS source code. These data are necessary for working with HITRAN data (as HITRAN
line strengths are weighted with isotopologue abundance). However, it is convenient for the
user to be able to change isotopologue ratio values, e.g., when modeling absorption in other
planets’ atmospheres.

The WSV isotopologue ratios holds the isotopologue ratios applied in the absorption
calculation. They have to be set by the user. It is possible to apply the ARTS built-
in values mentioned above using isotopologue ratiosInitFromBuiltin. Alternatively, they
can be read from file using ReadXML. For easy manipulation, the user might initial-
ize isotopologue ratios from built-in data, write the isotopologue ratios structure to file
using WriteXML, modify the data accordingly, and read in the manipulated file. Files
with isotopologue ratios for a couple of planetary atmospheres are provided with the
arts-xml-data package.

It shall be noted, that only isotopologue ratios of the species used in the absorption
calculation need to be given. Reading in from file resets the full list of isotopologue ratios
(i.e., the values for all absorption species known to ARTS) with species not given in the
input data set to NaN.

Partition functions

Partition functions are compiled into ARTS from our distributed partition functions by de-
fault. Users also have the option to select their own partition functions via CMake build
options. It is possible to check the partition functions that have been used by storing all of

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearskyAddParticles.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.scat_data.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearskyAddParticles.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.isotopologue_ratios.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.isotopologue_ratiosInitFromBuiltin.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ReadXML.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.isotopologue_ratios.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.isotopologue_ratios.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.WriteXML.html

6.6 THE GAS ABSORPTION LOOKUP TABLE 49

the data to a directory using WriteBuiltinPartitionFunctionsXML (note that many files will
likely be generated, so it is advised to write to an empty directory).

It is also possible to directly check the computed partition function values using the
executable partfun that is generated as part of the standard build.

For more information on theoretical background as well as the source and implementa-
tion in ARTS see Section 2.1.3 of ARTS Theory.

6.6 The gas absorption lookup table

6.6.1 Introduction

Calculating gas absorption matrix spectra in a line by line way is quite an expensive thing to
do. Sometimes contributions from thousands or ten thousands of lines have to be summed
up. To make matters worse, this has to be done over and over again for each point in the
atmosphere.

Actually, the absorption matrix depends not directly on position, but on the atmospheric
state variables:

• Pressure

• Temperature

• Concentrations of absorbing matter (i.e., gases, absorbing particles, free electrons)

• Magnetic field

The basic idea of the lookup table is to pre-calculate absorption for discrete combi-
nations of these variables, and then use interpolation to extract absorption for the actual
atmospheric state. Due to the nature of the Zeeman and Faraday effects (also particle ab-
sorption), particularly due to their directional dependence, those are not implemented in the
lookup table. Thus, we can ignore the magnetic field.

The lookup table concept and implementation is described only very briefly here in the
user guide. Much more details and validation results can be found in Buehler et al. [2011].

6.6.2 Lookup table concept

The fundamental law of Beer1 states that extinction is proportional to the intensity of radi-
ation, and to the amount of absorbing substance:

dI

dl
= −I

∑
i

κini = −I
∑
i

αi = −Iαtotal (6.4)

where the meaning of the symbols is defined in Table 6.1.
As one can see from the above equation, a large part of the pressure dependence of

αi comes from ni. (If one assumes constant volume mixing ratio of species i, then ni is
proportional to the total pressure according to the ideal gas law.) Therefore, the lookup table
should store κ, rather than α. We then have to worry only about the dependence of κ on the
atmospheric state variables.

1According to C. Melsheimer, Beer’s law is: ‘The taller the glass, the darker the brew, the less the amount
of light that comes through’. He might have been quoting someone else, there, but I do not know whom.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.WriteBuiltinPartitionFunctionsXML.html

50 GAS ABSORPTION

Pressure dependence

The pressure dependence is the most important dependence of κ. It comes from the fact that
the width of the line shape functions is governed by pressure broadening. We have to store
the κi on some pressure grid and interpolate if we need them for intermediate values.

Temperature dependence

This is the next effect to take into account. Both the line widths and the line intensities
depend on temperature. Of course, only certain combinations of pressure and tempera-
ture occur in the Earth’s atmosphere. Hence, storing the κi in a two dimensional table
as a function of pressure and temperature would waste a lot of memory (and computa-
tion time). Instead, they are stored for a reference temperature and set of temperature
perturbations for each pressure level. E.g., if the set of perturbations is [−10, 0, +10],
then the κi would be stored for three different temperatures for each pressure level:
[TR(p) − 10K, TR(p), TR(p) + 10K], where TR(p) is the reference temperature for each
pressure level.

Trace gas concentration dependence

This is a second order effect. The width of the line depends not only on total pressure, but
also on the partial pressure of one or more trace gases. In theory this is always the case,
because the broadening is different for each combination of collision partners. However, in
practice trace gas concentrations in the Earth’s atmosphere are normally so low that this can
be safely neglected. An important exception is water vapor in the lower troposphere, which
can reach quite high volume mixing ratios. Therefore, the effect of water vapor mixing ratio
on water vapor absorption (self broadening), as well as on oxygen absorption (for example
according to the parameterization by Rosenkranz [1993]) may not be negligible.

This is handled by storing water vapor perturbations. In contrast to the temperature
case, the water vapor perturbations are multiplicative, not additive. Hence, if the set of per-
turbations is [0, 1, 10], then the κi would be stored for three different H2O VMRs for each
pressure/temperature grid point: [0, VMRR(p, T), 10∗VMRR(p, T)], where VMRR(p, T)
is the reference water vapor VMR for each pressure/temperature grid point.

Interpolation

The interpolation scheme is quite important for the accuracy of the lookup table. In partic-
ular, higher order interpolation gives considerably better accuracy for the same table grid
spacing. The interpolation orders in the ARTS implementation of the lookup table can be
chosen by the user. The settings that are recommended, and set as defaults are quite high
interpolation orders of 5, 7, and 5 for pressure, temperature, and water vapor, respectively.
Such high orders are only appropriate because the function to be interpolated (the κi) is
very smooth.

6.6.3 Workspace variables and methods

The gas absorption lookup table is implemented by the class GasAbsLookup, which re-
sides in the files gas abs lookup.cc and gas abs lookup.h.

6.6 THE GAS ABSORPTION LOOKUP TABLE 51

The lookup table itself is stored in the workspace variable abs lookup. It can be gen-
erated with the method abs lookupCalc. ARTS also includes some methods that automati-
cally set input parameters for abs lookupCalc, such as grid ranges and reference profiles of
pressure, temperature, and trace gas concentrations. These methods are abs lookupSetup,
abs lookupSetupBatch, and abs lookupSetupWide. The first two will take into account the
actual atmospheric state, or set of atmospheric states, for the calculation. The third alter-
native simply sets up a table that should cover most reasonable atmospheric conditions.
Buehler et al. [2011] as well as the built-in documentation contains more information on
these setup methods.

Alternatively, the table can be loaded from a file with ReadXML. After loading, the
method abs lookupAdapt has to be called. It will make sure that the lookup table agrees
exactly with your calculation. For example, it has to check that the frequencies that you
want to use are included in the set of frequencies for which the table has been calculated.
There is no interpolation in frequency. This is on purpose, because the gas absorption
spectrum is the quantity that changes most rapidly as a function of frequency. Frequency
interpolation here could be quite dangerous. The abs lookupAdapt method also checks that
all used species (apart from Zeeman, Faraday, and particle species) are present in the table,
reduces the table to the used species, and sorts the table species data in exactly the same
way that they occur in your calculation. It sets the variable abs lookup is adapted to flag
that the table is now ok.

When the table has been successfully adapted, one can extract absorption matrices with
the method propmat clearskyAddFromLookup. This will extract absorption matrices, i.e.,
the cross-sections stored in the table are not only interpolated to the desired atmospheric
conditions, but are also multiplied with the partial number density of the present absorbers.

The propmat clearskyAddFromLookup method is meant to be used inside the agenda
propmat clearsky agenda, which is applied in several places where absorption matrices are
needed, both inside the scattering box and outside.

6.6.4 Format of the lookup table

Usually the user does not need to bother with it, as ARTS provides methods to create,
read and write, and extract data from the lookup table. However, sometimes one desires
to analyze, e.g., the absorption cross-section data calculated and stored in the lookup table.
Therefore we give a short description of the format of the absorption lookup table here.
More detailed information can be found in the source code, where the GasAbsLookup
class is implemented – specifically in gas abs lookup.h.

The absorption lookup table is a compound type variable comprising of (in this order;
variable type of each entry shown in parantheses)

• species: an array of the species tags the lookup table is valid for (ArrayOfArrayOf-
SpeciesTag)

• nonlinear species: an array indicating the species that require non-linear treatment
(ArrayOfIndex)

• f grid: the frequency grid (Vector)

• p grid: the pressure grid (Vector)

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.abs_lookup.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.abs_lookupCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.abs_lookupCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.abs_lookupSetup.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.abs_lookupSetupBatch.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.abs_lookupSetupWide.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ReadXML.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.abs_lookupAdapt.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.abs_lookupAdapt.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.abs_lookup_is_adapted.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearskyAddFromLookup.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearskyAddFromLookup.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky_agenda.html

52 GAS ABSORPTION

• vmrs ref: the reference profiles of volume mixing ratios (VMRs) for all species asso-
ciated with the pressure (Matrix; dimension: [number of species, number of pressure
levels])

• t ref: the reference temperature profile associated with the pressure grid (Vector)

• t pert: the temperature perturbations (Vector)

• nls pert: the VMR perturbations of the non-linear species in terms of fractional units
of the reference VMRs (Vector)

• xsec: the absorption cross-sections (Tensor4; dimension: [number of temperature
perturbations, number of species (and non-linear species perturbations), number of
frequencies, number of pressure levels])

6.7 Stand-alone gas absorption calculation

Within the RT calculations, gas absorption is calculated or extracted locally, i.e., for a spe-
cific point in the atmosphere or in other words for a specific set of pressure, temperature,
and trace gas VMR. However, sometimes it is of interest to explicitly calculate and output
absorption, e.g., for testing and validating modules of the absorption calculation, for model
comparisons, for plotting and analyzing absorption coefficients, etc. Table 6.2, step 4c lists
high- and low-level workspace methods for this purpose. In particular, the method prop-
mat clearsky fieldCalc provides the absorption matrices, i.e., polarized absorption coeffi-
cients, per species tag group for an entire atmospheric scenario and the complete frequency
grid.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky_fieldCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky_fieldCalc.html

Chapter 7

Refractive index

FIXME: Write a proper introduction. Comment on that this is not the complex re-
fractive index, also covering absorption. . . .

Refractive index (here restricted to the real part of the refractive index, which is basically
a complex quantity with the imaginary part expressing absorption) describes several effects
of matter on propagation of electromagnetic waves. This particularly includes changes of
the propagation speed of electromagnetic waves, which leads to a delay of the signal as well
as a change of the propagation direction, a bending of the propagation path. The latter is
commonly called refraction.

Several components in the atmosphere contribute to refraction, hence to the refractive
index: the gas mixture(“air”), solid and liquid constituents (clouds, precipitation, aerosols),
and electrons. ARTS includes mechanisms for deriving the contributions from gases and
electrons with the available methods described in the Sections below. ARTS does not con-
sider refraction by solid and liquid particle as their refractive index is not known to ARTS
(when scattering is considered, ARTS gets their single scattering properties as input, see
Chapter 8). However, the contribution of solid and liquid constituents to the refractive in-
dex is commonly neglected in radiative transfer models and is expected to have only small
effects.

Refractivity (N) describes the deviation of the refractive index of a medium nfrom
the vacuum refractive index (nvacuum = 1): N = n − 1. Contributions of the different
components to refractivity are additive. Therefore, all ARTS methods that provide refractive
index, calculate refractivity and sum it up with the input refractive index.

Within ARTS, refractive index is required for calculations of refracted propagation paths
and related parameters (e.g., deriving viewing angle for a given tangent altitude). FIXME:
for more?

Whenever refractive index is required, e.g., at each point along a propagation
path, it is evaluated according to the mechanism specified by refr index air agenda.
refr index air agenda provides both the monochromatic refractive index refr index air, in
the following denoted as n, as well as the group refractive index refr index air group, de-
noted as ng. refr index air differs from refr index air group in case of dispersion, which
e.g. leads to diverging propagation paths at different frequencies.

FIXME: Describe where each variable is used. Expand . . .

History
120918 Started (Patrick Eriksson).

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.refr_index_air_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.refr_index_air_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.refr_index_air.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.refr_index_air_group.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.refr_index_air.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.refr_index_air_group.html

54 REFRACTIVE INDEX

7.1 Gases

For calculating the contribution to the refractive index from atmospheric gases, the follow-
ing workspace methods are currently available in ARTS: refr index airMicrowavesGeneral,
refr index airMicrowavesEarth and refr index airInfraredEarth. All of them are non-
dispersive, i.e., monochromatic and group refractive index are identical. They are supposed
to be applied as alternatives, not in addition to each other.

refr index airMicrowavesGeneral provides refractivity due to different gas mixtures as
occuring in planetary atmospheres and is valid in the microwave spectral region. It uses the
methodology introduced by Newell and Baird [1965] for calculating refractivity of the gas
mixture at actual pressure and temperature conditions based on the refractivity of the indi-
vidual gases at reference conditions. Reference refractivities from Newell and Baird [1965]
are available for N2, O2, CO2, H2, and He. Additionally, reference refractivity for H2O has
been derived from H2O contribution as described by refr index airMicrowavesEarth (see
below) for a reference temperature of T0=273.15 K1. Any mixture of these gases can be
taken into account. The missing contribution from further gases is roughly accounted for
by normalising the calculated refractivity from the six reference gases to a volume mixing
ratio of 1. More details on the applied formulas are given in Section 4.1.1 of ARTS Theory.

refr index airMicrowavesEarth calculates the microwave “air” refractivity in the Earth’s
atmosphere taking into account refractivity of “dry air” and water vapour. All other gases
are assumed to have a negligible contribution.

refr index airInfraredEarth derives the infrared “air” refractivity in the Earth’s atmo-
sphere considering only refractivity of “dry air”.

7.2 Free electrons

Free electrons, as exist in the ionosphere, affect propagating radio waves in several ways.
Free electrons will have an impact of the propagation speed of radio waves, hence a signal
can be delayed and refracted. This section consideres only the refraction effect (neglecting
influences of any magnetic field). For effects on polarisation state of the waves in presence
of a static magnetic field, i.e., Faraday rotation, see Section 14.

refr index airFreeElectrons derives this contribution of free electrons to the refractive
index. The method is only valid when the radiative transfer frequency is large enough (at
least twice the plasma frequency). Information on theoretical background and details on the
applied formulas are provided in Section 4.2 of ARTS Theory.

1Reducing the refr index airMicrowavesEarth approach to inverse temperature proportionality as ap-
plied by refr index airMicrowavesGeneral causes significant deviations from H2O refractivity from
refr index airMicrowavesEarth. However, they are smaller than when refraction by H2O is neglected.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.refr_index_airMicrowavesGeneral.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.refr_index_airMicrowavesEarth.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.refr_index_airInfraredEarth.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.refr_index_airMicrowavesGeneral.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.refr_index_airMicrowavesEarth.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.refr_index_airMicrowavesEarth.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.refr_index_airInfraredEarth.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.refr_index_airFreeElectrons.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.refr_index_airMicrowavesEarth.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.refr_index_airMicrowavesGeneral.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.refr_index_airMicrowavesEarth.html

Chapter 8

Description of scattering media

8.1 Introduction

In the Earth’s atmosphere we find liquid water clouds consisting of approximately spherical
water droplets and cirrus clouds consisting of ice particles of diverse shapes and sizes. We
also find different kinds of aerosols. In order to take into account this variety, the model
allows to define several scattering elements.

A scattering element is either a specific single particle or a particle ensemble, e.g., an
ensemble following a certain size or shape distribution. The scattering element can rep-
resent particles that are completely randomly oriented, azimuthally randomly oriented or
arbitrarily oriented. Each scattering element is characterized by its single scattering proper-
ties (SSP) and a field of particle number densities. For each grid point in the cloud box, the
atmospheric volume that encloses all scattering particles, the single scattering properties of
all scattering elements weighted by their respective particle number density at this location
are summed up to derive the cloud ensemble optical properties.

The scat data structure contains the single scattering properties (⟨Ki⟩, ⟨ai⟩, and ⟨Zi⟩)
for each of the scattering elements. In scat data, the SSP are stored in different coordi-
nate systems, depending on the kind of particle. For instance, SSP of totally randomly
oriented particles are stored in the so-called scattering frame in order to reduce mem-
ory requirements, while others use the particle frame. Section 8.2 describes in detail the
SingleScatteringData class and section 8.3 presents options for preparing SSP. For
details on the coordinate systems used also see ARTS Theory Section 6.2.6 (Note: Coordi-
nate systems used by the SSP as well as the line-of-sight and radiation propagation direc-
tions in the scattering solvers and the general radiative transfer part are not fully consistent.
However, as long as only totally or azimuthally randomly oriented particles and only up
to two Stokes components are considered this is of no practical concern. FIXME: add
appendix on known ARTS issues with a section on this particular one).

The number density field, pnd field, contains the number densities of all scattering el-
ements at all grid points within the cloudbox. pnd field can be read in from externally
prepared data files or be derived from mass density of flux fields provided to the model.

History
050913 Created and written by Claudia Emde
161107 Extended regarding internal calculations of scat data and pnd fields by

Jana Mendrok

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.scat_data.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.scat_data.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.pnd_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.pnd_field.html

56 DESCRIPTION OF SCATTERING MEDIA

Section 8.4 describes the available options.
The WSVs scat data and pnd field together exhaustively describe particle ensembles in

ARTS. All ARTS scattering solvers consistently require and use these two WSVs to derive
the bulk extinction, absorption, and phase matrices (Kp, Ap, and Z).

8.2 Single scattering properties

8.2.1 Scattering data structure

The single scattering data is stored in a specific structure format, the the
SingleScatteringData class1. The format allows space reduction due to symme-
try for certain special cases, e.g. totally random or azimuthally random orientation. The
class consists of the following fields (compare also Table 8.1):

• String ptype: An attribute, which flags type and format of the data stored. It es-
sentially describes the type of particle regarding its symmetry properties (totally ran-
domly oriented, azimuthally randomly oriented, general case, . . .). This attribute is
needed in the radiative transfer function to be able to extract the physical phase ma-
trix, the physical extinction matrix, and the physical absorption vector from the data.

Possible values of ptype are:

"totally random"
"azimuthally random"
"general"

A detailed description of the different types including their different data formats and
corrdinate systems used is given in Section 8.2.2.

• String description: Here, the scattering element is characterized explicitly in
free text form. For example, information on the size and shape of the particle or the
respective distributions of a particle ensemble might be given. This can be a longer
text describing how the scattering properties were generated. It should be formatted
for direct printout to screen or file.

• Vector f grid: Frequency grid [Unit: Hz].

• Vector T grid: Temperature grid [Unit: K].

• Vector za grid:

1. "totally random": Scattering angle grid. Range: 0.0◦ ≤ za ≤ 180.0◦.

2. "azimuthally random": Zenith angle grid. Range: 0.0◦ ≤ za ≤ 180.0◦.
Symmetric with respect to 90.0◦ and explicitly including the 90.0◦ point.

3. "general": Zenith angle grid. Range: 0.0◦ ≤ za ≤ 180.0◦.

• Vector aa grid: Azimuth angle grid.

1. "totally random": Empty (not needed, since optical properties depend
solely on scattering angle).

1Definition resides in optproperties.h.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.scat_data.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.pnd_field.html

8.2 SINGLE SCATTERING PROPERTIES 57

Symbol Type Dimensions Description
enum ptype specification
String short description of the scattering element

ν Vector (ν) frequency grid
T Vector (T) temperature grid
ψ Vector (ψ) zenith angle grid
ω Vector (ω) azimuth angle grid
⟨Z⟩ Tensor7 (ν, T , ψ, ω, ψ′, ω′, i) phase matrix
⟨K⟩ Tensor5 (ν, T , ψ, ω, i) extinction matrix
⟨a⟩ Tensor5 (ν, T , ψ, ω, i) absorption vector

Table 8.1: Structure of single scattering data files

2. "azimuthally random": Range: 0.0◦ ≤ aa ≤ 180.0◦ (due to symmetry
only half of the general grid is required).

3. "general": Range: -180.0◦ ≤ aa ≤ 180.0◦

The angular grids have to satisfy the following conditions:

– Range limits (0◦, 180◦, . . .) must be grid points.

– Data at azimuth angle values of -180.0◦ and 180.0◦ must be equal.

• Tensor7 pha mat data: Phase matrix data ⟨Z⟩ [Unit: m2].

The dimensions of the data array are:

[frequency temperature za sca aa sca za inc aa inc
matrix element]

The order of matrix elements depends on the ptype of the data. For most types not all
matrix elements need to be stored (see description of ptypes in Section 8.2.2).

• Tensor5 ext mat data: Extinction matrix data ⟨K⟩ [Unit: m2].

The dimensions are:

[frequency temperature za inc aa inc matrix element]

Again, the order of matrix elements depends on the ptype of the data.

• Tensor5 abs vec data: Absorption vector data ⟨a⟩ [Unit: m2].

The dimensions are:

[frequency temperature za inc aa inc vector element]

The absorption vector is explicitly given. It could be calculated from extinction ma-
trix and phase matrix. However, this would take significant computation time, as it
requires an angular integration over the phase matrix and poses integration accuracy
and grid representation issues, whereas the additional storage burden is comparably
low.

58 DESCRIPTION OF SCATTERING MEDIA

8.2.2 Definition of ptypes

Ptype essentially classifies the scattering elements regarding their symmetry properties,
which are largely governed by particle orientation. As indicated above, this affects the
optimal choice of the coordinate system to represent the scattering element in. Possible
ptypes in the model are:

“totally random”

The ptype value “totally random” refers to macroscopically isotropic and mirror-symmetric
scattering media. It covers totally randomly oriented particles (with at least one plane of
symmetry2) as well as spherical particles.

For this type of scattering media, the optical properties are stored in the scattering frame
(see ARTS Theory Section 6.2.6, where the z-axis corresponds to the incident direction and
the x-z-plane with the scattering plane. Using this frame, only the scattering angle is needed,
the angle between incident and scattered direction. Furthermore, the number of matrix
elements of both the phase matrix and the extinction matrix can be reduced (see Mishchenko
et al. [2002], p.90). This representation, however, requires an ARTS-internal transformation
of the phase matrix data from the particle frame representation (in the scattering frame) to
the laboratory frame representation. These transformations are described in the Appendix
of Emde [2005].

Only six elements of the phase matrix in the scattering frame, which is commonly called
scattering matrix F, are independent. The order of the stored matrix elements is: F11, F12,
F22, F33, F34, F44. The size of pha mat data is

[N f N T N za sca 1 1 1 6]
The extinction matrix is in this case diagonal and independent of direction and polarization.
That means only one element per frequency and temperature needs to be stored. Hence the
size of ext mat data is

[N f N T 1 1 1]
The absorption vector is also direction and polarization independent. Therefore the size of
abs vec data is

[N f N T 1 1 1]

“azimuthally random”

The ptype value “azimuthally random” refers to particles that exhibit a preferred orienta-
tion with respect to polar angle, but are oriented randomly regarding the azimuthal angle.
Horizontally aligned particles are one prominent example, but this class is not limited to
them. For these particles, one angular dimension is redundant and can be omitted in the
data, if the coordinate system is oriented appropriately.

SSP here are stored in the laboratory frame. In this frame, the phase matrix, extinction
matrix, and absorption vector become independent of the incident azimuth angle. Further-
more only half of the “general” angle ranges are required for the azimuth angle due to
symmetry reasons. That is, aa grid from 0◦ to 180◦.

All 16 elements of the phase matrix are required. Their order is the same as in the
general case. The size of pha mat data is

2Note: Even if totally randomly oriented, particles lacking a symmetry plane are not part of this category
unless their mirrored counterparts are considered with equal weight.

8.3 GENERATING SINGLE SCATTERING PROPERTIES 59

[N f N T N za sca N aa sca N za sca 1 16]
For this ptype, the extinction matrix has only three independent elements, Kjj, K12(=K21),
and K34(=-K43). The size of ext mat data is

[N f N T N za 1 3]
The absorption coefficient vector has only two independent elements, a1 and a2. This means
that the size of abs vec data is

[N f N T N za 1 2]

“general”

NOTE: While basic definitions and infrastructure to handle particles of general type exist,
not all methods are fully implemented for this type. Hence, calculations with arbitrary
particles are currently not possible.

The ptype value “general” refers to arbitrarily shaped and oriented particles. For those,
generally no symmetries exist, hence all 16 elements of the phase matrix have to be stored
for the complete set of incident and scattered directions. The matrix elements are stored in
the order Z11, Z12, Z13, Z14, Z21, Z22, The size of pha mat data is

[N f N T N za sca N aa sca N za inc N aa inc 16]
Seven extinction matrix elements are independent (cp. Mishchenko et al. [2002], p.55). The
elements being equal for single particles are equal for a distribution, too, as total extinction
is derived by summing up individual contribution. Extinction matrix generally only depends
on the incident direction, hence the size of ext mat data is

[N f N T N za inc N aa inc 7]
The absorption vector in general has four components (cp. Equation (2.186) in Mishchenko
et al. [2002]). The size of abs vec data is accordingly

[N f N T N za inc N aa inc 4]

8.3 Generating single scattering properties

The single scattering properties in the above described format have to be available to ARTS
when entering the scattering solver. The data can be prepared by external tools or from
internally interfaced methods.

Generally, single scattering properties can be calculated for example by Mie [e.g. Wis-
combe, 1980; Mätzler, 2002], T-Matrix [Mishchenko and Travis, 1998] or Discrete dipole
approximation, DDA, [e.g Yurkin and Hoekstra, 2011] methods. While Mie methods can
only provide data for macroscopically isotropic particles, T-matrix methods are applicable
for certain anisotropic particles, too, and DDA is capable of handling completely general
particles.

The user is free to use any tools to derive the single scattering properties, but has to
ensure to store the data in the appropriate format. That is, totally random particle data has
to be provided in the scattering frame, while the other two types are given in the laboratory
frame. Depending on the method used, averaging the single scattering properties of particles
in fixed orientation over a range of orientations might required.

Within ARTS and its supporting software packages some methods to prepare single
scattering data are available:

• The WSM scat data singleTmatrix provides an ARTS internal interface to the the
T-matrix code by Mishchenko et al. [2002]. It allows to calculate single scattering

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.scat_data_singleTmatrix.html

60 DESCRIPTION OF SCATTERING MEDIA

properties of individual scattering elements including orientation averaging and ref-
erence frame adjustion. It is currently only available for a limited number of particle
shapes (see online documentation) and orientations (namely for totally randomly ori-
ented and perfectly horizontally aligned particles, but not for generally azimuthally
randomly oriented ones).

• The ATMLAB package, available at https://www.radiativetransfer.org/tools/, in-
cludes functions to generate single scattering properties for spherical particles (Mie-
Theory) as well as an interface to ARTS’ own scat data singleTmatrix WSM.

• The Python module PyARTS used to provide methods to generate single scattering
properties for horizontally aligned as well as for randomly oriented particles in the
ARTS data-file-format. NOTE: PyARTS is currently not maintained and updated
along with ARTS development. Hence, functionality of specific methods is not guar-
anteed.

Since WSVs scat data and pnd field form a paired input to ARTS’ scattering solvers,
dedicated methods exist for loading externally prepared data consistently into these WSVs.
WSMs ScatElementsPndAndScatAdd and ScatSpeciesPndAndScatAdd can be applied for
loading externally prepared single scattering data and particle number density field raw
data (into pnd field raw) simultaneously. In case, particle scattering should be neglected
and particles considered as absorbing species only (see Section 6.5.9), WSM ScatEle-
mentsToabs speciesAdd should be used to load the data into scat data and vmr field raw. If
particle number density fields are calculated internally from atmospheric cloud fields (see
Section 8.4.2, WSM ScatSpeciesScatAndMetaRead can be applied.

8.4 Generating particle number density fields

8.4.1 Externally created particle number density fields

Externally created particle number density fields have to be provided to ARTS in the form
of GriddedField3 data. Using the WSMs ScatElementsPndAndScatAdd or ScatSpeciesP-
ndAndScatAdd, they are loaded into the WSV pnd field raw simultaneously as the cor-
responding single scattering properties are loaded into scat data. WSM ScatElementsPn-
dAndScatAdd reads number density fields for individual scattering elements, i.e., Gridded-
Field3 format data, and appends the data as one array element to pnd field raw, whereas
ScatSpeciesPndAndScatAdd expects a set of number density fields in the form of ArrayOf-
GriddedField3, which is appended to pnd field raw.

Before entering a scattering solver, pnd field has to be calculated from the raw number
density fields using pnd fieldCalcFrompnd field raw. The data for all scattering elements is
regridded to the common RT calculation grids of pressure, latitude, and longitude and stored
together in Tensor4 format. Particle number density fields are restricted to the cloudbox,
i.e., pnd field is only derived for the RT grid points within the cloudbox region. That is, the
cloudbox region has to be defined before applying pnd fieldCalcFrompnd field raw. For
WSMs to set the cloudbox see Section 3.7.

8.4.2 Internal calculation of particle number density fields

ARTS offers the possibility to internally derive the pnd field making use of atmospheric
hydrometeor fields as provided by numerical weather or general circulation models.

https://www.radiativetransfer.org/tools/
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.scat_data_singleTmatrix.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.scat_data.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.pnd_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ScatElementsPndAndScatAdd.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ScatSpeciesPndAndScatAdd.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.pnd_field_raw.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ScatElementsToabs_speciesAdd.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ScatElementsToabs_speciesAdd.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.scat_data.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.vmr_field_raw.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ScatSpeciesScatAndMetaRead.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ScatElementsPndAndScatAdd.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ScatSpeciesPndAndScatAdd.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ScatSpeciesPndAndScatAdd.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.pnd_field_raw.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.scat_data.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ScatElementsPndAndScatAdd.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ScatElementsPndAndScatAdd.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.pnd_field_raw.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ScatSpeciesPndAndScatAdd.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.pnd_field_raw.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.pnd_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.pnd_fieldCalcFrompnd_field_raw.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.pnd_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.pnd_fieldCalcFrompnd_field_raw.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.pnd_field.html

8.4 GENERATING PARTICLE NUMBER DENSITY FIELDS 61

FIXME: write. consider/discuss:

• related atm fields

• scat species, PSDs

• scat meta

This mechanism requires additional information about the scattering elements compared
to scat data, particularly measures used in the characterization of the hydrometeor ensem-
bles, like mass and other size parameters. This information, also called the scattering meta
data, is stored in the WSV scat meta, where the external structure, that is the scattering
species and scattering element hierarchy as well as the number of these instances) has to be
identical to scat data.

8.4.3 Scattering meta data structure

The scattering meta data is stored in a specific structure format, the the
ScatteringMetaData class3. The class consists of the following fields (compare also
the built-in doumentation of scat meta single):

• String description: Similar to the description field in scat data, this gives
a free-form description of the scattering element, e.g. information deemed of interest
by the user but not covered by other structure members. It is only for informative
purpose, i.e., not used within ARTS for any classifications or calculations.

• String source: Free-form description of the source of the data, e.g., Mie, T-Matrix,
or DDA calculation or a database or literature source. As description only for
informative purpose.

• String refr index: Free-form description of the underlying complex refractive
index data, e.g., a literature source. As description only for informative purpose.

• Numeric mass: Mass m of the scattering element [Unit: kg].

• Numeric diameter max: Maximum diameter Dmax of the scattering element
[Unit: m].

The maximum diameter (or dimension) is defined by the circumferential sphere diam-
eter of the element. Note that this parameter is only used by some size distributions;
it does not have a proper meaning if the scattering element represents an ensemble of
differently sized particles.

• Numeric diameter volume equ: Volume equivalent sphere diameterDveq of the
scattering element [Unit: m].

The volume equivalent sphere diameter is the diameter of a sphere with the same vol-
ume. For nonspherical particles, volume refers to the volume of the particle-forming
substance, not that of the circumferential sphere (which can be derived from diame-
ter max).

If the particle consists of a mixture of materials, the substance encompasses the com-
plete mixture, but excluding inclusions and pockets of the the material, the particle

3Definition resides in optproperties.h.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.scat_data.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.scat_meta.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.scat_data.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.scat_meta_single.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.scat_data.html

62 DESCRIPTION OF SCATTERING MEDIA

is embedded in, typically air. Note: the air-material mixture of ’soft’ particles forms
a new substance, though; i.e. the soft particle volume should include both the basic
material and air of the homogeneous mixture. However, this interpretation might be
inconsistent with certain microphysical models. In this case, the user should rather
ensure consistency of the Dveq setting with microphysics.

FIXME: emntion/discuss relation to mass equivalent diameter? melted diame-
ter?

• Numeric diameter area equ aerodynamical: Aerodynamical area equiva-
lent sphere diameter of the scattering element [Unit: m].

The area equivalent sphere diameter is the diameter of a sphere with the same cross-
sectional area. Here, area refers to the aerodynamically active area, i.e., the cross-
sectional area perpendicular to the falling direction. Similarly to volume in the defi-
nition of diameter volume equ, for non-spherical and mixed-material particles,
area refers to the area covered by the substance mixture of the particle. The parameter
might be relevant for characterizing the particle shape (preferred orientation) and fall
velocity. However, it is so far unused within ARTS.

8.5 Implementation

The workspace methods related to the description of clouds in ARTS are implemented in the
file m cloudbox.cc. Work space methods related to the optical properties of the clouds
are implemented in the file m optproperties.cc. The coordinate system transforma-
tions described above reside in the file optproperties.cc.

8.5.1 Work space methods and variables

The following controlfile section illustrates how a simple cloud can be included in an ARTS
calculation.

First we have to define the cloudbox region, i.e. the region where scattering objects are
found. To do this we can use the method cloudboxSetManuallyAltitude:

cloudboxSetManuallyAltitude(cloudbox_on, cloudbox_limits,
atmosphere_dim, z_field,
lat_grid, lon_grid,
8000, 120000,
0, 0, 0, 0)

If we want to do a simulation for a cirrus cloud at an altitude from 9 to 11 km the cloudbox
limits can be set to 8 and 12 km. The latitude and longitude limits are set to an arbitrary
value for a 1D calculation. For 3D calculations they are also needed. Alternatively one can
use the method cloudboxSetManually, where one has to provide pressure instead of altitude
limits.

Now we have to specify the cloud particles inside the scattering region:

Initialisation
ParticleTypeInit
Only one scattering element is added in this example
ScatElementsPndAndScatAdd(scat_data, pnd_field_raw,

atmosphere_dim, f_grid,

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.cloudboxSetManuallyAltitude.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.cloudboxSetManually.html

8.5 IMPLEMENTATION 63

["ssd_sphere_50um_macroscopically_isotropic.xml",
"ssd_cylinder_30um_horizontally_aligned.xml"],
["pnd_sphere_50um_macroscopically_isotropic.xml",
"pnd_cylinder_30um_horizontally_aligned.xml"])

In the workspace method ScatElementsPndAndScatAdd the single scattering properties for
individual (one or more) scattering elements are read and the scattering element data is ap-
pended to the last defined scattering species. The generic input scat data filenames
holds the list of filenames of the datafiles containing the single scattering data per scat-
tering element (class SingleScatteringData) in xml-format. The generic input
pnd field files holds the list of filenames of the corresponding particle number den-
sity fields in xml-format (class GField3). Adding multiple scattering element instances
can be done at once as demonstrated in the above example, where two elements, a sphere
and and a horizontally aligned cylindrical particle, are added.

Alternatively it is possible to use the method ScatSpeciesPndAndScatAdd. It is, e.g.,
convenient to generate a size distribution using several size bins, where each scattering ele-
ment constitutes one size bin. ScatSpeciesPndAndScatAdd creates a new scattering species
and adds all data of all covered scattering elements to this species. It requires as input an ar-
ray of string including the filenames of the single scattering data files for all individual scat-
tering elements and the name of the data file holding the complete variable pnd field raw,
i.e., the particle number density fields for all scattering elements at once. Using this func-
tion, one has to make sure that the order of the filenames containing the single scattering
data corresponds to the order of the particle number density fields in pnd field raw.

After reading the data the workspace variable pnd field is calculated using
pnd fieldCalcFrompnd field raw:

Calculate the particle number density field
pnd_fieldCalcFrompnd_field_raw

The definition of the single scattering data along with the corresponding particle number
density fields is common in both scattering modules, the DOIT module described in Chapter
18 and the Monte Carlo module in Chapter 19.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ScatElementsPndAndScatAdd.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ScatSpeciesPndAndScatAdd.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ScatSpeciesPndAndScatAdd.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.pnd_field_raw.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.pnd_field_raw.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.pnd_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.pnd_fieldCalcFrompnd_field_raw.html

64 DESCRIPTION OF SCATTERING MEDIA

Part III

Radiative transfer: clear-sky +
general functionality

Chapter 9

Clear-sky radiative transfer

This section discusses variables and the approach used to handle the actual radiative transfer
calculations. This includes how effects caused by the sensor and surface are incorporated.
Measurements of thermal emission in absence of particle scattering are used as example,
and the basic theory for such simulations is also covered. The first ARTS version was
developed for emission measurements, and such observations remain the standard case in
ARTS.

A basic assumption for this chapter is thus that there is no particle scattering. This is
denoted as clear-sky calculations. Scattering is restricted to the “cloud box” (Sec. 3.7). In
short, the more demanding calculations are restricted to a smaller domain of the model at-
mosphere, and the radiative transfer in that domain is mainly treated by dedicated workspace
methods. For pure transmission measurements (where scattering into the line-of-sight is
neglected), see Chapter 15. This chapter discusses only the direct radiative transfer, partial
derivatives (i.e. the Jacobian or weighting functions) are discussed in Section 16.

Absorption by atmospheric gases does normally not depend on polarisation but excep-
tions exist, where Zeeman splitting is one example. Both polarised and unpolarised absorp-
tion is handled. Even if the gaseous absorption in itself is unpolarised, the expressions to
apply must allow that polarisation signals from the surface and the cloud box are correctly
propagated to the sensor.

For an introduction to a complete radiative transfer calculations, see Chapter 5. For
example, the content of this chapter corresponds roughly to the flowchart displayed in Fig-
ure 5.1, outlining a standard radiative transfer emission calculation. In fact, this chapter can
be seen as a direct continuation of Chapter 5.

9.1 Overall calculation procedure

The structure handling complete radiative transfer calculations is fixed, where the main
workspace method is denoted as yCalc (Fig. 5.1). That is, most ARTS control files include

History
130220 Revised after parts moved to a new chapter (Patrick Eriksson).
120831 Added flowchart and sections on polarised absorption, iyCalc, auxiliary

data and dispersion (Patrick Eriksson).
110611 Extended and general revision (Patrick Eriksson).
050613 First complete version by Patrick Eriksson.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.yCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iyCalc.html

68 CLEAR-SKY RADIATIVE TRANSFER

Algorithm 1 Outline of the overall clear sky radiative transfer calculations (yCalc).
allocate memory for the matrix y (Equation 5.2)
allocate memory for the matrix ib (Equation 5.1)
for all sensor positions do

for all pencil beam directions of the block do (Section 5.3)
call iy main agenda, giving iy (Algorithm 2)
copy iy to correct part of ib

end for
put the product Hbib in correct part of y

end for

Algorithm 2 The main operations for methods to be part of iy main agenda.
determine the propagation path by ppath agenda (Section 9.2)
determine the radiation at the start of the propagation path (Section 9.3)
perform radiative transfer along the propagation path (Section 9.4)
unit conversion of iy following iy unit (Section 9.5)

a call of yCalc and this section outlines this method and the associated main variables.
The calculation approach fits with the formalism presented in Sections 1.1-1.2 of ARTS

Theory, where the separation between atmospheric radiative transfer and inclusion of sensor
effects shall be noted especially, and a similar nomenclature is used here:

y : Complete measurement vector. In addition to atmospheric radiative transfer, the vec-
tor can include effects by sensor characteristics and data reduction operations. The
corresponding workspace variable is y.

ib : Monochromatic pencil beam data for a measurement block. The definition of a mea-
surement block is found in Section 5.3. This vector is only affected by atmospheric
radiative transfer. As workspace variable denoted as iyb, but can be considered as a
pure internal variable and should not be of concern for the user.

iy : Monochromatic data for one line-of-sight, i.e. a single pencil beam calculation. The
corresponding workspace variable is iy. (ib consists of one or several iy appended.)

Hb : The complete sensor response matrix, for a measurement block. Can include data
reduction. The corresponding workspace variable is sensor response.

The yCalc method is outlined in Algorithm 1. For further details of each calculation step,
see the indicated equation or section. In summary, yCalc appends data from different pencil
beam calculations and applies the sensor response matrix (Hb). The actual radiative transfer
calculations are not part of yCalc.

Atmospheric radiative transfer is solved for each pencil beam direction (line-of-sight)
separately. It is the task of iy main agenda (Algorithm 2) to perform a single clear sky
radiative transfer calculation. This agenda, in its turn, makes us of other agendas, such as
ppath agenda. All methods developed for iy main agenda adapt automatically to the value
of stokes dim.

That is, yCalc is a common method, independent of the details of the radiative trans-
fer. For example, yCalc is used both if emission measurements or pure transmission data
are simulated, that choice is made inside iy main agenda. The three following sections
describes the main calculation steps of iy main agenda, in the order they are executed.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.yCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_main_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_main_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppath_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_unit.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.yCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.y.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iyb.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.sensor_response.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.yCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.yCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.yCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_main_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppath_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_main_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.stokes_dim.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.yCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.yCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_main_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_main_agenda.html

9.2 PROPAGATION PATHS 69

9.2 Propagation paths

A pencil beam path through the atmosphere to reach a position along a specific line-of-sight
is denoted as the propagation path. Propagation paths are described by a set of points on the
path, and the distance along the path between the points. These quantities, and a number
of auxiliary variables, are stored together in a structure described in Section 10.5. The path
points are primarily placed at the crossings of the path with the atmospheric grids (p grid,
lat grid and lon grid). A path point is also placed at the sensor if it is placed inside the
atmosphere. Points of surface reflections are also included if such exist. More points can
also be added to the propagation path, for example, by setting an upper limit for the distance
along the path between the points. This is achieved by the variable ppath lmax, see further
Sections 9.9 and 10.1.

The propagation paths are determined basically by starting at the sensor and following
the path backwards by some ray tracing technique. If the sensor is placed above the model
atmosphere, geometrical calculations are used (as there is no refraction in space) to find
the crossing between the path and the top of the atmosphere where the ray tracing then
starts. Paths are tracked backwards until the top of the atmosphere or to an intersection with
the cloud box or the surface. The propagation path (or paths) before a surface reflection
is calculated when determining the up-welling radiation from the surface (Section 11.3).
Example on propagation paths are shown in Figures 9.1 and 9.2.

Not all propagation paths are allowed for 2D and 3D. In short, the paths can only enter
and leave the model atmosphere at the top of the atmosphere, as the atmospheric fields are
treated to be undefined outside the covered latitude and longitude ranges.

Controlled by ppath step agenda, propagation paths can be calculated purely geomet-
rically or considering refraction. When considering refraction, the refractive index is de-
termined at each point along the path according to refr index air agenda. Details about
different methods applicable within refr index air agenda are given in Chapter 7.

If nothing else is stated, it assumed that all frequency components share a single prop-
agation path. Another way to express this assumption is that dispersion is neglected. See
Section 9.7 for how to consider dispersion. In the non-dispersive case, the propagation path
is valid for average of the first and last element in f grid, as this is the frequency given to
refr index air agenda.

Propagation paths can be calculated separately by the method ppathCalc, but for stan-
dard calculations the propagation paths are calculated internally by yCalc. Methods and
variables to control the path calculations are discussed in Section 10.1.

9.3 The radiative background

The radiative intensity at the starting point of the path, and in the direction of the line-of-
sight at that point, is denoted as the radiative background. Four possible radiative back-
grounds exist:

Space When the propagation path starts at the top of the atmosphere, space is the radia-
tive background. The normal case should be to set the radiation at the top of the
atmosphere to be cosmic background radiation. An exception is when the sensor is
directed towards the sun. The radiative background at the top of the atmosphere is
determined by iy space agenda. If a propagation path is totally outside the model

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.p_grid.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.lat_grid.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.lon_grid.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppath_lmax.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppath_step_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.refr_index_air_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.refr_index_air_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.f_grid.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.refr_index_air_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppathCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.yCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_space_agenda.html

70 CLEAR-SKY RADIATIVE TRANSFER

Figure 9.1: Examples on allowed propagation paths for a 2D atmosphere. The atmosphere is
plotted as in Figure 3.2 beside that the points for the atmospheric fields are not emphasised.
The position of the sensor is indicated by an asterisk (∗), the points defining the paths are
plotted as circles (◦), joined by a solid line. The part of the path outside the atmosphere,
not included in the path structure, is shown by a dashed line. Path points corresponding
to a tangent point are marked by an extra plus sign (⊕); but note that these no longer are
explicitly included as path point (in contrast to ARTS-2.0 and earlier). The shown paths
include the minimum set of definition points. There exists also the possibility to add points
inside the grid cells, for example, to ensure that the distance between the path points does
not exceed a specified limit.

Figure 9.2: Examples on allowed propagation paths for a 1D atmosphere with an activated
cloud box. Plotting symbols as in Figure 9.1. When the sensor is placed inside the cloud
box, the path is defined with a single point, to know for which position and line-of-sight the
intensity field of the cloud box shall be interpolated.

9.4 BASIC RADIATIVE TRANSFER VARIABLES AND EXPRESSIONS 71

atmosphere, the observed monochromatic pencil beam intensity (iy in Algorithm 1)
equals the output of iy space agenda.

The surface The sum of surface emission and radiation reflected by the surface is the radia-
tive background when the propagation path intersects with the surface. It is the task
of iy surface agenda to return this up-welling radiation from the surface, see further
Chapter 11.

Surface of cloud box For cases when the propagation path enters the cloud box the radia-
tive background is the intensities leaving the cloud box. This radiation is obtained by
iy cloudbox agenda.

Interior of cloud box If the sensor is situated inside the cloud box, there is basically no
propagation path. The radiative background, and also the final spectrum, equals the
internal intensity field of the cloud box at the position of the sensor, in the direction
of the sensor line-of-sight. This case is also handled by iy cloudbox agenda.

It should be noted that except for the first case above, the determination of the radiative back-
ground involves further radiative transfer calculations. For example, in the case of surface
reflection, the down-welling radiation could be determined by a new call of iy main agenda
and the radiative background for that calculation is then space or the cloud box. The inten-
sity field entering the cloud box is in some cases calculated by calls of iy main agenda (with
cloud box deactivated) and the radiative background for these calculations is then space or
the surface. This results in that space is normally the ultimate radiative background for the
calculations. The exception is for propagation paths that intersects with the surface, and
the surface is treated to act as a blackbody. For such cases, the propagation path effectively
starts at the surface.

9.4 Basic radiative transfer variables and expressions

This section describes how the core radiative transfer equation is solved practically in
ARTS. As mentioned, in this chapter focus is put on emission measurements. The equa-
tion to solve is Equation 4.16:

ds

dl
= Aa [b− s] = −Aas+Baa,

where the involved quantities are defined and discussed in Section 4.2.

9.4.1 Unpolarised absorption

Let’s start with the simpler case of non-polarised absorption (that is, the absorption is inde-
pendent of polarisation state). For unpolarised absorption the matrix Aa is diagonal, with
all diagonal elements equal, and only the first of the elements of aa) is non-zero.

The radiative transfer equation above can be solved in many ways, and with different
level of refinement. The standard approach in ARTS is to solve the radiative transfer from
one point of the propagation path to next. For the first Stokes element the following expres-
sion is applied (compare ARTS Theory, Equation 6.62)

Ii+1 = Iie
−τi +

(
B̄i + ¯jn,i/ᾱ

)
(1− e−τi), (9.1)

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_space_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_surface_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_cloudbox_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_cloudbox_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_main_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_main_agenda.html

72 CLEAR-SKY RADIATIVE TRANSFER

with

B̄i = (B(Ti) +B(Ti+1))/2, (9.2)

ᾱ = (αi + αi+1)/2 (9.3)
¯jn,i = (jn,i + jn,i+1)/2 (9.4)

τi = ∆liᾱ, (9.5)

where Ii, Ti and αi are the radiance, temperature and absorption coefficient, respectively,
at point i of the propagation path, and ∆li is the distance along the path between point i
and i + 1. That is, B̄i is an average of the Planck function at the path step end points, and
the absorption is assumed to vary linearly between the two points. The start value of I is
governed by the radiative background (Section 9.3).

A consequence of unpolarised absorption is that also the emission is unpolarised, and
the emission term vanishes for higher Stokes elements. Accordingly, the expression for the
second Stokes component is

Qi+1(ν) = Qi(ν)e
−τi . (9.6)

The third and forth Stokes component are handled likewise. The expressions above
are implemented in the workspace method iyEmissionStandard, intended to be part of
iy main agenda. The non-LTE term is as in Equation 4.11.

An alternative way to perform the calculations for the first Stokes element would be

I =
∑
i

ti+1

(
B̄i + ¯jn,i/ᾱ

)
(1− e−τi), (9.7)

where I is the final intensity and ti is the transmission between the sensor and point i.
This calculation approach is not used as it fits poorer with the calculation of weighting
functions (Ii must be known, Section 16). However, the calculation of weighting functions
is simplified if Ti is at hand, and this quantity is also tracked by iyEmissionStandard.

9.4.2 Polarised absorption

The overall calculation procedure is the same with polarised absorption, the only differ-
ence is the radiative transfer expression applied. The calculations for the different Stokes
components can here not be separated, and matrix-vector notation is required:

si+1 = e−∆liK̄isi + (1− e−∆liK̄i)
(
b̄i + K̄−1

i
¯jn,i
)
, (9.8)

where 1 is the identity matrix. The K and b at point i and i+1 are averaged (element-wise)
to give K̄ and b̄, respectively, in line with Equation 9.3. The calculation of the transmission
matrix,

Ti = e−∆liK̄i , (9.9)

involves a matrix exponential. This calculation step is handled for simpler cases with ana-
lytical expressions, while for more complex cases the Padé approximation (ARTS Developer
Guide, Section 7.3) is applied. Only the first element of b̄ is non-zero, and only the first
column of the matrix corresponding to the term (1− e−∆liK̄i) is of interest.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iyEmissionStandard.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_main_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iyEmissionStandard.html

9.5 OUTPUT UNIT AND THE N2-LAW 73

9.4.3 Blackbody and cosmic background radiation

As mentioned, the term B is the Planck function. In ARTS the following version of the
Planck function is used:

B(T) =
2hν3

c2(exp(hν/kbT)− 1)
(9.10)

where h is the Planck constant, c the speed of light and kb the Boltzmann constant. This ex-
pression gives the total power, per unit frequency per unit area per solid angle. (The Planck
function can also be defined as a function of wavelength.) The expression in Equation 9.10
deviates from the exact definition (see Eq. 6.16 in ARTS Theory) as it includes c instead of
the local propagation speed (v). The reason for this is the n2-law of radiance, discussed in
the section below.

As long as cosmic background radiation is the only type of non-telluric radiation that
has to be considered, the standard method for inclusion in iy space agenda is MatrixCBR
(together with some calls of Ignore).

9.5 Output unit and the n2-law

First of all, it should be noticed that ARTS does not enforce any fixed unit for calculated
spectra (y), it depends on the calculation set-up. For example, if emission is considered, or
if just transmissions are calculated.

The primary unit for emission data (radiances) is [W/(Hz·m2·sr)]. The emission inten-
sity corresponds directly with the definition of the Planck function (Eq. 9.10). Conversion
to other units is selected by the iy unit workspace variable. The standard manner is to apply
the unit conversion as part of the calculations performed inside yCalc. See the built-in doc-
umentation of the workspace method you have selected for iy main agenda for comments
on practical aspects and available output units. The most extensive support for conversion
to other units is provided by iyEmissionStandard, while other methods have no support at
all (ie. they ignore iy unit). It is also possible to change the unit as a post-processing step
by yApplyUnit (or iyApplyUnit), but some restrictions apply and there are no automatic
checks if the input data have correct unit. Further considerations and expressions for the
unit conversion are discussed in the ARTS-2 journal paper [Eriksson et al., 2011, Sec. 5.7].

The n2-law of radiance is introduced in Section 6.5 of ARTS Theory. As shown in that
section, the main impact of the law is handled by consistently using the vacuum speed in
the definition of the Planck radiation law, as done inside ARTS (Eq. 9.10). This suffices
if the sensor is placed in space (where the refractive index is 1), or if you use brightness
temperatures. Remaining cases are also handled exactly if iyEmissionStandard is used. For
those remaining cases, radiance data shall be scaled with the refractive index squared at the
observation position. For Earth, the maximum value of this factor is about 0.1 %, and can
anyhow normally be neglected.

In summary, there is normally no need for you as an user to consider the n2-law. The
exception is if you extract radiance data for a point inside an atmosphere, and the refractive
index deviates significantly from 1 at this point.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_space_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.MatrixCBR.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.Ignore.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.y.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_unit.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.yCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_main_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iyEmissionStandard.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_unit.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.yApplyUnit.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iyApplyUnit.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iyEmissionStandard.html

74 CLEAR-SKY RADIATIVE TRANSFER

9.6 Single pencil beam calculations

The text above assumes that yCalc is used. This method can always be used, but yCalc is
not mandatory if the simulations only deal with monochromatic data for a single line-of-
sight. In this case, it could be more handy to use iyCalc, which basically is a direct call of
iy main agenda. A reason for selecting iyCalc is that a larger set of auxiliary quantities can
be extracted (Sec. 9.8).

On the input side, the main difference when using iyCalc is that the observation position
and line-of-sight are specified by rte pos and rte los (instead of sensor pos and sensor los).
The calculated radiances are returned as the matrix iy (instead of the vector y). No automatic
unit conversion is made inside iyCalc. This is instead handled separately by iyApplyUnit.

9.7 Dispersion

The clear-sky radiative transfer methods handle all frequencies in f grid in parallel, for
efficiency reasons. One consequence of this feature is that only a single propagation path is
calculated, that is assumed to be common for all frequencies. With other words, dispersion
is not considered. This is in general an acceptable simplification, but exceptions exist where
one example is radiative transfer through the ionosphere at frequencies approaching the
“plasma frequency”.

When dispersion is expected to give a significant impact on the results, ARTS offers a
general solution. Dispersion can be handled by setting iy main agenda as:

AgendaSet(iy_main_agenda){
iyLoopFrequencies

}

The radiative transfer method you put in iy main agenda for non-dispersive calculations are
now moved to iy loop freqs agenda. For example, if iyEmissionStandard is the method of
your choice:

AgendaSet(iy_loop_freqs_agenda){
iyEmissionStandard

}

The approach is simple, iyLoopFrequencies calls iy loop freqs agenda for each single fre-
quency in f grid and appends the output. With some details, iyLoopFrequencies performs a
loop over the f grid, creates an internal f grid of length 1 holding the frequency of concern
and calls iy loop freqs agenda with this length-1 frequency grid. This has the result that a
propagation path is calculated for each frequency component.

Some more steps are required to correctly include dispersion. A basic demand is that
ppath agenda considers refraction. Further, refr index air agenda must provide a dispersive
refractive index. Most methods aimed for refr index air agenda give a refractive index that
does not varies with frequency. An example on the opposite is refr index airFreeElectrons.
If a method with dispersive refractive index is used for non-dispersive calculations, it re-
ceives the mean of the first and last element in f grid (as already commented above).

A limitation of iyLoopFrequencies is that it can not be combined with auxiliary data of
along-the-path character (Sec. 9.8)

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.yCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.yCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iyCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_main_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iyCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iyCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.rte_pos.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.rte_los.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.sensor_pos.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.sensor_los.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.y.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iyCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iyApplyUnit.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.f_grid.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_main_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_main_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_loop_freqs_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iyEmissionStandard.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iyLoopFrequencies.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_loop_freqs_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.f_grid.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iyLoopFrequencies.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.f_grid.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.f_grid.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_loop_freqs_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppath_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.refr_index_air_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.refr_index_air_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.refr_index_airFreeElectrons.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.f_grid.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iyLoopFrequencies.html

9.8 AUXILIARY DATA 75

9.8 Auxiliary data

The core output of the radiative calculations is y (iy if iyCalc is used, jacobians discussed in
Sec. 16), but different auxiliary data can be extracted. First of all, yCalc outputs automat-
ically y f, y pol, y pos and y los. These data give information about the frequency, polar-
isation, sensor position and sensor bore-sight, respectively, corresponding to each value in
y. The content of the variables are governed by the sensor settings and the order calculated
radiances are stored (discussed in Sec. 5.3).

A more general mechanism for extracting auxiliary data is controlled by the iy aux vars
workspace variable. This mechanism is most useful together with iyCalc, and for the mo-
ment we assume that this method is used (limitations for yCalc are discussed below). The
quantities that can be extracted differ, see the built-in documentation for the options for each
workspace method of concern, e.g.:

arts -d iyEmissionStandard

The options for this particular method (iyEmissionStandard) can be divided into different
groups (more variables will/can be added):

Atmosphere, along-the-path The pressure, temperature and volume mixing rations along
the propagation path.

Attenuation, along-the-path Total and species specific absorption coefficients along the
propagation path.

Radiative properties, along-the-path The radiance at each propagation path point.

Overall radiative properties The total (clear-sky) optical depth along the path and flag
giving the radiative background.

“Along-the-path” means that data are provided for each point of the propagation path. The
path is described by ppath, that is also returned by iy main agenda. The ppath variable con-
tains the information needed to geo-position, for example, “along-the path temperatures”.

Example on setting of iy aux vars (again valid for iyEmissionStandard):

ArrayOfStringSet(iy_aux_vars,
["Temperature",

"VMR, species 0",
"Absorption, summed",
"Absorption, species 0",
"Absorption, species 2",
"iy",
"Optical depth"])

The data are outputted in a single variable, iy aux. This variable is an array of Tensor4.
All dimensions are used when storing e.g. the propagation matrix along the path (for all
frequencies of f grid). For other types of quantities, one or several dimensions are set to
have length 1. See the built-in documentation for further details, such as the order of the
data dimensions.

Storage of quantities of “along-the-path” type assumes that there exists a common prop-
agation path. This is necessarily not the case for calculations by yCalc. This is the case as a
calculation considering an antenna response includes radiative transfer along several prop-
agation paths. The points of these paths do not end up on common altitude grid, neither

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.y.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iyCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.yCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.y_f.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.y_pol.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.y_pos.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.y_los.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.y.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_aux_vars.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iyCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.yCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iyEmissionStandard.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppath.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_main_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppath.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_aux_vars.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iyEmissionStandard.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_aux.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.f_grid.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.yCalc.html

76 CLEAR-SKY RADIATIVE TRANSFER

are at a fixed distance from the sensor. In fact, the number of points of the paths will likely
differ. For this reason, yCalc will issue an error if you in iy aux vars include a quantity of
“along-the-path” character.

The same applies to dispersion calculations (here the propagation path differs already
between the frequencies), and also iyLoopFrequencies gives also an error if “along-the-
path” auxiliary data are selected.

9.9 Calculation accuracy

The accuracy of the calculations depends on many factors. For many factors, such as spec-
troscopic parameters, there is nothing else to do than using best available data. On the
other hand, for other factors there is a trade-off between accuracy and speed. More accu-
rate calculations require normally also more computer memory. All different grids and the
propagation path step length fall into this category of accuracy factors. It could be worth
discussing the selection of atmospheric grids and the path step length as there can be some
confusion about how that affects the accuracy.

The main purpose of the atmospheric grids (p grid, lat grid and lon grid) is to build up
the mesh on which the atmospheric fields are defined. This means that the spacing of these
grids shall be selected having the representation of the atmospheric fields in mind. That is,
the spacing shall be fine enough that the atmospheric field is sufficiently well approximated
by the piece-wise (multi-)linear representation between the grid crossings. The result is that
a finer spacing must be used to represent correctly atmospheric fields with a lot of structure,
while the grids can have fewer points when the atmospheric fields are smooth.

The accuracy when performing the actual radiative transfer calculations depends on the
refinement of the expressions used and the discretisation of the propagation path. If Equa-
tion 9.1 is used, the underlying assumption is that the Planck function and the absorption
vary linearly along the propagation path step. These assumptions are of course less vio-
lated if the path step length is made small. An upper limit of the path step length is set by
ppath lmax. In many cases it should suffice to just include path points at the crossings of
the atmospheric grids (ppath lmax≤ 0). An exception can be limb sounding where the path
step length can be very long around the tangent point, but a limit of about 25 km should
suffice normally. See also Section 10.3.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.yCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_aux_vars.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iyLoopFrequencies.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.p_grid.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.lat_grid.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.lon_grid.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppath_lmax.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppath_lmax.html

Chapter 10

Propagation paths

A propagation path is the name given in ARTS to the way the radiation travels to reach
the sensor for a specified line-of-sight. Propagation paths are introduced in Section 9.2
and this section provides further details. For a general usage of ARTS, it should suffice
to read Section 10.1. The remaining sub-sections deal with more low-level aspects of the
calculations, and are of interest only if you want to understand the finer details of ARTS.
The actual equations applied are found in Chapter 7 of ARTS Theory.

10.1 Practical usage

The overall calculation approach for finding the propagation path is specified by
ppath agenda. The standard choice for this agenda is ppathStepByStep, applying
ppath step agenda repeatedly in order to trace the path backwards, starting at the sensor.
This set-up is assumed throughout this chapter. A slighltly different selection of workspace
methods is required for radio link calculations, see further Section ??.

The exact ray tracing algorithm to be applied for the calculation of propagation path
is selected through ppath step agenda (see further Section 9.2). The fastest calculations
are obtained if refraction is neglected, denoted as geometrical calcutions. The workspace
method to apply if this assumption can be made is ppath stepGeometric.

The main consideration for using ppath stepGeometric is to select a value for
ppath lmax. This variable controls to some extent the calculation accuarcy, as described
in Section 9.9. This variable sets the maximum distance between points of the propagation
path. Set this variable to e.g. -1 if you don’t want to apply such a length criterion.

A straightforward, but inefficient, treatment of refraction is provided by
ppath stepRefractionBasic. This method divides the propagation path into a series of
geomtrical ray tracing steps. The size of the ray tracing steps is selected by ppath lraytrace.
This variable affects only the ray tracing part, the distance between points of the propaga-
tion path actually returned is controled by ppath lmax as above. At each ray tracing step,
the refractive index is evaluated according to the specification of refr index air agenda.
Several methods to determine refractive index are available (see Chapter 7).

History
120202 Revised and parts moved to ARTS Theory (Patrick Eriksson).
030310 First complete version written by Patrick Eriksson.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppath_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppathStepByStep.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppath_step_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppath_step_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppath_stepGeometric.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppath_stepGeometric.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppath_lmax.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppath_stepRefractionBasic.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppath_lraytrace.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppath_lmax.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.refr_index_air_agenda.html

78 PROPAGATION PATHS

Figure 10.1: Tracking of propagation paths. For legend, see Figure 10.2. The figure tries
to visualize how the calculations of propagation paths are performed from one grid cell to
next. In this example, the calculations start directly at the sensor position (∗) as it placed
inside the model atmosphere. The circles give the points defining the propagation path. Path
points are always included at the crossings of the grid cell boundaries. Such a point is then
used as the starting point for the calculations inside the next grid cell.

10.2 Calculation approach

The propagation paths are calculated in steps, as outlined in Section 9.2. The path steps
are normally from one crossing of the atmospheric grids to next. To introduce propagation
paths steps was necessary to handle the iterative solution for scattering inside the cloud box,
as made clear from Figure 9.2 of ARTS Theory.

A full propagation path is stored in the workspace variable ppath, that is of the type
Ppath (see Section 10.5). The paths are determined by calculating a number of path steps.
A path step is the path from a point to the next crossing of either the pressure, latitude or
longitude grid (Figure 10.1). There is one exception to this definition of a path step, and
that is when there is an intersection with the surface, which ends the propagation path at
that point. The starting point for the calculation of a path step is normally a grid crossing
point, but can also be an arbitrary point inside the atmosphere, such as the sensor position.
The path steps are stored in the workspace variable ppath step, that is of the same type as
ppath.

Propagation paths are calculated with the internal function ppath calc. The commu-
nication between this method and ppath step agenda is handled by ppath step. That variable
is used both as input and output to ppath step agenda. The agenda gets back ppath step as
returned to ppath calc and the last path point hold by the structure is accordingly the
starting point for the new calculations. If a total propagation path shall be determined, the
agenda is called repeatedly until the starting point of the propagation path is found.

The path is determined by starting at the end point and moving backwards to the starting
point. The calculations are initiated by filling ppath step with the practical end point of the
path. This is either the position of the sensor (true or hypothetical), or some point at the top

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppath.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.Ppath.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppath_step.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppath.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppath_step_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppath_step.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppath_step_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppath_step.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppath_step.html

10.3 SPACING OF ADDITIONAL PATH POINTS 79

Grid cells
Sensor position
Propagation path
Tangent point

Figure 10.2: As Figure 10.1, but with a length criterion for the distance between the points
defining the path. Note: Tangent points are no longer included automatically.

of the atmosphere (determined by geometrical calculations starting at the sensor).
The agenda performs only calculations to next crossing of a grid, all other tasks are

performed by ppath calc, with one exception. If there is an intersection with the sur-
face, the calculations stop at this point. This is flagged by setting the background field of
ppath step. Beside this, ppath calc checks if the starting point of the calculations is
inside the cloud box or below the surface level, and check if the last point of the path has
been reached.

10.3 Spacing of additional path points

The strategy when considering ppath lmax differs somewhat between the workspace meth-
ods. For pure geometrical calculations, the points are spaced evenly inside the grid box.
That is, the points are separated with the same distance (≤ ppath lmax).

When refraction is considered, the ray tracing moves forward in steps following
ppath lraytrace. When another step of this size would result in a distance > ppath lmax,
the present point is added to ≤ ppath step. A consequence of this is that additional points
are likely not evenly spaced. The distance between most points will be ppath lraytrace times
an integer value, but the distance between the last additional point and the grid border can
be any number (≤ ppath lmax). If ppath step is set to be negative, no additional points are
included, as for geometrical calculations.

As points are always included in the propagation paths at the crossings of the atmo-
spheric grids, making these grids finer will give shorter path steps. However, it is neither
good practise or efficient to use the atmospheric grids to control the accuracy of the radia-
tive transfer calculations. An upper limit on the step length (ppath lmax) shall be applied
for this purpose.

10.4 Tangent points

The term “tangent point” refers to the point of a limb sounding path with the lowest altitude.
For 1D cases this definition is clear, but for 2D and 3D calculations there are complications.
First of all, there are two different possible definitions: the point having the lowest radius
(ie. distance to the planets centre) or the point with the lowest altitude (ie. vertical distance
to the reference ellipsoid). The later is the more important with respect to optical thickness

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppath_step.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppath_lmax.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppath_lmax.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppath_lraytrace.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppath_lmax.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppath_step.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppath_lraytrace.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppath_lmax.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppath_step.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppath_lmax.html

80 PROPAGATION PATHS

of the path, but the point of the highest pressure would be an even more relevant definition
in this context. Another complication is that with refraction there can in principle exist more
than one tangent point.

Up to ARTS-2.0 minimum-radius tangent points were added as extra points to the propa-
gation paths (a reminiscent from ARTS-1), but this feature has now been removed following
the discussion in the paragraph above. However, many internal functions make use of the
concept of tangent point (as the minimum-radius one). The altitude-based tangent point for
a propagation path can be determined with the method TangentPointExtract.

10.5 The propagation path data structure

A propagation path is represented by a structure of type Ppath. This structure holds also
auxiliary variables to facilitate the radiative transfer calculations and to speed up the inter-
polation. The fields of Ppath are as follows:

dim [Index] The atmospheric dimensionality. This field shall always be equal to the
workspace variable atmosphere dim.

np [Index] Number of positions to define the propagation path through the atmosphere.
Allowed values are ≥ 1. The number of rows of pos and los, and the length of
z, gp p, gp lat and gp lon, shall be equal to np. The length of l step is np
- 1. If np ≤ 1, the observed spectrum is identical to the radiative background. For
cases where the sensor is placed inside the model atmosphere and np = 1, the stored
position is identical to the sensor position and that position can be used to determinate
the radiative background (see below).

constant [Numeric] The propagation path constant. It is defined as the product: rn sin(ψ)
(see Chapter 7.4.1 of ARTS Theory), at the position of the sensor. This is a true con-
stant for the path just for 1D atmospheres, but can be useful also in other cases. For
example, it equals the impact parameter normally used to define limb radio occulta-
tions. This field is initiated -1, to indicate that the constant is not yet set.

background [String] The radiative background for the propagation path. The possible
options for this field are ’space’, ’surface’, ’cloud box interior’ and ’cloud box level’,
where the source of radiation should be clear the content of the strings.

start pos [Vector] The practical start position of the propagation path. This vector equals
in general the last row of pos. The exception is radio link calculations where the
transmitter is placed above the model atmosphere, where this field gives the position
of the transmitter.

start los [Vector] Line-of-sight at start point of propagation path. Set and used in the same
way as start pos.

start lstep [Numeric] The distance between start pos and the last position in pos.
This value is zero, except for a transmitter placed above the top-of-the-atmosphere.
Hence, this length corresponds to propgation if free space (n=1).

end pos [Vector] The end position of the propagation path. If the point is placed inside the
atmosphere, this field is redundant as it is equal to the first row of pos, but identifies
the sensor position for observations from space.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.TangentPointExtract.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.Ppath.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.atmosphere_dim.html

10.6 FURTHER READING 81

end los [Vector] The line-of-sight at the end point of the propagation path. Provides addi-
tional information if the sensor is placed above the top-of-the-atmosphere, and gives
then the observation direction of the sensor.

end lstep [Numeric] The distance between end pos and the first position in pos. This
value is non-zero just if the sensor is placed above the top-of-the-atmosphere. Hence,
this length corresponds to propgation if free space (n=1).

pos [Matrix] The position of the propagation path points inside the atmosphere. This matrix
has np rows and up to 3 columns. Each row holds a position where column 1 is the
radius, column 2 the latitude and column 3 the longitude (cf. Section 5.2.1). The
number of columns for 1D and 2D is 2, while for 3D it is 3. The latitudes are stored
for 1D cases as these can be of interest for some applications and are useful if the
propagation path shall be plotted. The latitudes for 1D give the angular distance to
the sensor (see further Section 3.2). The propagation path is stored in reversed order,
that is, the position with index 0 is the path point closest to the sensor (and equals
start pos if it is inside the atmosphere).

los [Matrix] The line-of-sight of the propagation path at each point. The number of rows of
the matrix is np. For 1D and 2D, the matrix has a single column holding the zenith
angle. For 3D there is an additional column giving the azimuth angle. The zenith and
azimuth angles are defined in Section 5.2.2. If the radiative background is the cloud
box, the last position (in pos) and line-of-sight give the relevant information needed
when extracting the radiative background from the cloud box intensity field.

r [Vector] The radius for each path position. The length of this vector is accordingly np.
This is a help variable for plotting and similar purposes.

lstep [Vector] The length along the propagation path between the positions in pos. The
first value is the length between the first and second point etc.

nreal [Vector] The real part of the refractive index at each path position. This index corre-
sponds to the phase velocity.

ngroup [Vector] The group index of refraction. This index corresponds to the group veloc-
ity.

gp p [ArrayOfGridPos] Index position with respect to the pressure grid. The structure for
grid positions is described in ARTS Developer Guide, Section 5.4.

gp lat [ArrayOfGridPos] As gp p but with respect to the latitude grid.

gp lon [ArrayOfGridPos] As gp p but with respect to the longitude grid.

10.6 Further reading

The implementation, calculation approaches and the numerical expressions used are dis-
cussed in Chapter 7 of ARTS Theory.

82 PROPAGATION PATHS

Chapter 11

Reference ellipsoid and surface
properties

11.1 The reference ellipsoid

The ellipsoid is an imaginary surface used as a reference when specifying the surface al-
titude and the altitude of pressure levels. As the name indicates, this reference surface is
defined as an ellipsoid. The reference ellipsoid should normally be set to some global geode-
tic datum, such as WGS-84. Inside ARTS, the ellipsoid is represented as a vector denoted
as refellipsoid. This vector must have length two, where the two elements are equatorial
radius (re) and eccentricity (e), respectively.

11.1.1 Ellipsoid models

A geodetic datum is based on a reference ellipsoid. The ellipsoid is rotationally symmetric
around the north-south axis. That is, the ellipsoid radius has no longitude variation, it is
only a function of latitude. The ellipsoid is described by an equatorial radius, re, and a
polar radius, rp. These radii are indicated in Figure 11.1. The definition of the ellipsoid
used in ARTS is based on re and the eccentricity, e:

e =
√

1− r2e/r
2
p. (11.1)

Workspace methods to set the reference ellipsoid for a particular planet include refellip-
soidEarth, refellipsoidMars and refellipsoidMars.

The radius of the ellipsoid for a given (geocentric) latitude, α, is

r⊙(α) =

√
r2er

2
p

r2e sin
2 α+ r2p cos

2 α
=

rp√
sin2 α+ (1− e2) cos2 α

(11.2)

The radius given by Equation 11.2 can be directly applied for 3D atmospheres. For 2D
cases, the ellipsoid data must be adopted. The assumption inside ARTS is that the 2D
plane goes through the North and South poles. The polar radius to apply should then match

History
120224 Extended and revised (Patrick Eriksson).
050613 First version finished by Patrick Eriksson.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.refellipsoid.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.refellipsoidEarth.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.refellipsoidEarth.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.refellipsoidMars.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.refellipsoidMars.html

84 REFERENCE ELLIPSOID AND SURFACE PROPERTIES

x

y

local tangent

zenith
geoid ellipsoid

α∗α

r

er

p

Figure 11.1: Definition of the
ellipsoid radii, re and rp, geo-
centric latitude, α, and geodetic
latitude, α∗. The dotted line is
the normal to the local tangent
of the ellipsoid. The zenith and
nadir directions, and geometri-
cal altitudes, are here defined to
follow the solid line.

the real ellipsoid radius at the highest latitude inside the satellite orbit plane. The method
refellipsoidOrbitPlane performs this operation.

Further, for 1D cases the reference ellipsoid is by definition a sphere and the radius of
this sphere shall be selected in such way that it represents the local shape of a reference
ellipsoid. This is achieved with refellipsoidForAzimuth, that sets re to the local radius of
curvature of the ellipsoid and e to zero. The curvature radius differs from the local radius
except at the equator and an east-west direction. For example, at the equator and a north-
south direction, the curvature radius is smaller then the local radius, while at the poles (for
all directions) it is greater (see further Figure 11.2). The curvature radius, rc, of an ellipsoid
is [Rodgers, 2000]

rc =
1

r−1
ns cos2 α+ r−1

ew sin2 α
(11.3)

where rns and rew are the north-south and east-west curvature radius, respectively,

rns = r2er
2
p(r

2
e cos

2 ω + r2p sin
2 ω)−

3
2 (11.4)

rew = r2e(r
2
e cos

2 ω + r2p sin
2 ω)−

1
2 (11.5)

The azimuth angle, ω, is defined in Section 5.2.2. The latitude and azimuth angle to apply in
Equations 11.3–11.5 shall rather be valid for a middle point of the propagation paths (such
as some tangent point), instead of the sensor position.

11.1.2 Geocentric and geodetic latitudes

The fact that Earth is an ellipsoid instead of a sphere, opens up for the two different defi-
nitions of the latitude. The geocentric latitude, which is the the one used here, is the angle
between the equatorial plane and the vector from the coordinate system centre to the posi-
tion of concern. The geodetic latitude is also defined with respect to the equatorial plane,
but the angle to the normal to the reference ellipsoid is considered here, as shown in Figure
11.1. It could be mentioned that a geocentric latitude does not depend on the ellipsoid used,
while the geodetic latitudes change if another reference ellipsoid is selected. For Earth,
the largest difference between geocentric and geodetic latitude is found at mid-latitudes,
where it reaches 12 arc-minutes. There are yet no methods in ARTS for conversion of data
between geodetic and geocentric latitudes.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.refellipsoidOrbitPlane.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.refellipsoidForAzimuth.html

11.1 THE REFERENCE ELLIPSOID 85

0 10 20 30 40 50 60 70 80 90
6330

6340

6350

6360

6370

6380

6390

6400

Latitide [deg]

R
ad

iu
s

[k
m

]

ellipsiod radius
curvature radius

Figure 11.2: The ellipsoid ra-
dius (r⊙) and curvature radius
(rc) for the WGS-84 reference
ellipsoid. The curvature radii
are valid for the north-south di-
rection.

0 10 20 30 40 50 60 70 80 90
−400

−350

−300

−250

−200

−150

−100

−50

0

Latitide [deg]

R
ad

iu
s

di
ffe

re
nc

e
[m

/d
eg

]

Figure 11.3: The change of the
WGS-84 ellipsoid radius for 1◦

latitude differences.

86 REFERENCE ELLIPSOID AND SURFACE PROPERTIES

11.2 Surface altitude

The surface altitude, zg, is given as the geometrical altitude above the reference ellipsoid.
The radius for the surface is accordingly

rs = r⊙ + zs (11.6)

As also mentioned in Section 3.6, a gap between the surface and the lowermost pressure
level is not allowed.

The ARTS variable for the surface altitude (z surface) is a matrix. For 1D, the sur-
face constitutes a sphere by definition (as the ellipsoid), while for 2D and 3D any shape is
allowed and a rough model of the surface topography can be made.

11.3 Surface radiative properties

If there is an interception of the propagation path by the surface, emission and scattering by
the surface must be considered. This is the task of iy surface agenda. The standard method
for this agenda is iySurfaceRtpropAgenda (in fact, the only option implemented so far) and
the rest of this section outlines how this workspace method works. The upwelling radiation
from the surface can be written as (Figure 11.4)

Iua = Ie +
∑
l

RlI
d
l (11.7)

where I indicates the Stokes vector for one frequency, Iua is the total upward travelling in-
tensity from the surface along the propagation path, Ie is the emission from the surface, Idl
is the downward travelling intensity reaching the surface along direction l, and Rl is the
reflection coefficient matrix from direction l to the present propagation path. The emission
from the surface Ie is stored in surface emission, the directions l for which downward trav-
elling intensities are given by surface los, and the reflection coefficients (R) are stored in
surface rmatrix.

Some special cases are discussed below. Section 6.9 of ARTS Theory provides the
theoretical background.

11.3.1 Blackbody surface

If the surface can be assumed to act as a blackbody, the workspace method surfaceBlack-
body can be used. This method sets surface emission to [B, 0, 0, 0]T , and surface los and
surface rmatrix to be empty.

11.3.2 Specular reflections

Several methods to incorporate a flat surface exist, including surfaceFlatRefractiveIndex
and surfaceFlatScalarReflectivity. The methods differ in how the dielectric properties of
the surface are given, and if these are constant or not with frequency.

In the case of specular reflections, surface los has the length 1. The specular direction
is calculated by the internal function surface specular los Equations 6.79-6.82 in
ARTS Theory give the values of surface rmatrix and surface emission.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.z_surface.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_surface_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iySurfaceRtpropAgenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.surface_emission.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.surface_los.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.surface_rmatrix.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.surfaceBlackbody.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.surfaceBlackbody.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.surface_emission.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.surface_los.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.surface_rmatrix.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.surfaceFlatRefractiveIndex.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.surfaceFlatScalarReflectivity.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.surface_los.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.surface_rmatrix.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.surface_emission.html

11.3 SURFACE RADIATIVE PROPERTIES 87

Ie

I1
d

I

I
I

3
4 5I

d

d
d d

2

propagation

patterns
reflection

path

Figure 11.4: Schematic of Equation 11.7.

11.3.3 Lambertian surface

A basic treatment of Lambertian surfaces is provided by the method surfaceLambertianSim-
ple. This method assumes that the down-welling radiation has no azimuthal dependency,
which fits the assumptions for 1D atmospheres. The number of angles to apply in sur-
face los is selected by the user.

For a Lambertian surface the reflected radiation is unpolarised (thus independent of the
polarisation of the down-welling radiation). That is, each surface rmatrix has the structure:

R =

w 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 . (11.8)

When determining the “weight” w above, the method assumes that the down-welling ra-
diance (I) is constant inside each zenith angle range: [θa, θb]. Hence, w equals (cf. Equa-
tion 6.83 of ARTS Theory)

w =

∫ θb

θa

∫ ϕb

ϕa

cos(θ)f(θ, ϕ, θ1, ϕ1) sin(θ) dϕ dθ, (11.9)

that gives

w =
rd
2
[cos(2θa)− cos(2θb)] , (11.10)

where rd denotes the diffuse reflectivity. Thus, this value is a combination of the surface
reflectivity and an solid angle weight.

The emission (surface emission) becomes:

b =

(1− rd)B

0
0
0

 . (11.11)

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.surfaceLambertianSimple.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.surfaceLambertianSimple.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.surface_los.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.surface_los.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.surface_rmatrix.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.surface_emission.html

88 REFERENCE ELLIPSOID AND SURFACE PROPERTIES

Chapter 12

Sensor characteristics

A sensor model is needed because a practical instrument gives consistently spectra deviating
from the hypothetical monochromatic pencil beam spectra provided by the atmospheric part
of the forward model. For a radio (heterodyne) instrument, the most influential sensor parts
are the antenna, the mixer, the sideband filter and the spectrometer. The response (as a
function of frequency, zenith angle . . .) of such instrument parts is here denoted as the
sensor characteristics.

The treatment of sensor variables is introduced in Section 5.2. As described in that
section, the position and line-of-sight (sensor pos and sensor los) are treated separately,
while remaining sensor characteristics are summarised by a “response matrix” denoted as
sensor response. This matrix is applied following Equation 5.2. The purpose of this section
is to describe how data on sensor characteristics are inputted to obtain a sensor response
that matches your particular instrument.

The implementation follows closely Eriksson et al. [2006]. That article provides also a
more careful description of the approach of applying a response matrix, and the equations
used to convert different type of characteristics to response values. As a user of ARTS, the
main practical issue is to understand the different file formats used for the different sensor
parts. For the moment, this is only described mainly through the on-line documentation.

12.1 General

In principle, a sensor must always be specified. However, if this shall be a hypothetical
sensor just providing the monochromatic pencil beam data coming out of the atmospheric
radiative transfer calculations, use sensorOff (sensor response is in this case just an identity
matrix).

For other cases, the definition of the sensor characteristics is initiated by calling sen-
sor responseInit. The natural order to call the main functions for the different sensor parts
should be to follow the radiation through the instrument. That is, the antenna should nor-
mally be the first part to consider. If the order can be changed depends on the conditions.
For example, for a double side-band receiver the antenna must be considered before the
mixer, if the antenna response differs between the two bands. If the same antenna response

History
110826 A simple version by Patrick Eriksson.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.sensor_pos.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.sensor_los.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.sensor_response.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.sensor_response.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.sensorOff.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.sensor_response.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.sensor_responseInit.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.sensor_responseInit.html

90 SENSOR CHARACTERISTICS

can be assumed for both bands, the same result is obtained even if the mixer is introduced
before the antenna.

Each response is defined for some grid. All responses are assumed to be zero outside
the range covered by the grid, even if the end values deviate from zero. A positive aspect of
this definition is that it is possible to define true “rectangular” responses. This is achieved
by setting the end points of the grid where the response drops to zero.

The sensor parts are normally associated with some loss of power, and sensor contains
also some amplification device. In general, it is not needed to consider these aspects, as such
effects are cancelled out by the calibration process. The sensor should then be modelled as
having no losses, which is ensured by setting sensor norm to 1. The different responses
are then normalised in an appropriate manner. With sensor norm set to 0, all normalisation
issues must be handled when defining the response files.

12.2 Some comments

Some text removed from other chapters, to be intgrated into this chapter:
For each sensor position, a number of monochromatic pencil beam spectra are calcu-

lated. The monochromatic frequencies are given by f grid. The pencil beam directions are
obtained by summing the sensor line-of-sight angles (sensor los) for the position and the
values of mblock dlos. For example, pencil beam zenith angle i is calculated as

ψi = ψ0 +∆ψi (12.1)

where ψ0 is the sensor line-of-sight for the position of concern and ∆ψi is value i of the
first column of mblock dlos. With other words, mblock dlos gives the grid (relative to the
sensor line-of-sight) for the calculation of the intensity field that will be weighted with the
antenna response.

As the sensor line-of-sight and block grid values are just added, there is an ambiguity of
the line-of-sight. It is possible to apply a constant off-set to the line-of-sights, if the block
grids are corrected accordingly. For example, if the simulations deal with limb sounding
and a 1D atmosphere, where normally a single block should be used despite a number of
spectra are recorded, it could be practical to set the line-of-sight to the viewing direction
of the uppermost or lowermost spectrum, and the zenith angles in mblock dlos will not be
centred around zero which is the case when the “true” line-of-sight is used.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.sensor_norm.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.sensor_norm.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.f_grid.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.sensor_los.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.mblock_dlos.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.mblock_dlos.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.mblock_dlos.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.mblock_dlos.html

Chapter 13

Doppler effects and winds

The default assumption in ARTS can be expressed as the atmosphere is assumed to be static
and the observation platform is static during each measurement, while any relative move-
ment between the atmosphere and the sensor will cause Doppler effects. ARTS handles
three sources to Doppler shifts: winds, rotation of the planet and sensor velocity.

13.1 Winds

Atmospheric transport is not considered by ARTS, but winds can still be of importance due
to the Doppler effect they can cause. This effect is most significant at high altitudes where
the line shape is narrow, and a frequency shift of absorption and emission is most easily
discerned.

The workspace variables to specify winds are wind u field, wind v field and
wind w field, below denoted as vu, vv and vw, respectively. The user need to set all these
three variables. It is allowed, for all three wind components, to set the variable to be empty,
which is shorthand for saying that the wind is zero throughout the atmosphere (Sec. ??).
Otherwise, the size of the variable is required to match the atmospheric grids.

No further input is required, a Doppler shift is added as soon as any of the winds is non-
zero (exceptions discussed in Sec. 13.4). For clarity, even though a setting of wind u field
always is demanded, this wind component has no effect on Doppler shifts for 1D and 2D
calculations, as the wind moves at an angle of 90◦ from the observation plane (Sec. ??).

13.2 Planet rotation

ARTS applies an Earth-Centred, Earth-Fixed, (ECEF) coordinate system. This implies that
a ground-based receiver follows the planet’s rotation. On the other hand, if e.g. the sensor
is placed on another planet, or is in a transit orbit, the rotation of the observed planet will
cause Doppler effects. This is treated in ARTS by a short-cut, the rotational movement can
be translated to an imaginary wind by the method wind u fieldIncludePlanetRotation.

History
130223 Restructured to include effects beside winds (PE).
121218 First version by Patrick Eriksson.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.wind_u_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.wind_v_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.wind_w_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.wind_u_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.wind_u_fieldIncludePlanetRotation.html

92 DOPPLER EFFECTS AND WINDS

This pseudo-wind, v′u, is calculated as

v′u =
2π cos(α)(r + z)

tp
, (13.1)

where α is the latitude, r is the local planet radius, z is the altitude and tp is the planet’s
rotational period. This term is added to the true zonal wind speed, vu.

13.3 Sensor velocity

The feature is not yet fully implemented, but a rudimentary inclusion of the sensor’s velocity
can be made by the rte alonglos v workspace variable. The variable shall be set to the sensor
velocity component along the viewing direction. For the moment, this velocity is assumed
to be the same for all pencil beam calculations.

13.4 Limitations

For efficiency reasons, when extracting particle extinction (absorption and scattering) the
mean Doppler shift along the propagation path is applied (but the shift varies with fre-
quency). This allows to at least include larger shifts caused by e.g. satellite velocity. The
smaller shifts (due to winds) are here of less importance as the particle extinction is quite
smooth with frequency.

The above is valid for transmission type calculations. Doppler shifts are so far totally
neglected inside the DOIT and MC scattering modules.

13.5 Equations

The main equations for deriving the Doppler shift from the winds are given in this section.
The total wind, v, is

v =
√
v2u + v2v + v2w. (13.2)

The zenith angle of the wind direction is

ψv = arccos(vw/v), (13.3)

and the azimuth angle is

ωv = arctan(vu/vv). (implemented by the atan2 function) (13.4)

The cosine of the angle between the wind vector and the line-of-sight is

cos γ = cosψv cosψl + sinψv sinψl cos(ωv − ωl), (13.5)

where ψl and ωl are the angles of the line-of-sight.
Finally, as the winds do not reach relativistic values, the Doppler shift can be calculated

as

∆ν =
−vν0 cos(γ)

c
, (13.6)

where ν0 is the rest frequency and c is the speed of light. The core part of these calculations
is implemented in the general internal function dotprod with los. The negative sign
is caused by the fact the “line-of-sight” is the observation direction, not the direction of the
EM waves.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.rte_alonglos_v.html

Chapter 14

Faraday rotation

The polarisation state of an electromagnetic wave propagating through a plasma with a static
magnetic field will be changed, normally denoted as Faraday rotation. The effect is present
for both passive and active signals, but Faraday rotation is proportional to ν−2 and can
in general be neglected for emission measurements due to the relatively high frequencies
applied. For Earth, the effect can in general be neglected above ∼5 GHz. Hence, Faraday
rotation is a special consideration for radio/microwave radiative transfer. A brief theoretical
description is found below in Section 14.2.

14.1 Practical usage

The first step is to ensure that the magnetic field and field of free electrons are non-zero. See
Section ?? for how to introduce a magnetic field. Free electrons are treated as an “absorbing
species”, and hence are part of vmr field (Sec. 4.2.2). A further constrain is that the Stokes
dimensionality (stokes dim) is set to 3 or 4. This can be understood by Equation 14.4,
Faraday rotation affects Stokes elements 2 and 3.

Faraday rotation is treated by propmat clearsky agenda. For the moment, there exists
a single workspace method for the task and that is propmat clearskyAddFaraday. That is,
this method must be included in propmat clearsky agenda if you want to include Faraday
rotation in your calculations.

14.2 Theory

A wave propagating through the ionosphere will force free electrons to move in curved
paths. If the incident wave is circularly polarised, the motion of the electrons will be circu-
lar. The refractive index will then not be a single constant, but depending on polarisation
(i.e. anisotropic). More precisely, left and right hand polarised waves will propagate with
different speeds. Moreover, as a plane polarised wave can be thought of as a linear superpo-
sition of a left and a right hand polarised wave with equal amplitudes, but different phase,
the plane of polarisation will then rotate as the wave is propagating through the media. This
is denoted as Faraday rotation.

History
121217 Written (PE), partly based on text written originally by Bengt Rydberg.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.vmr_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.stokes_dim.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearskyAddFaraday.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.propmat_clearsky_agenda.html

94 FARADAY ROTATION

Birefringance is an associated mechanism, but it is not yet treated by ARTS. This later
effect originates also on the fact that right- and left-hand circular polarisation have different
refractive index. This can result in that the two polarisations obtain different propagation
paths. For frequencies close to the “plasma frequency” the birefringance can be a strong
effect, but for higher frequencies it should be secondary to Faraday rotation. Expressed
roughly, a difference in optical path for the two circular polarisation of a quarter of a wave-
length changes the polarisation state strongly by Faraday rotation, while additional effects
coming from a difference in propagation path (birefringance) should be negligible.

According to Rybicki and Lightman [1979], using Gaussian (cgs) units, the angle of
rotation (ϑF) of a plane polarised wave can be described as

ϑF =
e3

2πc2m2ν2

∫ d

0
ne(s)Bgeo(s) · ds,

which converted to SI units becomes [Kraus, 1966]1

ϑF =
e3

8π2cϵ0m2ν2

∫ d

0
ne(s)Bgeo(s) · ds ≈

23648

ν2

∫ d

0
ne(s)Bgeo(s) · ds, (14.1)

where e is the charge of an electron, ϵ0 is the permittivity of vaccum,m is the electron mass,
ne(s) is the density of electrons at point s, Bgeo(s) is the geomagnetic field at point s, and
· denotes the dot (scalar) product. Accordingly, the Faraday rotation is proportional to the
part of the magnetic field along the propagation path, the field normal to the path gives no
effect.

The change in rotation angle along the propagation path, r is then given by

r =
dϑF
ds

=
e3

8π2cϵ0m2ν2
ne(s)Bgeo(s) · ŝ. (14.2)

An “magneto-optical” effect (Sec. 4.2.1) of this type is mapped to a propagation matrix as

K =

0 0 0 0
0 0 2r 0
0 −2r 0 0
0 0 0 0

 . (14.3)

If no other effects are present, the effect on the Stokes vector for some part of the propgation
path can be expressed as a Mueller rotation matrix [Goldstein, 2003; Meissner and Wentz,
2006]:

IF
QF

UF

VF

 =

1 0 0 0
0 cos(2ϑF) − sin(2ϑF) 0
0 sin(2ϑF) cos(2ϑF) 0
0 0 0 1

I
Q
U
V

 . (14.4)

1The two versions of this equation are also found in Wikipedia (under Faraday effect), but expressed using
λ and an error for the numerical factor (2012-12-17). The value 2.365 · 104, derived from the fundamental
constants, is confirmed by Wright et al. [2003].

Chapter 15

Transmission calculations

The term “transmission calculations” refers here to situations when the emission from the
atmosphere and surface can be neglected. These calculations can be divided into two main
types. The first one is when just the transmission of the atmosphere is diagnosed (Sec. 15.1).
The observation geometry is then given exactly as for emission simulations, by a position
and a line-of-sight.

The second main type is radio link budgets (Sec. ??). For this case, the propagation path
is determined solely by the position of the transmitter and the receiver. That is, the user does
not need to set a line-of-sight of the sensor (receiver), it is determined by the transmitter
position. A characterisation of a radio link normally involves several attenuation terms not
encountered for passive measurements, such as free space loss and defocusing. Faraday
rotation (Sec. 14) is an additional physical mechanism that is of special concern for active
microwave devices (it can normally be neglected at the higher frequencies used for passive
observations).

15.1 Pure transmission calculations

This section discusses the iyTransmissionStandard workspace method, that is relevant if
you want to calculate the transmission through the atmosphere for a given position and line-
of-sight. The set-up is largely the same as for simulations involving emission, such as that
the observation geometry is defined by sensor pos and sensor los (or rte pos and rte los if
iyCalc is used). The first main difference is that iy transmitter replaces iy space agenda and
iy surface agenda. The second main difference is that handling of cloud scattering is built-
in and the need to define iy cloudbox agenda vanishes. These differences appear inside
iy main agenda.

As for emission measurements (Sec. 9.1, Algorithm 2) the first main operation is to
determine the propagation path through the atmosphere, but this is here done without con-
sidering the cloud-box (it is simple deactivated during this step). The possible “radiative
backgrounds” are accordingly the surface or space, i.e. where the propagation path starts.

The next step is to set iy transmitter. It should be noted that the same variable is use in-
dependently if the radiative background is space or the surface. It is up to the user to decide
if these two cases shall be distinguished in some manner (no workspace method for this task

History
130206 Written (PE), partly based on text written originally by Bengt Rydberg.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iyTransmissionStandard.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.sensor_pos.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.sensor_los.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.rte_pos.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.rte_los.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iyCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_transmitter.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_space_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_surface_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_cloudbox_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_main_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_transmitter.html

96 TRANSMISSION CALCULATIONS

exists yet). For these calculations, the standard choice is to set iy transmitter with MatrixU-
nitIntensity. If this workspace method is used, the output of iyTransmissionStandard shows
you the fraction of unpolarised radiation that is transmitted through the atmosphere, and the
polarisation state of the transmitted part.

The radiative transfer expression applied is (cf. Eq. 9.8)

si+1 = e−K̄ssi (15.1)

where the extinction matrix is determined in the same manner as for emission cases
(Sec. 9.3). In situations where the matrix K is diagonal, the scalar form shown in Eq. 9.6 is
used.

The method determines automatically if any part of the propagation path is inside the
cloud-box (if active). If this is the case, particle extinction is included in K, following the
same path step averaging as applied for pure absorbing species. For this method, scattering
is purely a loss mechanism, there is no gain by scattering into the line-of-sight

A related concern is the treatment of the surface. In standard usage of the method, there
is no signal reflected by the surface, and the radiative transfer calculations are started at the
surface.

See the built-in documentation of iyTransmissionStandard for a full list of possible aux-
iliary quantities. These data include quantities that make it possible to determine the trans-
mission for different parts of the propagation path. For example, the state of iy at each point
of the propagation path can be extracted, and also the transmission matrix (Eq. 9.9) for each
path step is accessible.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_transmitter.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.MatrixUnitIntensity.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.MatrixUnitIntensity.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iyTransmissionStandard.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iyTransmissionStandard.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy.html

Chapter 16

Clear-sky Jacobians

Inversions of both OEM and Tikhonov type require that the Jacobian can be provided by
the forward model [see e.g. Eriksson, 2000]. A retrieval characterisation following Rodgers
[1990, 2000] raises the same demand. A column of the Jacobian, Kx, is defined as

∂y

∂xp
, (16.1)

where y is the vector of measurement data and xp is one forward model (scalar) variable.
See further Section 1.3 of ARTS Theory. The nomenclature of that section is also used here.

The quantity in Eq. 16.1 is in the atmospheric sounding community frequently denoted
as a “weighting function”, and accordingly Kx is called the weighting function matrix.
In the documentation of ARTS both terms (Jacobian and weighting functions) are used.
These names refer normally to Kx, the partial derivatives with respect to the variables to be
retrieved, forming the state vector x. However, in the context of retrieval characterisation,
the same matrix for the remaining model parameters is of equally high interest, denoted as
Kb. In the same manner, the terms inversion and retrieval are used interchangeably.

The main task of the user is to select which quantities that shall be retrieved, and to
define the associated retrieval grids. These aspects must be considered for successful in-
versions, but are out of scope for this document. Beside for the most simple retrievals, it
is further important to understand how the Jacobian is calculated. A practical point is the
calculation speed, primarily determined if perturbations or analytical expressions are used
(Sec. 16.1). The derivation of the different Jacobians involves some approximations due
to theoretical and practical considerations. Such approximations can be accepted, if of low
or moderate size, but will result in a slower convergence (the inversion will require more
iterations). Due to these later aspects, and to meet the needs of more experienced users, this
section is relatively detailed and contains a (high?) number of equations.

This section is restricted to Jacobians for clear-sky conditions, i.e. to be applied outside
the cloudbox. So far none of the scattering methods provide Jacobians. Sections 16.1 - 16.2
contain information of general character, while the available quantities are discussed in the
remaining sections (Section 16.4 and forward).

History
110826 First complete version by Patrick Eriksson.

98 CLEAR-SKY JACOBIANS

16.1 Introduction

There are two main approaches for calculating Jacobians, by analytical expressions and by
perturbations. We start with the conceptually simplest one, but also the more inefficient
approach.

16.1.1 Perturbations

The most straightforward method to determine the Jacobian is by perturbing the model
parameter of concern. For example, the Jacobian corresponding to state variable p can
always be calculated as

Kp
x =

F(x+∆xep,b)−F(x,b)

∆x
(16.2)

where (x,b) is the linearization state, ep is a vector of zeros except for the p:th compo-
nent that is unity, and ∆x is a small disturbance (but sufficiently large to avoid numerical
instabilities).

However, it is normally not needed to make a recalculation using the total forward
model as the variables are either part of the atmospheric or the sensor state, but not both. In
addition, in many cases it is possibly to find short-cuts. For example, the perturbed state can
be approximated by an interpolation of existing data (such as for a perturbed zenith angle).
Such short-cuts are discussed separately for each retrieval quantity.

16.1.2 Analytical expressions

For most atmospheric variables, such as species abundance, it is possible to derive an ana-
lytical expression for the Jacobians. This is advantageous because they result in faster and
more accurate calculations. Such expressions are derived below. Some of the terms involved
are calculated as a perturbation. This is because some underlying functions of ARTS are
best-fit methods that are internally interpolated to the correct grid anyways. The analytical
calculations are introduced in Sec. 16.3.

16.1.3 Workspace variables and methods

As a workspace variable, the complete Jacobian is denoted as jacobian. Auxiliary informa-
tion is provided by jacobian quantities. The actual calculations are made as part of yCalc.

The retrieval quantities are defined separately, before calling yCalc. This process
is started by calling jacobianInit. The retrieval quantities are then introduced through
workspace methods named as jacobianAddSomething. For example, for atmospheric tem-
perature the method is jacobianAddTemperature. It does not matter in which order these
“add methods” are called.

The definition of retrieval quantities is finalised by calling jacobianClose. To disable the
calculation of the Jacobian, skip all above, and just use jacobianOff. The methods named
jacobianCalcSomething shall never be used directly. Neither needs the user to consider
jacobian agenda.

The input to the “add methods” differs. In some cases you can select between the
analytical and perturbation options. For all perturbation calculations you must specify the
size of the perturbation. For atmospheric gases you can use different units. For atmospheric
fields, and some other quantities, you must define the retrieval grid(s) to use.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.jacobian.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.jacobian_quantities.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.yCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.yCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.jacobianInit.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.jacobianAddTemperature.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.jacobianClose.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.jacobianOff.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.jacobian_agenda.html

16.2 BASIS FUNCTIONS 99

0 0.2 0.4 0.6 0.8 1
29

29.5

30

30.5

31

31.5

32

32.5

33

33.5

Basis function

A
lt

it
u

d
e

[k
m

]

Figure 16.1: Examples on 1d basis functions for a vertical grid with a 1 km spacing:
—— 30 km, – – – 31 km and – · – 32 km.

16.2 Basis functions

A forward model must use a discrete representation: it describes each quantity with one or
several variables. This is unproblematic for quantities that are of discrete nature (including
scalar variables). However, for atmospheric fields and other continuous model quantities,
the discrete representation inside the forward model requires consideration. To avoid in-
consistencies between model input and output it is important that the mapping from the
discrete variables to the “continuous view” of the quantity is well defined, and applied con-
sistently through the forward model . This mapping is given by the basis functions. Similar
arguments and nomenclature are found in Read et al. [2006].

The basis functions are discussed explicitly in few places in this user guide, but it shall
be noted that all interpolations imply an underlying set of basis functions. On the other
hand, an understanding of both the derivation and the obtained Jacobians require direct
consideration of the basis functions. ARTS operates with two types of basis functions.

16.2.1 Basis functions for piece-wise linear quantities

To treat an one-dimensional quantity to be piece-wise linear, or to say that a linear interpo-
lation shall be applied, are identical definitions. The basis functions matching this definition
have triangular shape, sometimes denoted as “tent functions”. Such functions are exempli-
fied in Fig. 16.1, see also Buehler et al. [2005].

In most cases, the quantity is considered to be undefined outside the end points of the
grid. Hence, the basis function for a grid end point is then just “half a tent”. The exception
to this rule is retrieval grids of piece-wise linear variables. To avoid that retrieval grids
must cover the complete atmosphere, end point values are assumed to be valid to the end
of the atmosphere (or data range of concern). That is, the basis functions for end points
of retrieval grids follow the tent shape inside the grid range, and have a constant value of

100 CLEAR-SKY JACOBIANS

1 outside. In terms of interpolation, this matches to allow extrapolation, the applying a
“nearest” interpolation for positions outside the covered range (the end values are valid all
the way to ±infinity). The basis functions are defined likewise for higher dimensions, but
the tent functions are then 2D or 3D “tents”.

16.2.2 Polynomial basis functions

Some retrieval quantities are expressed using a polynomial basis. Sensor zenith angle point-
ing off-set is one such quantity. The off-set is then treated to have a polynomial variation as
a function of time. If the offset is assumed to be constant in time, a zero order polynomial
shall be selected. If there is also a linear drift with time, use a first order polynomial, etc.

For these basis functions, the explanatory variable (time in the example above) is nor-
malised to cover the range [-1,1], here denoted as z, and the continuous representation (f)
of the variable of concern can be written as

f(z) = x0 + x1(z − b1) + x2(z
2 − b2) + x3(z

3 − b3) + x4(z
3 − b4) + . . . (16.3)

where x0, x1, . . . are the coefficients to be retrieved (elements of x). The interpretation of a
retrieval is simplified if the average of f equals xp0, and the scalars b1, b2, . . . are selected,
schematically, as

0 =

∫ 1

−1
(zn − bn) dz, n > 0. (16.4)

According to this expression, bn is zero for odd n. However, z is in practise a discrete
variable (zi, not necessarily symmetric around 0), and bn is taken as the average of zni : all
bn can be non-zero. The normalisation of z is not only made for interpretation reasons, it
can be required for pure numerical reasons, such as when z represent frequency (in Hz).

In practise, the basis functions are vectors, denoted below as zi. Element j of zi is

zi(j) = z(j)i − bi. (16.5)

16.3 Atmospheric variables, common expressions

The analytically-oriented calculation procedure to obtain the Jacobian for atmospheric
quantities is here outlined. The expressions are based on the chain rule, and can be applied
for absorption constituents, atmospheric temperatures and winds. It is important to notice
that only local effects are considered, and the expressions have limitations, as discussed
below in Sec. 16.3.7.

16.3.1 Matrix derivatives

Matrix exponents are calculated using the Padé approximation with scaling & squaring.
Likewise, matrix exponent derivatives are calculated using the same method. The imple-
mentation in ARTS follows Brančı́k [2006]. As a brief reminder, following the same no-
tation as Brančı́k [2006], but with altered input/output to match the rest of this text, the
transmission matrix is

Ti(xi) = exp (−Ki(xi)r) ≈ D−1
pq (xi)Npq(xi), (16.6)

16.3 ATMOSPHERIC VARIABLES, COMMON EXPRESSIONS 101

with

Npq(xi) =

p∑
j=0

(p+ q − j)!

(p+ q)!j! (p− j)
(−Ki(xi)r)

j , (16.7)

and

Dpq(xi) =

q∑
j=0

(p+ q − j)!

(p+ q)!j! (p− j)
(Ki(xi)r)

j . (16.8)

This means that the matrix derivation of the transmission of the Padé approximation method
is

∂Ti

∂xi
≈
∂D−1

pq

∂xi
Npq +D−1

pq

∂Npq

∂xi
, (16.9)

where the input arguments have been dropped (and will not appear again in this subsection)
to make the equation(s) easier to read. To be explicit, the above can be rewritten as

∂Ti

∂xi
≈ D−1

pq

(
∂Npq

∂xi
− ∂Dpq

∂xi
Ti

)
(16.10)

in calculations. Finally, the internal partial derivatives are just

∂Npq

∂xi
=

p∑
j=0

(p+ q − j)!

(p+ q)!j! (p− j)

(
−∂Ki

∂xi
r

)j

, (16.11)

∂Dpq

∂xi
=

q∑
j=0

(p+ q − j)!

(p+ q)!j! (p− j)

(
∂Ki

∂xi
r

)j

. (16.12)

Important to note in ARTS is that we average layer properties from properties of the
surrounding path points simply by averaging the property at the two path points. That is

Ki =
Ki−1/2 +Ki+1/2

2
, (16.13)

where the half denotes the propagation matrix at the two levels. So for every layer, we need
the partial derivation of the layer for both the influence by the level above and the level
below. Thus,

∂Ki

∂xi
=

1

2

(
∂Ki−1/2

∂xi
+
∂Ki+1/2

∂xi

)
(16.14)

These calculations are done in parallel to save memory and/or time. In fact, only Equa-
tions 16.11 and 16.12 are recalculated for each analytical Jacobian entity that has been
requested by the user.

16.3.2 Analytical expression for partial derivation of the propagation matrix

All lines and contributions to the propagation matrix are summed for a total propagation.
This means that

Ki =
∑
j

Kj ;
∂Ki

∂xi
=

∑
j

∂Kj

∂xi
, (16.15)

for all j lines, continua contributions, collision induced absorption contributions, etc.. This
means that to calculate each individual ∂Kj/∂xi is enough to get ∂K/∂xi. The method of
calculating ∂Kj/∂xi depends on how the absorption is calculated.

102 CLEAR-SKY JACOBIANS

Parameterized absorption models

Several methods in ARTS are best-fit or parameterized models. If Kj is from one of these
functions, then a perturbation approach is used in a low-level function to get ∂Kj/∂xi.
The user sets a small perturbation that is then used internally. This way is used when
continua, collision induced absorption and lookup table is used since these are only available
in parameterized form in ARTS.

Line-by-line absorption

Expanding Kj for line-by-line calculations, it can roughly be written

Kj = SjFjΦj , (16.16)

where Sj is the scaled line strength, Fj is the shape of the line, and Φj is the polarization
matrix. This rough expression is useful for defining the partial derivatives since we can
write

∂Kj

∂xi
=
∂Sj
∂xi

FjΦj + Sj
∂Fj

∂xi
Φj + SjFj

∂Φj

∂xi
. (16.17)

An important thing to remember about the equation above is that everything in Equa-
tion 16.16 is already known (to the level of certainty in the model). Thus, Equation 16.17
can, when it is convenient, be written as

∂Kj

∂xi
= Kj

(
S−1
j

∂Sj
∂xi

+ F−1
j

∂Fj

∂xi
+Φ−1

j

∂Φj

∂xi

)
. (16.18)

Both Equation 16.17 or 16.18 are used internally in the code base.
To extend the rough expression a little bit, the line strength variable can be thought of

as

Sj = nj(T, p)Sj,0f(T, · · ·), (16.19)

where nj is the number density, Sj,0 is the line strength at a reference temperature in LTE,
and f(T, · · ·) is a function that mostly depends on the temperature (but also other line
parameters and non-LTE effects are included here). The line shape variable can be thought
of as

Fj = FnFmFuFs, (16.20)

where Fn is a renormalization term far from the line center (e.g., van Vleck and Huber
renormalization), Fm is the line mixing, Fu is a unit conversion term, and Fs is the classical
definition of line shape (e.g., Lorentz or Voigt distributions). The polarization matrix is the
unit matrix except for the Zeeman effect and for Faraday rotation. In scalar simulations, it
is simply the 1× 1 unit matrix, or a scalar 1.

16.3.3 Separation of terms

The overall task is to calculate (Eq. 16.1 with subscript p left out)

∂y

∂x

16.3 ATMOSPHERIC VARIABLES, COMMON EXPRESSIONS 103

where x is the element of x for which we want to obtain the weighting function. This is a
column of the complete weighting function matrix.

A first step is to identify how sensor characteristics can be incorporated? To make the
nomenclature simpler, we assume here that the simulations cover only a single measurement
block and we have (cf. Eq. 5.2)

y = Hib. (16.21)

We can then apply the chain-rule for a first time to obtain

∂y

∂x
=
∂y

∂ib

∂ib
∂x

= H
∂ib
∂x

= Hki. (16.22)

Hence, sensor characteristics can be handled by calculating the weighting function column
matching all monochromatic pencil beam calculation of the measurement block (ki) and
perform a multiplication with H, a parallel procedure compared to how ib is compiled to
obtain y. The calculation procedure expands to allow that the complete weighting function
matrix (for quantities covered by the analytical calculation procedure) is calculated as

∂y

∂x
= HKi, (16.23)

where Ki = ∂ib/∂x. One column of this matrix is ki.
The vector ib consists of a number of Stokes vectors appended, ib = [sT1 , s

T
2 , . . . , s

T
n]

T ,
and the calculation of ki can schematically be written as

ki =
n∑

j=1

∂ib
∂sj

∂sj
∂x

(16.24)

The terms ∂i/∂sj are formally matrices. However, these matrices are not calculated explic-
itly as they only contain information on where si is stored inside i. That is, these matrices
are of bookkeeping character, consisting only of zeros and ones. In practice, results match-
ing ∂sj/∂x are simply inserted in correct place of ki, mimicking how is si put into i.

Accordingly, the core task is to calculate ∂sj/∂x, where for simplicity the subscript j
is dropped below. This calculation is expanded as

∂s

∂x
=

n∑
i=1

∂s

∂xi

∂xi
∂x

, (16.25)

where xi is the value of the quantity of concern, at each point of the propagation path. That
is, i indexes the path points. The actual radiative transfer enters by the terms ∂s/∂xi, and
they are discussed separately below.

The term ∂xi/∂x appears due to the fact that xi and x are placed at different positions,
and the representation of the atmospheric fields must be considered here. In practise, the
term is calculated as the value of the basis function for x at the location of xi (further
discussed in Buehler et al. [2005]). This is a slight approximation with respect to the goal of
fully incorporating the piece-wise linear representation in the weighting functions [Buehler
et al., 2005]. A low value of ∆li decreases the degree of approximation.

It can be noted that ∂xi/∂x is normally non-zero for more than one element of x. The
exception is if the positions of xi and x are identical. Reversely, the weighting function for
element x can have contributions from several propagation path points (xi), as well as from

104 CLEAR-SKY JACOBIANS

several radiance spectra. Accordingly, the practical calculations are done by first determine
all ∂s/∂xi, of the given propagation path. These data are then used to determine ∂s/∂x,
for the retrieval quantity of concern. That is, each ∂s/∂xi is combined with ∂xi/∂x for
all elements of x. Most of these combinations yield a zero result. The terms ∂xi/∂x are
determined with help of ARTS’ internal interpolation grid position routines.

16.3.4 ∂s/∂xi, general case

The term ∂s/∂xi is here outlined for the general case of vector radiative transfer. In this
case, the Stokes elements can not be treated separately, and matrix-vector notation is re-
quired. The final Stokes vector obtained through Eq. 9.8 can be expressed as

s = s′ +T′ [Tisi + (1−Ti)
(
b̄i + K̄−1

i
¯jn,i
)]
, (16.26)

where s′ is the Stokes vector for all emission generated between the sensor and point i+ 1,
T′ is the transmission Mueller matrix for the same part of the propagation path and Ti is
defined in Eq. 9.9. The quantities s′, T′ and si are not function of xi. This gives

∂s

∂xi
= T′

[
∂Ti

∂xi

(
si − b̄i − K̄−1

i
¯jn,i
)
+

(1−Ti)

(
∂b̄i

∂xi
+ K̄−1

i

∂K̄i

∂xi
K̄−1

i
¯jn,i + K̄−1

i

∂ ¯jn,i
∂xi

)]
. (16.27)

The terms ∂Ti/∂xi and ∂b̄i/∂xi are both calculated in a pure numerical manner, for dif-
ferent reasons discussed below.

16.3.5 Including the surface

For scattered down-welling radiation the effective transmission matrix is

T′ = T2RiT1, (16.28)

where T2 is the transmission between the surface and the sensor, Ri is defined in Eq. 11.7
and T1 is the transmission between the point i+ 1 and the surface.

16.3.6 ∂s/∂xi, locally unpolarized absorption

Eq. 16.27 can be simplified for some conditions. A first case is scalar radiative transfer, i.e.
only the first element of the Stokes vector is considered and all terms of Eq. 16.27 are scalar
quantities. For all other cases, in principle vector radiative transfer must be performed, as
T′ can always have off-diagonal elements. Even if atmospheric absorption is totally unpo-
larized, T′ can be non-diagonal due to the surface (Eq. 16.28). However, if the absorption
locally lacks polarization, the calculations can be handled by analytical expressions in a
higher degree.

To focus on the analytical expressions dealing with local radiative transfer effects, let
us write Eq. 16.26 as

s = s′ +T′ss. (16.29)

In the nomenclature of Eq. 9.8, ss = si+1 (but would be confusing to here use si+1). Hence

∂s

∂xi
= T′ ∂ss

∂xi
.

16.4 ABSORPTION SPECIES 105

The first element of ss, I , can be written as (cf. Eq. 9.1)

I = e−τiIi + (1− e−τi)
(
B̄i + ¯jn,i/ᾱ

)
. (16.30)

By again using the chain rule, the derivative of I with respect to xi can be written as

∂I

∂xi
=
∂I

∂τi

∂τi
∂xi

+
∂I

∂ji

∂ji
∂xi

= e−τi
∂τi
∂xi

(ji − Ii) + (1− e−τi)
∂ji
∂xi

, (16.31)

where ji is short for B̄i + ¯jn,i/ᾱ. The two remaining derivatives ∂τi/∂xi and ∂ji/∂xi
depend on the quantity considered, and are discussed further below.

For higher Stokes components of ss, or in general if emission is totally ignored,
Eq. 16.30 is simplified to (here exemplified for the second Stokes element, Q)

Q = e−τiQi, (16.32)

and the chain rule expression is correspondingly shorter:

∂Q

∂xi
= −e−τi

∂τi
∂xi

Qi. (16.33)

16.3.7 Limitations

A constraint for the analytical expressions above is that the effect of the variable must only
be local. Main examples on non-local effects should occur through hydrostatic equilib-
rium and refraction. Significant impact of a gas through these mechanisms should only be
found for water vapour in the lower troposphere, but is a general concern for temperature as
discussed in Sec. 16.6.

16.4 Absorption species

16.4.1 Common practicalities

To obtain the Jacobian for absorption species, use jacobianAddAbsSpecies. The method
handles one species at the time. The calculations can either be done in an “analytical” or
“perturbation” manner. For gases, weighting functions (WFs) can be provided for several
units of the gas abundance:

vmr Volume mixing ratio (a value between 0 and 1). The WF divided by 106 corresponds
to that 1 ppm of the gas is added to the atmospheric volume of concern.

nd Number density. The WF corresponds here to that one molecule is added.

rel Relative/fractional change. In a perfectly linear case, the WF corresponds here to that
the gas amount is doubled.

For the “rel” option it is important to note that ARTS calculate the WFs with respect to the
given state, ARTS does not know anything about the actual reference state for which the
“rel” unit is valid (where normally the a priori state is selected). For iterative inversions,
a rescaling of the WFs provided by ARTS is likely needed, to make the WFs valid with
respect to the (original) reference state.

A second main consideration is to select the retrieval grids. For analytical calculations
there are no other selections to be made.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.jacobianAddAbsSpecies.html

106 CLEAR-SKY JACOBIANS

16.4.2 Perturbation calculations

For pure numerical calculations, also the size of the perturbation must be specified (∆x
in Eq. 16.2). The perturbation shall given following the unit selected. The same value is
applied for all WFs (which can cause practical problems . . .).

16.4.3 Analytical expressions

If not made clear above, the only term that differs between the Jacobian quantities is ∂s/∂xi.
All parameterized models in ARTS are parameterized on basis of cross-section. These

models’ contribution to Equation16.15 are simply going to be

∂Kj

∂xi
=

1

xi
Kj , (16.34)

for the parameterized model contributions Kj that are functions of xi. One thing of im-
portance to note here is that in collision induced absorption, the absorption caused by the
secondary species is also considered in the above expression.

For line-by-line contributions in Equation 16.17, we only consider ∂Sj/∂xi as impor-
tant (when the line is from the absorption species). The same expression as for parameter-
ized models still apply for the partial derivative.

Note that we ignore that ∂Fj/∂xi is mathematically non-trivial since pressure broaden-
ing and line mixing is changed if the atmosphere is changed. In fact, ∂Fj/∂xi is mathemat-
ically non-trivial even for lines other than those from the absorption species itself since it
changes the total pressure. We justify ignoring this effect because the term is very small in
most reasonable atmospheric setups.

16.5 Winds

Calculation of wind weighting functions are triggered by jacobianAddWind. Each wind
component (see Sec. 13.1) is treated as an individual retrieval variable. That is, if you want
to retrieve all three wind components, jacobianAddWind must be called three times. If
you want the total wind Jacobian, this can also be attained. Only the analytically inclined
calculation approach is at hand for winds.

Theoretically, the Doppler shift induced by winds affects the emission source term, but
this impact is extremely small and the related terms are ignored. This gives a case basically
identical to the one above for absorption species.

By design, the absorption calculations of ARTS are unaware of wind velocities. There-
fore, only the frequency derivative is calculated at the lowest level. That is, for each com-
ponent, this equation is evaluated

∂Kj

∂xi
=
∂Kj

∂ν

∂ν

∂xi
. (16.35)

The frequency partial derivative term is

∂ν

∂xi
=

1

c

∂v

∂xi
, (16.36)

where c the speed of light and v is the wind velocity relative to the observational path
of the component of interest. The last partial derivative is there due to the influence of

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.jacobianAddWind.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.jacobianAddWind.html

16.6 ATMOSPHERIC TEMPERATURES 107

the angle of observation on the shift in frequency. Look along the direction of the wind
component and it is the only component that matters so the partial derivative above is unity.
The other two components are therefore perpendicular to the observational path and have
partial derivatives that are nil. We will not write the full expression since it depends on
atmospheric dimensionality and is different for each of the three components so there are a
total of ten different expressions depending on user input.

For Equation 16.17, only ∂Fj/∂ν is non-zero. The contribution is

∂Kj

∂ν
= Kj

(
1

Fn

∂Fn

∂ν
+

1

Fs

∂Fs

∂ν

)
. (16.37)

For efficiency, the second term is calculated slightly differently due to efficiency.
There is a way to parameterize classical line shapes by two terms and write

Fs = w(a+ ib) = FA + iFB, (16.38)

where a and b are parameters used to determine how much pressure and temperature in-
fluence the line shape (see details in the theory guide), FA is the Voigt line shape and FB

is the Faraday-Voigt line shape. This is usually called the Faddeeva line shape. Using the
Faddeeva line shape,

∂w

∂xi
=
∂w

∂a

∂a

∂xi
+ i

∂w

∂b

∂b

∂xi
, (16.39)

and a great convenience is that

∂w

∂b
= −∂w

∂a
, (16.40)

with

∂w

∂a
= 2b · FB − 2a · FA − i

[
2b · FA + 2a · FB − 2

∆νD · π

]
, (16.41)

where the last term is from Fu and ∆νD is the Doppler half width in frequency units. Since
the partial derivation within the line shape is often repeated, using just one calculation of
∂w/∂a and then recalculating ∂a/∂xi and ∂b/∂xi for different request Jacobian quantities
is efficient.

16.6 Atmospheric temperatures

16.6.1 Common practicalities

To obtain WFs for temperatures, use jacobianAddTemperature. The calculations can either
be done in “analytical” or “perturbation” manner. Retrieval grids must be specified.

A special consideration for temperature is hydrostatic equilibrium. If effects originating
in hydrostatic equilibrium shall be included in the WFs, or not, is selected by an argument
denoted as hse. A full account of hydrostatic equilibrium is possible for perturbation cal-
culations, while the analytical approach only treats the local effect (see further below).

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.jacobianAddTemperature.html

108 CLEAR-SKY JACOBIANS

16.6.2 Perturbation calculations

The size of the perturbation must be selected (in K). Complete radiative transfer calculations
are done after perturbing the temperature field. Hence, all possible effects are included, such
as changed propagation paths through the impact of temperature on the refractive index.
Please, note that hydrostatic equilibrium comes in during the perturbation. If hse is set to
“on”, also z field is recalculated as part of the temperature perturbation (Section 3.5). If set
to “off”, there is no change of z field. That is, you must make an active choice regarding
hydrostatic equilibrium, while others effects are included automatically.

16.6.3 Analytical expressions

Unpolarized absorption

Compared to atmospheric species, the expressions become here more complex as temper-
ature also affects the propagation path length (∆li) and the emission source term (ji). Ac-
cordingly, all terms of Eq. 16.31 are relevant, and the expansion of ∂τi/∂xi generates addi-
tional terms

∂I

∂xi
= e−τi

[
∂τi
∂αi

∂αi

∂xi
+

∂τi
∂∆li

∂∆li
∂xi

]
(ji − Ii) + (1− e−τi)

∂ji
∂xi

. (16.42)

Terms part of expressions found above are not discussed separately here. The term,
∂∆li/∂xi, originates in the constrain of hydrostatic equilibrium, and is set to zero when
hse is set to “off”. Otherwise it is set as derived below. The term ∂αi/∂xi is calculated in
a pure numerical manner, by perturbing the temperature. Eq. 9.5 gives

∂τi
∂∆li

=
αi + αi+1

2
. (16.43)

The path length (∆li), for a given pressure, is linearly proportional to the temperature, and
if T̄ is the average temperature along the path step:

∂∆li
∂T̄

=
∆li
T̄
. (16.44)

Following the other variables, we set T̄ = (Ti + Ti+1)/2, and

∂∆li
∂xi

=
∆li
2Ti

. (16.45)

In summary (assuming hse set to “on”):

∂I

∂xi
= e−τi

∆li
2

[
∂αi

∂xi
+
αi + αi+1

2Ti

]
(ji − Ii) + (1− e−τi)

∂ji
∂xi

. (16.46)

The derivative of the Planck function (∂B/∂xi) can be expressed analytically [Eriksson
et al., 2002].

The expression for higher Stokes elements, or if emission is totally ignored, is obtained
by setting ji (and ∂ji/∂xi) to zero.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.z_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.z_field.html

16.7 MAGNETIC FIELD 109

General case

Both line strength and line shape change with temperature. The rough expression is

∂Ki

∂xi
= Ki

(
S−1
j

∂Sj
∂xi

+ F−1
j

∂Fj

∂xi

)
, (16.47)

where individual terms of both line shape and line strength are treated separately.

Hydrostatic equilibrium and limitations

A changed temperature has non-local effects, originating from refraction and hydrostatic
equilibrium. The expressions above ignore totally refraction effects.

As mentioned, if hse is set to “off”, the term ∂∆li/∂xi is set to zero. That is, the path
length through the layer is not affected by a temperature change. With hse set to “on”, the
complete expressions above are used.

If this treatment of hydrostatic equilibrium is sufficient or not depends on the observa-
tion geometry. It should be insufficient for limb sounding, where changes even at altitudes
below the tangent point can have an influence as the geometrical altitudes of all higher layers
is changed through hydrostatic equilibrium. However, this effect vanishes for ground-based
observations at zenith and satellite measurements at nadir, giving a full account of hydro-
static equilibrium even with the analytical expressions. In practise it should be possible to
apply the expressions outside zenith and nadir, as long as the observations are of “up” or
“down-ward” type. The same applies to measurements from inside the atmosphere, (e.g.
aircraft ones), if the reference pressure for hydrostatic equilibrium (p hse) is matched to the
pressure of the observation point.

Non-LTE is presently not supported for HSE.

16.7 Magnetic field

16.7.1 Common practicalities

To obtain WFs for magnetic field components, use jacobianAddMagField. Retrieval grids
must be specified. There are six input options for component. These are “u”, “v”, “w”,
“theta”, “eta”, and “strength”. The last of these three are derived analytically, the other
three small perturbations. Note that the Faraday effect is not supporting magnetic field
weighting function calculations at the time of writing this.

16.7.2 The analytical solutions

Strength component

Magnetic field strength affects the center of the line. This means it affects the line strength
through changing the state distribution by changing the energy differences between states. It
also means it affects the line shape by moving the line away from its original line center. The
former effect is ignored because it is very small compared to the latter effect for reasonable
atmospheric magnetic fields.

In rough estimation, the magnetic field change the energy state of the molecule by

∆E = −gH, (16.48)

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.p_hse.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.jacobianAddMagField.html

110 CLEAR-SKY JACOBIANS

where g is a constant (see the theory guide) and H is the field strength. The frequency
change is then

∆ν0 =
1

h

(
g′′ − g′

)
H, (16.49)

where h is Planck’s constant and the primes stand for upper (single prime) and lower (double
prime) of the state.

Since we ignore line strength partial derivations, both Equations 16.37 and 16.39 applies
for the magnetic field strength. The remaining partial derivative is then just

∂a

∂xi
=

∆ν0
∆νD

;
∂b

∂xi
= 0. (16.50)

Angular components

The angle along the path of observation (θ) only changes the polarization state. The angle
of linear polarization rotation (η) also only changes the polarization state. So

∂Ki

∂xi
= KiΦ

−1 ∂Φ

∂xi
. (16.51)

The derivation of a matrix with respect to a variable is just the derivation of individual
parameters, so see the theory guide for the original shape and content of Φ.

16.8 Non-LTE effects

This is handled passively whenever it is encountered. If non-LTE is off, then the source
function is the Planck function, so jn,i = 0 and ∂jn,i/∂xi = 0 in Equation 16.27. Other-
wise, we must note two things. First is that the non-LTE effect is included in f(T, · · ·) as
described above, so we know Ki and ∂Ki/∂xi equally well as before. The second part is
that we have defined jn,i from Equation 4.11. By this definition, for all effects the NLTE
contribution is

∂jn,i
∂xi

= B

[
∂as
∂xi

⊘ a− ∂a

∂xi
⊙ as ⊘ (a⊙ a)

]
+
∂B

∂xi
(as ⊘ a− 1) . (16.52)

In practice, the above is only an overview and the calculations are done at a much lower
level. In fact

jn,i =

(
fs(T, · · ·)
f(T, · · ·)

− 1

)
BΦ · [1, 0, 0, 0], (16.53)

where the ratio of fs/f gives the ratio of the source emission to the absorption due to non-
LTE effects. These fs are otherwise as in Equation 16.19 for calculations of Kj .

16.9 Sensor pointing

The term “sensor pointing” refers to deviations between nominal and actual viewing direc-
tion of the sensor. So far, only deviations in zenith angle can be considered. The workspace
method to initiate such Jacobians is jacobianAddPointingZa.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.jacobianAddPointingZa.html

16.10 SENSOR FREQUENCIES 111

The pointing deviation is treated as a time varying variable, then having a polynomial
variation. hence, the basis functions described in Section 16.2.2 are applied. The time
is taken from sensor time. If the pointing error is assumed to be constant with time, the
polynomial order to select is 0, and so on. As a special case, the polynomial order -1
signifies here that the pointing off-set is so highly varying that an off-set must be assigned
to each spectrum (sometime called “pointing jitter”).

The Jacobian can be calculated in two manners:

recalc If this option is selected, radiative transfer calculations are performed for a shift of
sensor los (perturbation size selected by dza). Only a “one-sided” perturbation is
applied.

interp The Jacobian is derived from existing data, by an interpolation of existing data. This
achieved by interpolating pencil beam data to a shifted zenith angle grid. This will
involve some extrapolation of the data, and this aspect should be considered when
selecting the zenith angles in mblock dlos. The average of a positive and negative
shift is determined. The shift to apply (dza) should be smaller than the minimum
spacing of the zenith angles inmblock dlos for accurate results. As interpolation is a
relative fast operation and a “double-sided” disturbance is used, this option should in
general be preferred.

16.10 Sensor frequencies

This class of Jacobians treats deviations between nominal and actually recorded frequencies.
Such differences can originate in several ways, but the exact origin can normally be ignored
and the effect can be modelled as the backend (spectrometer, filter bank . . .) channels are
shifted from their nominal position. The workspace methods to define such Jacobians are
jacobianAddFreqShift and jacobianAddFreqStretch. These Jacobians can so far only be
determined by applying an interpolation of existing monochromatic data, then shifted df
from the nominal values.

The methods treat either the “shift” or “stretch” effects. This follows standard nomen-
clature. A “shift” is an off-set that is of the same size for all backend channels. That is,
if only a shift is assumed, the nominal distances between the channels are assumed to be
valid. The “stretch” term considers the distance between the channels. For a backend with
all channels equally spaced, a stretch signifies that the spacing deviates from the nominal
value (but all channels still equally spaced). More generally, a stretch means that the de-
viation from the nominal channel position increases linearly from the middle point of the
backend. In terms of the basis functions Section 16.2.2, shift and stretch correspond to
polynomial order 0 and 1.

Both frequency shift and stretch can be assumed to be time varying, where exactly the
same polynomial approach as for pointing is applied. This including the case of setting the
order to -1.

16.11 Polynomial baseline fit

A “baseline” is microwave jargon for a disturbance of the spectrum that is not covered by
the common sensor characteristics. The most common case is that the local oscillator signal
leaks into the measurement by reflections occurring inside the sensor, causing a pattern in

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.sensor_time.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.sensor_los.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.mblock_dlos.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.mblock_dlos.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.jacobianAddFreqShift.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.jacobianAddFreqStretch.html

112 CLEAR-SKY JACOBIANS

the spectrum of standing-wave type. Such effects are difficult to model in a physical manner,
and a more general fitting procedure must be applied. A common option is then to model
the baseline as a polynomial, of a specified order. That is, assuming a measurement giving
a single spectrum, the measured spectrum y is modelled as

y = y′ +
n∑

i=0

xizi, (16.54)

where y′ is the “baseline free” spectrum, and xi and zi are introduced in Section 16.2.2.
The Jacobian for such baseline models are obtained by jacobianAddPolyfit. For single

spectra measurements, the only consideration is the polynomial order to use. For mea-
surements where several spectra are appended to form the measurement vector, the default
option is that baseline can vary between all spectra. In some cases, it could be assumed
that the baseline is common between data for different polarizations, viewing directions or
measurement blocks, and flags can be set to mimic such assumptions.

For a given set of retrieved xi, the simplest way to determine the estimated baseline is
to perform a multiplication between the relevant parts of the Jacobian and the state vector:

Kpxp, (16.55)

where p indicates the n+ 1 columns/elements corresponding to xi.

16.12 Sinusoidal baseline fit

If the baseline has components of sinusoidal character there is also a second option, pro-
vided the method jacobianAddSinefit. The baseline is in this method modelled as [Kuntz
et al., 1997]

y = y′ +
n∑

i=1

ai sin

(
2π(ν − ν1)

li

)
+ bi cos

(
2π(ν − ν1)

li

)
(16.56)

where ai and bi are the coefficients to be retrieved, ν is frequency, νi is a reference frequency
and li is period length. The reference frequency (νi) is in practice taken as the first frequency
of the spectrometer.

The period lengths (li) are user input. For each given period length, the corresponding
sine and cosine terms are included in the Jacobian. As for the polynomial fit, there exist
options to set the baseline to be common between different polarizations, viewing directions
or measurement blocks. Equation 16.55 is also applicable for sinusoidal baseline fits.

An alternative way to express the expression above is

y = y′ +

n∑
i=1

Ai sin

(
2π(ν − ν1)

li
+ ϕi

)
(16.57)

where

Ai =
√
a2i + b2i (16.58)

and

tanϕi =
ai
bi
. (16.59)

Equation 16.56 is used to define the weighting functions as this gives a linear retrieval
problem, in contrast to if Equation 16.57 would be used, that would require an iterative
process to determine Ai and ϕi.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.jacobianAddPolyfit.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.jacobianAddSinefit.html

Chapter 17

Batch calculations

Quite often one wants to repeat a large number of calculations with only a few variables
changed. Examples of such cases are to perform 1D calculations for a number of atmo-
spheric states taken from some atmospheric model, generate a set of spectra to create a
training database for regression based inversions or perform a numeric inversion error anal-
ysis. For such calculations it is inefficient to perform the calculations by calling ARTS
repeatedly. For example, as data must be imported for each call even if the data are identi-
cal between the cases. Cases such as the ones described above are here denoted commonly
as batch calculations.

17.1 Batch calculations of measurement vector y

Batch calculations of measurement vectors are done by the WSM ybatchCalc, which takes
three inputs, the indices ybatch start and ybatch n, and the agenda ybatch calc agenda.

The method ybatchCalc will do ybatch n calculations, starting at index ybatch start. It
will run the agenda ybatch calc agenda for each case individually. The agenda gets an input
ybatch index, which it should use to extract the right input data from one or more arrays or
matrices of input. Execution of ybatch calc agenda must result in a new spectrum vector,
y, most likely by a call of yCalc.

The WSV ybatch start is set to a default of 0, so you do not have to set this variable
unless you want to start somewhere in the middle of your batch input data.

The next section gives some examples of what could be put inside the
ybatch calc agenda.

17.2 Control file examples

The WSV Extract can be used to extract an element from an Array, a row from a Matrix,
a Matrix from a Tensor3, and so on. The selection is always done on the first dimension.

History
090330 Description of ybatch start added by Stefan Buehler.
070726 Copy-edited by Stefan Buehler.
070618 Updated by Oliver Lemke.
040916 Created by Patrick Eriksson.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ybatchCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ybatch_start.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ybatch_n.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ybatch_calc_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ybatchCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ybatch_n.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ybatch_start.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ybatch_calc_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ybatch_index.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ybatch_calc_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.y.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.yCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ybatch_start.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ybatch_calc_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.Extract.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.Matrix.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.Matrix.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.Tensor3.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ybatch_start.html

114 BATCH CALCULATIONS

So, for a Tensor3 as input, it copies the page with the given index from the input Tensor3
variable to the output Matrix.

The idea here is to store the batch cases in tensors or arrays with one dimension extra
compared to corresponding workspace variables. For example, a set of t field (which is of
type Tensor3) is stored as Tensor4.

If the dimension is the same for all batch cases, tensors are appropriate. If the dimen-
sions vary (for example you have a different number of vertical levels for each case), then
arrays are appropriate.

In the following 1D example, five atmospheric scenarios have been put into the three
first loaded files, and a random vector of zenith angles is found in the last file. The batch
calculations are then performed as:

ReadXML(tensor4_1, "batch_t_field.xml")
ReadXML(tensor4_2, "batch_z_field.xml")
ReadXML(tensor5_1, "batch_vmr_field.xml")
ReadXML(tensor3_1, "batch_za.xml")
IndexSet(ybatch_n, 5)

AgendaSet (ybatch_calc_agenda){
Print(ybatch_index, 0)
Extract(t_field, tensor4_1, ybatch_index)
Extract(z_field, tensor4_2, ybatch_index)
Extract(vmr_field, tensor5_1, ybatch_index)
Extract(sensor_los, tensor3_1, ybatch_index)

yCalc
}

ybatchCalc

WriteXML("ascii", ybatch)

If you then want to repeat the calculations, for example with another propagation path
step length (e.g. 25 km), it is sufficient to add the lines:

AgendaSet(ppath_step_agenda){
ppath_stepGeometric(ppath_step, atmosphere_dim, lat_grid,

lon_grid,z_field, refellipsoid, z_surface,
25e3)

}

ybatchCalc

WriteXML("ascii", ybatch, "ybatch_run2.xml")

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.Tensor3.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.Tensor3.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.Matrix.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.t_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.Tensor3.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.Tensor4.html

Part IV

Radiative transfer: dedicated
scattering methods

Chapter 18

Scattering calculations – The DOIT
module

The Discrete Ordinate ITerative (DOIT) method is one of the scattering algorithms in ARTS.
The DOIT method is unique because a discrete ordinate iterative method is used to solve the
scattering problem in a spherical atmosphere. Although the DOIT module is implemented
for 1D and 3D atmospheres, it is strongly recommended to use it only for 1D, because
the Monte Carlo module (Chapter 19) is much more appropriate for 3D calulations. More
appropriate in the sense that it is much more efficient. A literature review about scatter-
ing models for the microwave region, which is presented in Emde and Sreerekha [2004],
shows that former implementations of discrete ordinate schemes are only applicable for
(1D-)plane-parallel or 3D-cartesian atmospheres. All of these algorithms can not be used
for the simulation of limb radiances. A description of the DOIT method is given in ARTS
Theory, Chapter 9 and has been published in Emde et al. [2004] and in Emde [2005].

The workspace methods required for DOIT calculations are implemented in the files
m scatrte.cc, m cloudbox.cc and m optproperties.cc. Here we introduce
the steps to be performed in a DOIT calculation along with the relevant workspace methods
by means of a controlfile example.

18.1 The 1D control file example

This example demonstrates how to set up a 1D DOIT calculation. A full run-
ning controlfile example for a DOIT calculation can be found in the ARTS pack-
age in the controlfiles/artscomponents/doit directory. The file is called
TestDOIT.arts. For detailed descriptions of the workspace methods and variables
please refer also to the online documentation (start doc-server on your own computer with
arts -s or use https://www.radiativetransfer.org/stubs/).

History
020601 Created and written by Claudia Emde
050223 Rewritten by Claudia Emde, mostly taken from Chapter 4 of Claudia’s

PhD thesis
050929 Included technical part, example contol file
141009 Moved general model parts to theory guide

https://www.radiativetransfer.org/stubs/

118 SCATTERING CALCULATIONS – THE DOIT MODULE

18.2 DOIT frame

The first step for a DOIT calculation is the initialization of variables required for a DOIT
calculation using DoitInit:

DoitInit

As the next step we have to calculate the incoming field on the boundary of the cloudbox.
This is done using the workspace method DoitGetIncoming:

DoitGetIncoming

The method cloudbox fieldSetClearsky interpolates the incoming radiation field on all
points inside the cloudbox to obtain the initial field (cloudbox field) for the DOIT calcu-
lation. As a test one can alternatively start with a constant radiation field using the method
cloudbox fieldSetConst.

cloudbox_fieldSetClearsky

The grid discretization plays a very significant role in discrete ordinate methods. In
spherical geometry the zenith angular grid is of particular importance (cf. ARTS Theory,
Section 9.6.1). The angular discretization is defined in the workspace method DOAngu-
larGridsSet:

DOAngularGridsSet(doit_za_grid_size,
scat_aa_grid, scat_za_grid,
19, 10, "doit_za_grid_opt.xml")

For down-looking geometries it is sufficient to define the generic inputs:
N za grid Number of grid points in zenith angle grid, recommended value: 19
N aa grid Number of grid points in azimuth angle grid, recommended value: 37

From these numbers equally spaced grids are created and stored in the work space variables
za grid and aa grid.

For limb simulations it is important to use an optimized zenith angle grid with a very
fine resolution about 90◦ for the RT calculations. Such a grid can be generated using the
workspace method doit za grid optCalc. Please refer to the online documentation of this
method. The filename of the optimized zenith angle grid can be given as a generic input. If
a filename is given, the equidistant grid is taken for the calculation of the scattering integrals
and the optimized grid is taken for the radiative transfer part. Otherwise, if no filename is
specified (za grid opt file = "") the equidistant grid is taken for the calculation of
the scattering integrals and for the radiative transfer calculations. This option makes sense
for down-looking cases to speed up the calculation.

The main agenda for a DOIT calculation is doit mono agenda. The agenda is executed
by the workspace method DoitCalc:

DoitCalc

18.2.1 The DOIT main agenda

Although there are alternatives, the most elegant usage of DOIT involves specifying it
within the agenda doit mono agenda, which calculates the radiation field inside the cloud-
box. The agenda requires the incoming clearsky field on the cloudbox boundary as an input
and gives as output the scattered field on the cloudbox boundary if the sensor is placed out-
side the cloudbox or the full scattered field in the cloudbox if the sensor is placed inside the
cloudbox.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.DoitInit.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.DoitGetIncoming.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.cloudbox_fieldSetClearsky.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.cloudbox_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.cloudbox_fieldSetConst.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.DOAngularGridsSet.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.DOAngularGridsSet.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.za_grid.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.aa_grid.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.doit_za_grid_optCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.doit_mono_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.DoitCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.doit_mono_agenda.html

18.2 DOIT FRAME 119

AgendaSet(doit_mono_agenda){
Prepare scattering data for DOIT calculation (Optimized method):

DoitScatteringDataPrepare
Alternative method (needs less memory):
scat_data_monoCalc
Perform iterations: 1. scattering integral. 2. RT calculations with
fixed scattering integral field, 3. convergence test

cloudbox_field_monoIterate
}

The first method DoitScatteringDataPrepare prepares the single scattering data for use in
a DOIT scattering calculation. Namely, it interpolates the data on the requested frequency
and performs the transformation from the scattering frame into the laboratory frame. Alter-
natively the method scat data monoCalc can be used. In this case only the frequency inter-
polation is done and the transformations are done later. The advantage is that this method
needs less memory. For 1D calculation it is recommended to use DoitScatteringDataPrepare
because it is much more efficient.

The iteration is performed in the method cloudbox field monoIterate, which includes

• the calculation of the scattering integral field doit scat field (requires agendas
pha mat spt agenda and doit scat field agenda),

• the radiative transfer calculations in the cloudbox with fixed scattering integral (re-
quires agendas spt calc agenda, ppath step agenda, and doit rte agenda), and

• the convergence test (requires agenda doit conv test agenda).

For details on the agendas involved see Section 18.2.2.

18.2.2 Agendas used in cloudbox field monoIterate

There are several methods which can be used in cloudbox field monoIterate, for instance
for the calculation of the scattering integral. The methods are selected in the control-file by
defining several agendas.

Calculation of the scattering integral:

To calculate the scattering integral (ARTS Theory, Equation 9.7) the phase matrix (pha mat)
is required. How the phase matrix is calculated is defined in the agenda pha mat spt agenda:

Calculation of the phase matrix
AgendaSet(pha_mat_spt_agenda){
Optimized option:

pha_mat_sptFromDataDOITOpt
Alternative option:
pha_mat_sptFromMonoData
}

If in doit mono agenda the optimized method DoitScatteringDataPrepare is used we have
to use here the corresponding method pha mat sptFromDataDOITOpt. Otherwise we have
to use pha mat sptFromMonoData.

To do the integration itself, we have to define doit scat field agenda:

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.DoitScatteringDataPrepare.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.scat_data_monoCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.DoitScatteringDataPrepare.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.cloudbox_field_monoIterate.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.doit_scat_field.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.pha_mat_spt_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.doit_scat_field_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.spt_calc_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ppath_step_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.doit_rte_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.doit_conv_test_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.cloudbox_field_monoIterate.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.cloudbox_field_monoIterate.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.pha_mat.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.pha_mat_spt_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.doit_mono_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.DoitScatteringDataPrepare.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.pha_mat_sptFromDataDOITOpt.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.pha_mat_sptFromMonoData.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.doit_scat_field_agenda.html

120 SCATTERING CALCULATIONS – THE DOIT MODULE

AgendaSet(doit_scat_field_agenda){
doit_scat_fieldCalcLimb
Alternative:
doit_scat_fieldCalc

}

Here we have two options. One is doit scat fieldCalcLimb, which should be used for limb
simulations, for which we need a fine zenith angle grid resolution to represent the radi-
ation field. This method has to be used if a zenith angle grid file is given in DOAngu-
larGridsSet. The scattering integral can be calculated on a coarser grid resolution, hence in
doit scat fieldCalcLimb, the radiation field is interpolated on the equidistant angular grids
specified in DOAngularGridsSet by the generic inputs Nza and Naa. Alternatively, one can
use doit scat fieldCalc, where this interpolation is not performed. This function is efficient
for simulations in up- or down-looking geometry, where a fine zenith angle grid resolution
around 90◦is not needed.

Radiative transfer with fixed scattering integral term:

With a fixed scattering integral field the radiative transfer equation can be solved (ARTS
Theory, Equation 9.9). The workspace method to be used for this calculation is defined
in doit rte agenda. The most efficient and recommended workspace method is cloud-
box fieldUpdateSeq1D where the sequential update which is described in ARTS Theory,
Section 9.5 is applied. The workspace method cloudbox fieldUpdate1D does the same cal-
culation without sequential update and is therefore much less efficient because the num-
ber of iterations depends in this case on the number of pressure levels in the cloudbox.
Other options are to use a plane-parallel approximation implemented in the workspace
method cloudbox fieldUpdateSeq1DPP. This method is not much more efficient than cloud-
box fieldUpdateSeq1D, therefore it is usually better to use cloudbox fieldUpdateSeq1D
since it is more accurate.

AgendaSet(doit_rte_agenda){
cloudbox_fieldUpdateSeq1D

Alternatives:
cloudbox_fieldUpdateSeq1DPP
i_fieldUpdate1D
}

The optical properties of the particles, i.e., extinction matrix and absorption vec-
tor (for all scattering elements) are required for solving the radiative transfer equa-
tion. How they are calculated is specified in spt calc agenda. The workspace method
opt prop sptFromMonoData requires that the raw data is already interpolated on the fre-
quency of the monochromatic calculation. This requirement is fulfilled when DoitScatter-
ingDataPrepare or scat data monoCalc is executed before cloudbox field monoIterate (see
Section 18.2.1).

AgendaSet(spt_calc_agenda){
opt_prop_sptFromMonoData

}

The work space method opt prop bulkCalc is then used internally to derived the bulk
absorption vector abs vec and extinction matrix ext mat from the workspace variable
ext mat spt. The gas absorption is added internally.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.doit_scat_fieldCalcLimb.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.DOAngularGridsSet.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.DOAngularGridsSet.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.doit_scat_fieldCalcLimb.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.DOAngularGridsSet.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.doit_scat_fieldCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.doit_rte_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.cloudbox_fieldUpdateSeq1D.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.cloudbox_fieldUpdateSeq1D.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.cloudbox_fieldUpdate1D.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.cloudbox_fieldUpdateSeq1DPP.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.cloudbox_fieldUpdateSeq1D.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.cloudbox_fieldUpdateSeq1D.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.cloudbox_fieldUpdateSeq1D.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.spt_calc_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.opt_prop_sptFromMonoData.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.DoitScatteringDataPrepare.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.DoitScatteringDataPrepare.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.scat_data_monoCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.cloudbox_field_monoIterate.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.opt_prop_bulkCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.abs_vec.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ext_mat.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.ext_mat_spt.html

18.3 3D DOIT CALCULATIONS 121

Convergence test:

After the radiative transfer calculations with a fixed scattering integral field are com-
plete the newly obtained radiation field is compared to the old radiation field by a con-
vergence test. The functions and parameters for the convergence test are defined in
the agenda doit conv test agenda. There are several options. The workspace methods
doit conv flagAbsBT and doit conv flagAbs compare the absolute differences of the ra-
diation field element-wise as described in ARTS Theory, Equation 9.19. The convergence
limits are specified by the generic input epsilon which specifies the convergence limit.
A limit must be given for each Stokes component. In doit conv flagAbsBT the limits must
be specified in Rayleigh Jeans brightness temperatures whereas in doit conv flagAbs they
must be defined in the basic radiance unit ([W/(m2Hz sr)]. Another option is to perform a
least square convergence test using the workspace method doit conv flagLsq. Test calcula-
tions have shown that this test is not safe, therefore the least square convergence test should
only be used for test purposes.

AgendaSet(doit_conv_test_agenda) {
doit_conv_flagAbsBT(doit_conv_flag, doit_iteration_counter,

cloudbox_field, cloudbox_field_old,
f_grid, f_index,
[0.1, 0.01, 0.01, 0.01])

Alternative: Give limits in radiances
doit_conv_flagAbs(doit_conv_flag, doit_iteration_counter,
cloudbox_field, cloudbox_field_old,
[0.1e-15, 0.1e-18, 0.1e-18, 0.1e-18])
#
If you want to look at several iteration fields, for example
to investigate the convergence behavior, you can use
the following workspace method:
DoitWriteIterationFields(doit_iteration_counter, cloudbox_field,
[2, 4])

}

18.2.3 Propagation of the DOIT result towards the sensor

In order to propagate the result of the scattering calculation towards the sensor, the fields
needs to be interpolated on the direction of the sensor’s line of sight. This is done
in the workspace method iyInterpCloudboxField, which has to be put into the agenda
iy cloudbox agenda:

AgendaSet(iy_cloudbox_agenda){
iyInterpCloudboxField

}

18.3 3D DOIT calculations

The DOIT method is implemented for 1D and 3D spherical atmospheres, but it is strongly
recommended to use it only for 1D calculations, because there are several numerical dif-
ficulties related to the grid discretizations. It is difficult to find appropriate discretizations
to get sufficiently accurate results in reasonable computation time. Therefore only experi-
enced ARTS users should use DOIT for 3D calculations only for smaller cloud scenarios.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.doit_conv_test_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.doit_conv_flagAbsBT.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.doit_conv_flagAbs.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.doit_conv_flagAbsBT.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.doit_conv_flagAbs.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.doit_conv_flagLsq.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iyInterpCloudboxField.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_cloudbox_agenda.html

122 SCATTERING CALCULATIONS – THE DOIT MODULE

Please refer to the online documentation for the workspace method for 3D scattering calcu-
lations (cloudbox fieldUpdateSeq3D). All other workspace methods adapt automatically to
the atmospheric dimensionality.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.cloudbox_fieldUpdateSeq3D.html

Chapter 19

Scattering calculations – The Monte
Carlo scattering module

(This is just a stub for this chapter. So far just rescuing some text from an old (and now
deleted) Wiki page.)

The ARTS Monte Carlo scattering module offers an efficient method for single viewing
direction radiative transfer calculations in arbitrarily complex 3D cloudy cases. When sim-
ulating the observation of detailed 3D cloudy scenarios, reversed Monte Carlo algorithms
have several advantages over other methods, such as discrete ordinate and Forward Monte
Carlo methods. These features include:

• All computational effort is dedicated to calculating the Stokes vector at the location
of interest and in the direction of interest. This is particularly relevant for space-
borne remote sensing, where we are only interested in a narrow field of view. This is
contrast to DOM methods where the whole radiation field is calculated.

• CPU and memory cost scales more slowly than other methods with grid size. so
that large or detailed 3D scenarios are not a problem. This stems from the suitability
of Monte Carlo Integration (MCI) for evaluating integrals over highly dimensioned
spaces. As well as CPU cost increasing dramatically in 3D DOM applications with
the number of grid-points in each dimension, the memory requirements becomes pro-
hibitive at moderate grid sizes due to the requirement that the radiance in every direc-
tion must be stored at each grid point.

• Optically thick media are no problem. A feature of reversed Monte Carlo algorithms
is that only parts of the atmosphere that actually contribute to the observed radiance
are considered in the computation. So where the medium is optically thick due to
absorption or scattering, only the parts of the atmosphere closest to the sensor are
visited by the algorithm. This contrasts with DOM methods, where, as mentioned
above, the whole radiation field is computed. Also, a requirement of DOM methods
is that the optical thickness between adjacent grid points must be ¡= 1, which increases
the grid-size, and hence cost, of the method.

History
140924 Started by Patrick Eriksson

124 SCATTERING CALCULATIONS – THE MONTE CARLO SCATTERING MODULE

For the theory behind the ARTS MC module see Section 10 of ARTS Theory.

Chapter 20

Radar measurements

ARTS provides some support for modelling measurements of backscattering inside the at-
mosphere. These radar (or lidar?) measurements deviate for the transmission observations
discussed in the previous chapter, as in this case the transmitter and receiver are placed at
the same position. Here backscattering is recorded, while in the transmission case the atten-
uation through the atmosphere is probed. This has the consequence that the measurement
data not only span the frequency and a polarisation dimensions, but also has a time (or dis-
tance) dimension. That is, the backscattering is basically reported as a function of distance
from the sensor, for one or several frequencies frequencies and combinations of transmitted
and received polarisations. Accordingly, these data differ in nature from the other types of
measurements, and the standard main function (yCalc) is not applicable.

20.1 Single scattering

The fastest method for this observation approach is iyRadarSingleScat. As the name of
the method indicates a very important restriction applies, only single scattering is treated
(but the attenuation due to particles is also considered). This is frequently an acceptable
simplification for precipitation and cloud radars observations, and such observations should
be the main applications of this workspace method. The basic measurement approach is the
same for lidars, but the assumption of single scattering is much more restrictive for such
instruments.

20.1.1 Theory

The transmitted pulses are treated to be monochromatic pencil beams. Effects due to an-
tenna patterns and the geometrical distance between the instrument and the scattering par-
ticles are assumed to be treated as a separate “calibration”, and the “forward model” treats
only the actual backscattering and atmospheric extinction.

For the conditions given above, the backscattered radiation, sb, can be written as

sb = ThZ
bTast. (20.1)

History
170609 Started updates following recent changes.
121108 Written by Patrick Eriksson.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.yCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iyRadarSingleScat.html

126 RADAR MEASUREMENTS

The terms in this equation are:

st Stokes vector describing the transmitted pulse.

Ta A matrix describing the transmission from the receiver to the scattering point (the
away direction).

Zb The bulk scattering (or phase) matrix value for the backward direction.

Th As Ta, but for the reversed direction (the home direction). Note that for vector radia-
tive transfer, in general Ta ̸= Th.

The (attenuated) “backscatter coefficient” recorded by the receiver is

β′ = p · sb (20.2)

where p is the (normalised) vector describing the polarisation response of the receiver and
· signifies the dot product.

The corresponding unattenuated backscattering coefficient is

β = p · [Z(Ω = 0)st] (20.3)

20.1.2 Units

The unit of β (and β′) is 1/(m sr−1). For radar applications this is not the most common
choice, but is here preferred as it directly matches Z. It is also the standard definition in the
lidar community. The more common definition of radar reflectivity is simply 4πβ.

However, even more common is to report radar data in unit of equivalent reflectivity,
Ze. This quantity is defined as [e.g. Donovan and van Lammeren, 2001]

Ze =
4λr

π4|K|2
β (20.4)

where λr is wavelength of the radar and the “reference dielectric factor” is calculated using
the complex refractive index of ice or liquid water, n:

K =
n2 − 1

n2 + 2
. (20.5)

20.1.3 Practical usage

As for other measurements, the main radiative transfer calculations are performed inside
iy main agenda. When using iyRadarSingleScat, sb is returned for each point of the propa-
gation path, and for each frequency in f grid. The calculated data are packed into iy. Here
the difference to other measurement types emerge. For example, the second row holds sb
corresponding to the second point of the propagation path (not the second frequency). If
f grid contains several frequencies, the data for the second frequency are placed below (in
the row dimension) the data for the first frequency etc.

The polarisation of the transmitted pulses (sb) are taken from iy transmitter.
iy transmitter shall be a Stokes vector for each frequency in f grid, of unit intensity.

The unit of returned data is selected by iy unit. There are two options “1” and “Ze”. For
the first option no unit conversion is performed, while for the second option Equation 20.4

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_main_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iyRadarSingleScat.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.f_grid.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.f_grid.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_transmitter.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_transmitter.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.f_grid.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_unit.html

20.1 SINGLE SCATTERING 127

is applied on all Stokes elements of sb. In the later case, liquid water at a user specified
temperature is used as reference. That is, K is calculated for the refractive index of water
at the specified temperature.

Hence, the basic calculations are performed in standard manner, using iy main agenda.
However, the deviating data pattern in iy results in that an alternative to yCalc is needed and
it is yRadar. The method applies two instrument effects. Firstly, the polarisation response
of the receiver is incorporated (Eq. 20.2). Secondly, the data are averaged as a function of
“range”, following the range bins. These range bins can be specified either as geometrical
altitude or the two-way propagation time. The range binning is described further in the
built-in documentation. Further, the data are rearranged into a vector and returned as y.

A number of auxiliary data can be obtained by iyRadarSingleScat, this including β. For
a list of possible variables:

arts -d iyRadarSingleScat

A difference of yRadar, compared to yCalc, is that all auxiliary quantities provided by
iyRadarSingleScat are treated.

20.1.4 Jacobian calculations

For better clarity, Eq. 20.1 is expanded to make dependency on particle number densities
clear:

sb = Th

∑
i

(
ni < Zb

i >
)
Tast. (20.6)

where ni is the particle number density of scattering element i and < Zb
i > is the back-

scattering cross-section of individual particles.
For an element of the state vector, xp, that influences Zb (beside temperature, see below)

the main expression for the Jacobian is:

∂sb
∂xp

= Th
∂Zb

∂xp
Tast = Th

∑
i

(
∂ni
∂xp

< Zb
i >

)
Tast. (20.7)

If for example xp represents ice water content at an altitude, the expression above covers
the effect on Zb at the same altitude. There is no effect of xp on Zb at other altitudes, and
this part of the Jacobian becomes zero. The terms ∂ni/∂xp are taken from the workspace
variable dpnd field dx.

The back-scattering has a weak temperature dependency. Some particle size distribu-
tions have temperature as input, and Eq. 20.7 is then also valid for temperature. So far both
these aspects are ignored, and the temperature Jacobian is set to zero.

Changes in both absorption and scattering species can affect Ta and Th. The Jacobian
corresponding to this effect is:

∂sb
∂xp

=
∂Th

∂xp
ZbTast +ThZ

b∂Ta

∂xp
st ≈ 2

∂Th

∂xp
ZbTast. (20.8)

The last, approximate, expression is used, which assumes that the attenuation not induces
significant polarisation. For this condition Ta ≈ Th. The derivative ∂Th/∂xp is calculated
following Sec. 16.3

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy_main_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iy.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.yCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.yRadar.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.range_bins.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.y.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iyRadarSingleScat.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.yRadar.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.yCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.iyRadarSingleScat.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.dpnd_field_dx.html

128 RADAR MEASUREMENTS

20.2 Multiple scattering

Radar measurements involving multiple scattering can be simulated by using MCRadar. To
be written . . .

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.MCRadar.html

Part V

Retrieval calculations

Chapter 21

Optimal estimation method

ARTS provides functionality to perform retrievals of remote sensing observations using
the optimal estimation method (OEM). This section describes the basic usage of the OEM
implementation available inside ARTS and aims to complement the example controlfiles
distributed with the ARTS source code. For a more detailed presentation of the method
itself, the reader may refer to the book by Rodgers [2000].

21.1 Formulation

The optimal estimation method solves the retrieval problem of finding an atmospheric state
x⃗ ∈ Rn that best matches a given observation vector y⃗ ∈ Rm. This is done by fitting a
forward model F : x⃗ 7→ y⃗f to the observations y⃗ in a way consistent with a-priori-assumed
properties of the retrieval quantities within x⃗.

21.1.1 Fundamental assumptions

The OEM is based on a Bayesian formulation of the retrieval problem. The three funda-
mental assumptions of this formulation are:

1. That the a priori assumed properties of all quantities in x⃗ can be described by a mul-
tivariate Gaussian distribution with mean vector x⃗a and covariance matrix Sx.

2. That the forward model F is exact up to a zero-mean, Gaussian measurement error
with covariance matrix Se.

3. That the forward model is linear or at most moderately non-linear.

21.1.2 The retrieval as optimization problem

Under the assumptions listed above, the a posteriori distribution p(x⃗|y⃗) of the atmospheric
state x⃗ given the observations in y⃗ is Gaussian as well. The negative log-likelihood of the a
posteriori distribution is found to be

History
190903 Created and written by Simon Pfreundschuh

132 OPTIMAL ESTIMATION METHOD

L(x⃗) = 1
2

(
(x⃗− x⃗a)

TS−1
x (x⃗− x⃗a) + (y⃗ − F(x⃗))TS−1

e (y⃗ − F(x⃗))
)
. (21.1)

The most likely vector x⃗ given the observations y⃗, also referred to as the maximum
a posteriori estimator of x⃗, can then be found by minimizing L(x⃗). The ARTS OEM
implementation provides multiple methods to minimize this cost function using ARTS itself
as the forward model F.

21.2 Overview

The main OEM functionality within ARTS is implemented by the OEM workspace method.
A diagram of the data flow of the OEM WSM is given in Fig. 21.1.

The main input arguments to the WSM call are the workspace variables xa, covmat sx,
y and covmat se together with the agenda inversion iterate agenda. As their names im-
ply, the variables xa and covmat sx describe the a priori distribution given by mean vector
x⃗a (xa) and covariance matrix Sx (covmat sx). Similarly, the variables y and covmat se
represent the observation vector y⃗ and the covariance matrix Se (covmat se). Finally, the
jacobian quantities input variable contains a list of the quantities that should be retrieved
from the given observations.

In addition to the variables described above, OEM takes as additional input argument
the inversion iterate agenda agenda. The role of this agenda is to define the forward model
used by the OEM method. This agenda is executed repeatedly during the optimization
procedure to simulate the measurement vector and its Jacobian corresponding to the current
atmospheric state.

OEM

inversion_iterate_agenda

x, yf, jacobian, dxdy

xa
covmat_sx

jacobian_quantities
covmat_se

...

y

Figure 21.1: Data flow related to the OEM WSM.

21.3 Usage

There are three main steps involved in running the OEM within ARTS:

1. Setup: Defining the measurement space and forward model

2. Running the OEM WSM

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.OEM.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.xa.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.covmat_sx.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.y.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.covmat_se.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.inversion_iterate_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.xa.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.covmat_sx.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.xa.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.covmat_sx.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.y.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.covmat_se.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.covmat_se.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.jacobian_quantities.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.inversion_iterate_agenda.html

21.3 USAGE 133

3. Calculating relevant diagnostic quantities

Arguably the most complex of these is the setting up of the input variables. Running
the OEM requires only a single call to the OEM WSM. Also the calculation of diagnostic
quantities can then be performed with a small number of WSM calls.

21.3.1 Setup

Setting up an OEM calculation in ARTS involves three main steps:

1. Defining the state space and a priori distribution (jacobian quantities, xa, covmat sx)

2. Defining the observations and measurement errors (y, covmat se)

3. Defining the forward model (inversion iterate agenda)

Defining the state space

In the OEM formulation, the state vector x⃗ holds the values of all variables that are re-
trieved. ARTS therefore needs to know which variables from the workspace should be
included in x⃗. This information is contained in the jacobian quantities WSV. Each entry in
jacobian quantities represents a potentially multi-dimensional retrieval variable that is re-
trieved using the OEM. The state vector x⃗ is formed from these variables by concatenation
of the flattened values of each retrieval variable.

The setup of jacobian quantities follows the principle of the setup for regular Jaco-
bian calculations. Before retrieval quantities can be added to jacobian quantities, the re-
trievalDefInit WSM must be called. This ensures that jacobian quantities is empty and
that required internal variables are properly initialized. After the call to retrievalDefInit re-
trieval quantities can be registered by calling any of the available retrievalAdd... methods
(retrievalAddAbsSpecies, retrievalAddFreqShift, retrievalAddFreqStretch, retrievalDefInit,
retrievalAddCatalogParameter, retrievalAddMagField, retrievalAddPointingZa, retrieval-
AddPolyfit, retrievalAddScatSpecies, retrievalAddSinefit, retrievalAddSpecialSpecies, re-
trievalAddSurfaceQuantity, retrievalAddTemperature, retrievalAddWind).

Also within this retrieval definition block, the a priori covariance matrix covmat sx must
be set. This is done using the covmat sxAddBlock WSM. More details on the handling of
covariance matrix and the special requirements on covmat sx can be found in the group
documentation for covariance matrices and the WVS documentation for covmat sx.

Finally, the retrieval definition is finalized by calling the retrievalDefClose WSM. This
method checks that the defined retrieval quantities are consistent with covmat sx.

An example of how to add ozone as a retrieval quantity for a simple ozone retrieval is
given below:

retrievalDefInit

Add retrieval species
retrievalAddAbsSpecies(species = "O3", unit = "vmr")

Create diagonal block and add to covariance matrix
nelemGet(nelem, p_ret_grid)
VectorSetConstant(vars, nelem, 0.5)
DiagonalMatrix(sparse_block, vars)

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.jacobian_quantities.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.xa.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.covmat_sx.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.y.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.covmat_se.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.inversion_iterate_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.jacobian_quantities.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.jacobian_quantities.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.jacobian_quantities.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.jacobian_quantities.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.retrievalDefInit.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.retrievalDefInit.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.jacobian_quantities.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.retrievalDefInit.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.retrievalAddAbsSpecies.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.retrievalAddFreqShift.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.retrievalAddFreqStretch.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.retrievalDefInit.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.retrievalAddCatalogParameter.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.retrievalAddMagField.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.retrievalAddPointingZa.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.retrievalAddPolyfit.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.retrievalAddPolyfit.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.retrievalAddScatSpecies.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.retrievalAddSinefit.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.retrievalAddSpecialSpecies.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.retrievalAddSurfaceQuantity.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.retrievalAddSurfaceQuantity.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.retrievalAddTemperature.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.retrievalAddWind.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.covmat_sx.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.covmat_sxAddBlock.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.covmat_sx.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.covmat_sx.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.retrievalDefClose.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.covmat_sx.html

134 OPTIMAL ESTIMATION METHOD

covmat_sxAddBlock(block = sparse_block)

retrievalDefClose

Instead of retrieving a quantity directly, it is not uncommon to instead perform the re-
trieval in a transformed state space. ARTS provides support for arbitrary affine and linear
transforms, such as for example retrieving principal components, as well as functional trans-
forms, such as retrieving the logarithm of a quantity. More information on the usage of this
functionality can be found in the WSM documentation of the jacobianSetAffineTransfor-
mation and jacobianSetFuncTransformation WSMs.

An important point for the user to keep in mind is that for the OEM to work the units of
the vectors x and xa and the covariance matrix covmat sx must be the same. To be able to
keep track of how the different retrieval variables are mapped to the x vector the user should
refer to the documentation of the available retrievalAdd... methods.

Defining observations and measurement error

The observations to fit should be copied into the y workspace variable and the observation
error covariance Se into covmat se. The most important point to keep in mind here is that
the dimensions of y and covmat se must match.

Inversion iteration agenda

The inversion iterate agenda constitutes the forward model used by the OEM WSM. This
agenda is executed every time Jacobians and observations need to be computed from the
forward model during the OEM iterations.

Within inversion iterate agenda the following steps must be performed:

1. Transform values in x to the corresponding ARTS WSVs using one of the x2Arts...
WSMs.

2. Perform the radiative transfer simulation (for example using yCalc)

3. Store resulting y vector in yf

4. If any transformation are applied or one of the retrieval quantities is retrieved in rel-
ative units, call jacobianAdjustAndTransform for the computed Jacobian to be trans-
formed accordingly

As an example, the definition of the inversion iterate agenda for the ozone retrieval is
given below.

AgendaSet(inversion_iterate_agenda){

Ignore(inversion_iteration_counter)

Map x to ARTS' variables
x2artsAtmAndSurf
x2artsSensor # No need to call this WSM if no sensor variables retrieved

Calculate yf and Jacobian matching x.
yCalc(y=yf)

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.jacobianSetAffineTransformation.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.jacobianSetAffineTransformation.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.jacobianSetFuncTransformation.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.x.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.xa.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.covmat_sx.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.x.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.y.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.covmat_se.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.y.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.covmat_se.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.inversion_iterate_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.inversion_iterate_agenda.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.x.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.yf.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.jacobianAdjustAndTransform.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.inversion_iterate_agenda.html

21.3 USAGE 135

#Not needed in this simple case.
#jacobianAdjustAndTransform

}

21.3.2 Running OEM

If the ARTS workspace has been setup properly, running an OEM calculation simply re-
quires calling the OEM WSM.

The ARTS OEM calculation can be run in linear or non-linear mode. In linear mode,
only a single optimization step is performed, because in this case the Gauss-Newton itera-
tion yields an exact solution already after the first step. If the forward model is non-linear,
however, multiple minimization steps are performed. The most important available config-
uration options relating to the optimization procedure are described below.

Gauss-Newton optimization

In the standard formulation, the Gauss-Newton iteration for the OEM problem takes the
following form:

x⃗i+1 = x⃗i − (KT
i S

−1
e Ki + S−1

x)︸ ︷︷ ︸
H

−1
(KT

i S
−1
e (F(x⃗i)− y⃗) + S−1

x (x⃗i − x⃗a)) (21.2)

Here, x⃗i is the state vector of the current iteration step and Ki the corresponding Jacobian of
the forward model F. Each optimization step involves solving a linear system of equations
of size n× n, where n is the dimensionality of the state space. The linear system is defined
by the matrix H, which approximates the Hessian of the cost function L. The ARTS OEM
method provides two methods to solve these linear systems: By default, a QR solver is
used which requires to explicitly compute H. If n is very large, however, calculating H
can become computationally very expensive. In this cases it may be advantageous to use
a conjugate gradient (CG) solver, which does not require explicitly computing H. More
information on how to use the CG solver is given in Sec.21.3.2 below.

Additionally, two further forms of the GN iteration can be derived, the so called m- and
n-form:

x⃗i+1 = x⃗a −
(
KT

i S
−1
e Ki + S−1

x

)−1
KT

i S
−1
e (F(x⃗)− y⃗ −Ki(x⃗− x⃗a)) (21.3)

= x⃗a + SxK
T
i

(
KiSxK

T
i + Se)

)−1
(F(x⃗i)− y⃗ −Ki(x⃗i − x⃗a)) (21.4)

The names of these two forms derive from the size of the linear system of equations that
must be solved in each iteration step, which is n × n for the first form and m ×m for the
second form. Moreover, the forms differ in whether or not they involve the covariance only
as its inverse or only directly. In ARTS both the standard and m-form are implemented.
More details on the available OEM configurations are provided in the documetation of the
OEM WSM.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.OEM.html

136 OPTIMAL ESTIMATION METHOD

Levenberg-Marquardt

In the Levenberg-Marquardt method, an additional damping term is added to the matrix H
in Eq. (21.2):

H = KTS−1
e K+ S−1

x + γD (21.5)

The additional term γD may be viewed as an adaptive regularization that can help to
avoid convergence problems if the forward model is non-linear. The implementation inside
ARTS uses the diagonal of the inverse of the covariance matrix S−1

x .
For high values of γ, the optimization method tends to perform gradient-descent-like

steps that ensure that the cost L is reduced in each step. If γ is zero, the iteration step is
identical to that of the GN method.

The following logic determines how the value of γ is adapted during the iteration pro-
cess: When the reduction in L from an iteration step matches that expected from a quadratic
fit to the loss function, the value of γ is decreased. If that is not the case but L(x⃗i+1) is still
lower than L(x⃗i), x⃗i+1 is accepted as next step but γ is kept constant. If, contrarily, L(x⃗i+1)
is higher than L(x⃗i), γ is increased and x⃗i+1 recomputed with the new γ. γ is increased
up to a user-defined threshold. If no step is found that leads to a reduction of L until this
threshold is reached, the OEM iteration is aborted.

Conjugate gradient solver

As mentioned above, the ARTS OEM implementation also allows using a conjugate gra-
dient (CG) solver to solve the linear systems occurring in each iteration step of the OEM.
Using a CG solver is advantageous for retrieval problems with high-dimensional state and
measurement spaces. The CG solver can be used for any of the optimization methods de-
scribed above and is enable simply by appending the cg suffix to the method GIN of the
OEM WSM.

Convergence

In the non-linear case the optimization iterations are continued until a convergence criterion
is met. This implementation uses the approximation of the χ2 value from Eq. (5.28) in
Rodgers [2000], which is described in Eq. (5.31) on the same page:

χ2 ≈ (x⃗i+1 − x⃗i)
T (KT

i S
−1
e (y⃗ − F(x⃗i))− S−1

x (x⃗− x⃗a) (21.6)

.

21.3.3 Diagnostic quantities

One of the advantages of the OEM is that it provides several diagnostic quantities that allow
a thorough characterization of the retrieval. After a successful iteration the OEM returns
the Jacobian in jacobian as well as the gain matrix

G = (KTSeK+ S−1
a)−1KTS−1

e (21.7)

in dxdy. A successful OEM calculation is a precondition for the calculation of any of the
diagnostic quantities described below.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.jacobian.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.dxdy.html

21.3 USAGE 137

Averaging kernel matrix

The averaging kernel matrix is defined as

A = GK. (21.8)

and provides information on the contribution of the measurement and a priori information
on the retrieved state. In ARTS, the averaging kernel matrix is computed using the avkCalc
WSM.

Smoothing error

The covariance matrix of the smoothing error, i.e. the contribution to the overall error
caused by the finite resolution of the observation system is given by

Ss = (A− I)Sa(A− I) (21.9)

In ARTS, the smoothing error can be computed using the covmat ssCalc workspace method.

Retrieval noise

The second component that contributes to the overall retrieval error is the error caused by
random errors in the measurement y⃗. The covariance of this retrieval noise is given by

So = GSeG
T . (21.10)

In ARTS, the retrieval error covariance matrix can be computed using the covmat soCalc
workspace method. For this, the user should keep in mind that for So to provide a realistic
description of the error caused by measurement errors, Se must take into account all for-
ward model errors that cause deviations between the simulated and true observations. The
covariance of the total retrieval error can be obtained by adding the covariance matrices of
the smoothing error and the retrieval noise covariance matrix.

https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.avkCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.covmat_ssCalc.html
https://atmtools.github.io/arts-docs-2.6/stubs/pyarts.workspace.Workspace.covmat_soCalc.html

138 OPTIMAL ESTIMATION METHOD

Part VI

Bibliography and Appendices

Bibliography

Brančı́k, L., Techniques of matrix exponential function derivative for electrical engineering
simulations, in Proceedings of IEEE International Conference on Industrial Technology,
pp. 2608–2613, Mumbai (India): Indian Institute of Technology Bombay, 2006.

Buehler, S. A., P. Eriksson, T. Kuhn, A. von Engeln, and C. Verdes, ARTS, the Atmospheric
Radiative Transfer Simulator, Journal of Quantitative Spectroscopy and Radiative Trans-
fer, 91, 65–93, 2005.

Buehler, S. A., A. von Engeln, E. Brocard, V. O. John, T. Kuhn, and P. Eriksson, Recent
developments in the line-by-line modeling of outgoing longwave radiation, Journal of
Quantitative Spectroscopy and Radiative Transfer, 98, 446–457, 2006.

Buehler, S. A., V. O. John, A. Kottayil, M. Milz, and P. Eriksson, Efficient radiative transfer
simulations for a broadband infrared radiometer - Combining a weighted mean of repre-
sentative frequencies approach with frequency selection by simulated annealing, Journal
of Quantitative Spectroscopy and Radiative Transfer, 111, 602–615, 2010.

Buehler, S. A., P. Eriksson, and O. Lemke, Absorption lookup tables in the radiative transfer
model arts, Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 1559–
1567, 2011.

Davis, C., C. Emde, and R. Harwood, A 3D polarized reversed monte carlo radiative trans-
fer model for mm and sub-mm passive remote sensing in cloudy atmospheres, IEEE
Transactions on Geoscience and Remote Sensing, 43, 1096–1101, 2005.

Donovan, D. P., and A. C. A. P. van Lammeren, Cloud effective particle size and water
content profile retrievals using combined lidar and radar observations 1. Theory and ex-
amples, Journal of Geophysical Research, 106, 27425–27448, 2001.

Emde, C., A polarized discrete ordinate scatterig model for radiative transfer simulations in
spherical atmospheres with thermal source, Ph.D. thesis, University of Bremen, 2005.

Emde, C., and T. R. Sreerekha, Development of a RT model for frequencies between
200 and 1000 GHz, WP1.2 Model Review, Tech. rep., ESTEC Contract No AO/1-
4320/03/NL/FF, 2004.

Emde, C., S. A. Buehler, C. Davis, P. Eriksson, T. R. Sreerekha, and C. Teichmann, A
polarized discrete ordinate scattering model for simulations of limb and nadir longwave
measurements in 1D/3D spherical atmospheres, Journal of Geophysical Research, 109,
2004.

142 BIBLIOGRAPHY

Eriksson, P., Analysis and comparison of two linear regularization methods for passive
atmospheric observations, Journal of Geophysical Research, 105(D14), 18157–18167,
2000.

Eriksson, P., F. Merino, D. Murtagh, P. Baron, P. Ricaud, and J. de La Noë, Studies for the
Odin sub-millimetre radiometer: 1. Radiative transfer and instrument simulation, Cana-
dian Journal of Physics, 80, 321–340, 2002.

Eriksson, P., M. Ekström, S. Bühler, and C. Melzheimer, Efficient forward modelling by
matrix representation of sensor responses, International Journal of Remote Sensing, 27,
1793–1808, 2006.

Eriksson, P., S. A. Buehler, C. P. Davis, C. Emde, and O. Lemke, ARTS, the atmospheric ra-
diative transfer simulator, version 2, Journal of Quantitative Spectroscopy and Radiative
Transfer, 112, 1551–1558, 2011.

Goldstein, D., Polarized light, chap. The Stokes parameters and Mueller matrices for optical
activity and Faraday rotation, Marcel Dekker, Inc., USA, 2003.

Gordon, I. E., et al., The HITRAN2016 molecular spectroscopic database, Journal of Quan-
titative Spectroscopy and Radiative Transfer, 203, 3–69, 2017.

John, V. O., S. A. Buehler, A. von Engeln, P. Eriksson, T. Kuhn, E. Brocard, and G. Koenig-
Langlo, Understanding the variability of clear-sky outgoing long-wave radiation based on
ship-based temperature and water vapor measurements, Quarterly Journal of the Royal
Meteorological Society, 132, 2675–2691, 2006.

Kraus, J. D., Radio astronomy, McGraw-Hill Book Company, 1966.

Kuntz, M., G. Hochschild, and R. Krupa, Retrieval of ozone mixing ratio profiles from
ground-based millimeter wave measurements disturbed by standing waves, Journal of
Geophysical Research, 102, 21965–21975, 1997.

Larsson, R., and B. Lankhaar, Zeeman effect splitting coefficients for ClO, OH and NO in
some earth atmosphere applications, Journal of Quantitative Spectroscopy and Radiative
Transfer, 224, 107050, 2020.

Larsson, R., S. A. Buehler, P. Eriksson, and J. Mendrok, A treatment of the Zeeman effect
using Stokes formalism and its implementation in the Atmospheric Radiative Transfer
Simulator (ARTS), Journal of Quantitative Spectroscopy and Radiative Transfer, 133,
445–453, 2014.

Larsson, R., B. Lankhaar, and P. Eriksson, Updated Zeeman effect splitting coefficients for
molecular oxygen in planetary applications, Journal of Quantitative Spectroscopy and
Radiative Transfer, 224, 432–438, 2019.

Mätzler, C., MATLAB functions for mie scattering and absorption, Tech. rep., 2002, iAP
Res. Rep. No. 02-08.

Meissner, T., and F. J. Wentz, Polarization rotation and the third stokes parameter: the
effects of spacecraft attitude and faraday rotation, IEEE Transactions on Geoscience and
Remote Sensing, 44, 506–515, 2006.

BIBLIOGRAPHY 143

Mishchenko, M. I., and L. D. Travis, Capabilities and limitations of a current fortran imple-
mentation of the t-matrix method for randomly oriented rotationally symmetric scatterers,
J. Quant. Spectrosc. Radiat. Transfer, 60, 309–324, 1998.

Mishchenko, M. I., L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of
Light by Small Particles, Cambridge University Press, 2002, ISBN 0-521-78252.

Newell, A. C., and R. C. Baird, Absolute determination of refractive indices of gases at 47.7
Gigahertz, J. Appl. Phys., 36, 1965.

Read, W. G., Z. Shippony, M. J. Schwartz, N. J. Livesey, and W. V. Snyder, The clear-cky
unpolarized forward model for the EOS Aura Microwave Limb Sounder (MLS), IEEE
Transactions on Geoscience and Remote Sensing, 44, 1367–1379, 2006.

Richard, C., et al., New section of the HITRAN database: Collision-induced absorption
(CIA), Journal of Quantitative Spectroscopy and Radiative Transfer, 113, 1276–1285,
2012.

Rodgers, C., Inverse methods for atmospheric sounding: Theory and practise, 1st ed.,
World Scientific Publishing, 2000.

Rodgers, C. D., Characterization and error analysis of profiles retrieved from remote sound-
ing measurements, Journal of Geophysical Research, 95, 5587–5595, 1990.

Rosenkranz, P. W., Absorption of microwaves by atmospheric gases, in Atmospheric remote
sensing by microwave radiometry, edited by M. A. Janssen, pp. 37–90, John Wiley &
Sons, Inc., 1993, ftp://mesa.mit.edu/phil/lbl_rt.

Rybicki, G. B., and A. P. Lightman, Radiative processes in astrophysics, chap. Plasma
effects, John Wiley and Sons, Inc., USA, 1979.

Wiscombe, W. J., Improved Mie scattering algorithms, Applied Optics, 19, 1505–1509,
1980.

Wright, P., S. Quegan, N. Wheadon, and C. Hall, Faraday rotation effects on l-band space-
borne sar data, IEEE Transactions on Geoscience and Remote Sensing, 41, 2735–2744,
2003.

Yurkin, M. A., and A. G. Hoekstra, The discrete-dipole-approximation code ADDA: Ca-
pabilities and known limitations, Journal of Quantitative Spectroscopy and Radiative
Transfer, 112, 2234–2247, 2011.

144 BIBLIOGRAPHY

Part VII

Index

Index

1D, 16
2D, 16
3D, 17

agenda, 9
antenna pattern dimensionality, 33
ARTS, 3
ARTS files

agendas.arts, 10, 39
controlfiles, 10, 41
controlfiles/artscomponents/absorption/,

48
controlfiles/artscomponents/cia, 44
controlfiles/artscomponents/doit, 117
controlfiles/artscomponents/faraday, 46
gas abs lookup.cc, 50
gas abs lookup.h, 50, 51
general.arts, 10
hitran cia2012 adapted.xml.gz, 44
m cloudbox.cc, 62, 117
m optproperties.cc, 62, 117
m scatrte.cc, 117
optproperties.cc, 62
optproperties.h, 56, 61
README, 5, 10
TestAbsParticle.arts, 48

ARTS-1, 3
ARTS INCLUDE PATH, 10
atmosphere, 3
atmospheric dimensionality, 16
atmospheric field, 18
azimuth angle, 32

basis function, 19, 99
birefringance, 94
built-in documentation, 5

cloud box, 20
command line parameters, 5
controlfile, 6
curvature radius, 84

data reduction, 33
data types

GasAbsLookup, 50, 51
GField3, 63
Ppath, 80
ScatteringMetaData, 61
SingleScatteringData, 55, 56, 63

default value, 8
Discrete Ordinate ITerative (DOIT) method,

117
dispersion, 53, 69, 74
Doppler effect, 91

ellipsoid, 83
engine, 6
example controlfiles, 10

Faraday rotation, 93

generic, 7
geo-location, 19
geocentric latitude, 84
geodetic latitude, 84
geometrical altitude, 15
groups, 7, 8

include, 10
internal ARTS functions

dotprod with los, 92
ppath calc, 78, 79
surface specular los, 86

latitude, 17
line-of-sight, 32
longitude, 18

magnetic field, 21
measurement block, 33
measurement sequence, 33
meridian plane, 32
methods, 6
model atmosphere, 18

148 INDEX

Monte Carlo scattering module, 123

n2-law of radiance, 73

parser, 6
polar coordinate system, 16
predefined variables, 7
pressure, 15
pressure altitude, 15
propagation path, 69
ptypes, 58

radiative background, 69
radius, 15
ray tracing, 69
refractive index, 53
report file, 11
reporting level, 11
retrievals, 3

scalar radiative transfer, 24
scattering, 4
scripting language, 6
sensor characteristics, 33
sensor position, 31
sensor transfer matrix, 33
sensor, the, 31
Single scattering properties, 56
specific, 7
spherical coordinate system, 17
surface, 4
surface altitude, 86

tangent point, 79

vector radiative transfer, 24
verbosity, 11

workspace agendas
doit conv test agenda, 119, 121
doit mono agenda, 118, 119
doit rte agenda, 119, 120
doit scat field agenda, 119
inversion iterate agenda, 132–134
iy cloudbox agenda, 71, 95, 121
iy loop freqs agenda, 74
iy main agenda, 31, 68, 74, 75, 95
iy space agenda, 69, 73, 95
iy surface agenda, 71, 86, 95
jacobian agenda, 98

pha mat spt agenda, 119
ppath agenda, 74, 77
ppath step agenda, 77, 119
propmat clearsky agenda, 9, 25, 38, 42,

51, 93
refr index air agenda, 53, 69, 74, 77
spt calc agenda, 119, 120
ybatch calc agenda, 113

workspace methods, 6, 7
abs lines per speciesCreateFromLines,

42
abs linesLinemixingLimit, 46
abs linesMirroring, 42
abs lookupAdapt, 42, 51
abs lookupCalc, 42, 50
abs lookupSetup, 50
abs lookupSetupBatch, 50
abs lookupSetupWide, 50
abs speciesSet, 40, 41
AtmosphereSet1D, 16
AtmosphereSet2D, 16
AtmosphereSet3D, 16
avkCalc, 137
cloudbox field monoIterate, 119, 120
cloudbox fieldSetClearsky, 118
cloudbox fieldSetConst, 118
cloudbox fieldUpdate1D, 120
cloudbox fieldUpdateSeq1D, 120
cloudbox fieldUpdateSeq1DPP, 120
cloudbox fieldUpdateSeq3D, 122
cloudboxOff, 20
cloudboxSetManually, 62
cloudboxSetManuallyAltitude, 62
covmat soCalc, 137
covmat ssCalc, 137
covmat sxAddBlock, 133
DOAngularGridsSet, 118, 120
doit conv flagAbs, 121
doit conv flagAbsBT, 121
doit conv flagLsq, 121
doit scat fieldCalc, 120
doit scat fieldCalcLimb, 120
doit za grid optCalc, 118
DoitCalc, 118
DoitGetIncoming, 118
DoitInit, 118
DoitScatteringDataPrepare, 119, 120
Extract, 113

INDEX 149

isotopologue ratiosInitFromBuiltin, 48
iyApplyUnit, 73, 74
iyCalc, 31, 74
iyEmissionStandard, 31, 72, 75
iyInterpCloudboxField, 121
iyLoopFrequencies, 74, 76
iyRadarSingleScat, 125
iySurfaceRtpropAgenda, 86
iyTransmissionStandard, 95
jacobianAddAbsSpecies, 105
jacobianAddFreqShift, 111
jacobianAddFreqStretch, 111
jacobianAddMagField, 109
jacobianAddPointingZa, 110
jacobianAddPolyfit, 112
jacobianAddSinefit, 112
jacobianAddTemperature, 107
jacobianAddWind, 106
jacobianAdjustAndTransform, 134
jacobianClose, 98
jacobianInit, 98
jacobianOff, 98
jacobianSetAffineTransformation, 134
jacobianSetFuncTransformation, 134
MagFieldsCalc, 46
MagFieldsCalcExpand1D, 46
MagFieldsCalcIGRF, 46
MagFieldsFromAltitudeRawCalc, 46
MagRawRead, 46
MatrixCBR, 73
MatrixUnitIntensity, 96
MCRadar, 128
OEM, 132, 135
opt prop bulkCalc, 120
opt prop sptFromMonoData, 120
pha mat sptFromDataDOITOpt, 119
pha mat sptFromMonoData, 119
pnd fieldCalcFrompnd field raw, 60,

63
ppath stepGeometric, 77
ppath stepRefractionBasic, 77
ppathCalc, 69
ppathStepByStep, 77
Print, 6
propmat clearsky agendaAuto, 39, 41,

42
propmat clearsky fieldCalc, 41, 42, 52
propmat clearskyAddCIA, 42, 44

propmat clearskyAddFaraday, 42, 46,
93

propmat clearskyAddFromLookup, 42,
51

propmat clearskyAddLines, 42
propmat clearskyAddParticles, 42, 47,

48
propmat clearskyAddPredefined, 41,

42
propmat clearskyAddXsecFit, 44
propmat clearskyAddZeeman, 42, 46
propmat clearskyInit, 42
ReadArrayOfARTSCAT, 42
ReadARTSCAT, 42
ReadHITRAN, 42
ReadJPL, 42
ReadXML, 42
refellipsoidEarth, 83
refellipsoidForAzimuth, 84
refellipsoidMars, 83
refellipsoidOrbitPlane, 84
refr index airFreeElectrons, 54, 74
refr index airInfraredEarth, 54
refr index airMicrowavesEarth, 54
refr index airMicrowavesGeneral, 54
retrievalAddAbsSpecies, 133
retrievalAddCatalogParameter, 133
retrievalAddFreqShift, 133
retrievalAddFreqStretch, 133
retrievalAddMagField, 133
retrievalAddPointingZa, 133
retrievalAddPolyfit, 133
retrievalAddScatSpecies, 133
retrievalAddSinefit, 133
retrievalAddSpecialSpecies, 133
retrievalAddSurfaceQuantity, 133
retrievalAddTemperature, 133
retrievalAddWind, 133
retrievalDefClose, 133
retrievalDefInit, 133
scat data monoCalc, 119, 120
scat data singleTmatrix, 59, 60
ScatElementsPndAndScatAdd, 60, 63
ScatElementsToabs speciesAdd, 47, 60
ScatSpeciesPndAndScatAdd, 60, 63
ScatSpeciesScatAndMetaRead, 60
sensor responseInit, 89
sensorOff, 89

150 INDEX

StringCreate, 6
StringSet, 6
surfaceBlackbody, 86
surfaceFlatRefractiveIndex, 86
surfaceFlatScalarReflectivity, 86
surfaceLambertianSimple, 87
TangentPointExtract, 80
wind u fieldIncludePlanetRotation, 91
WriteBuiltinPartitionFunctionsXML,

48
WriteXML, 7
yApplyUnit, 73
ybatchCalc, 113
yCalc, 29, 31, 67, 74–76
yRadar, 127
z fieldFromHSE, 19

workspace variable, 6
workspace variables, 7

aa grid, 118
abs cia data, 38, 44
abs lines, 42, 46
abs lines per species, 42
abs lookup, 42, 50
abs lookup is adapted, 51
abs species, 24, 39, 40, 44, 46
abs vec, 120
antenna dim, 33
atmosphere dim, 16
cloudbox field, 118
cloudbox limits, 20
cloudbox on, 20
covmat se, 132–134
covmat sx, 132–134
doit scat field, 119
dpnd field dx, 127
dxdy, 136
ext mat, 120
ext mat spt, 120
f grid, 7, 69
isotopologue ratios, 48
iy, 29, 38, 68, 74, 127
iy aux, 75
iy aux vars, 75, 76
iy transmitter, 95, 126
iy unit, 68, 73, 126
iyb, 68
jacobian, 98, 136
jacobian quantities, 98, 132, 133

lat grid, 17
lat true, 19
lon grid, 18
lon true, 19
mag u field, 21
mag v field, 21
mag w field, 21
mblock dlos, 33
nlte source, 26
output file format, 8
p grid, 15, 17
p hse, 19
pha mat, 119
pnd field, 20, 25, 55, 56, 60, 63
pnd field raw, 60, 63
ppath, 75, 78
ppath lmax, 76, 77, 79
ppath lraytrace, 77, 79
ppath step, 78
propmat clearsky, 25, 38, 39, 42, 46
propmat clearsky agenda, 39, 41
propmat clearsky field, 42
range bins, 127
refellipsoid, 19, 46, 83
refr index air, 53
refr index air group, 53
rte alonglos v, 92
rte los, 33, 74, 95
rte pos, 31, 74, 95
rtp mag, 21
scat data, 25, 26, 47, 48, 55, 56, 60, 61
scat meta, 61
scat meta single, 61
sensor los, 33, 95
sensor norm, 90
sensor pos, 31, 95
sensor response, 33, 68, 89
sensor time, 110
stokes dim, 23, 68, 93
surface emission, 86
surface los, 86
surface rmatrix, 86
t field, 18
vmr field, 18, 24, 40, 93
wind u field, 21, 91
wind v field, 21, 91
wind w field, 21, 91
x, 134

INDEX 151

xa, 132–134
y, 29, 68, 73, 132–134
y f, 75
y los, 75
y pol, 75
y pos, 75
ybatch index, 113
ybatch n, 113
ybatch start, 113
yf, 134
z field, 18, 19, 46
z surface, 19, 86
za grid, 118

zenith angle, 32

	I Overview
	Introduction
	What is ARTS?
	Documentation
	Guide documents
	Articles
	Built-in documentation
	Test and include controlfiles
	Build instructions
	Command line parameters
	Environment variables

	ARTS as a scripting language
	Workspace variables
	Workspace methods
	Agendas

	Include controlfiles
	Test controlfiles
	Verbosity levels

	Importing and exporting data
	Data formats
	XML files
	NetCDF files
	Gridded fields
	Naming convention for grids

	Description of the atmosphere
	Altitude coordinates
	Atmospheric dimensionality
	Atmospheric grids and fields
	Geo-location of 1D and 2D
	Hydrostatic equilibrium
	The reference ellipsoid and the surface
	The cloud box
	Wind vector fields
	Magnetic field vector fields

	Radiative transfer basics
	Stokes dimensionality
	The radiative transfer equation
	Propagation effects
	Absorbing species and scattering particles
	Emission and absorption vectors
	Main cases
	Clear-sky radiative transfer
	Radiative transfer with scattering

	Complete calculations
	Overview
	Compulsory sensor and data reduction variables
	Sensor position
	Line-of-sight
	Sensor characteristics and data reduction

	Measurement sequences and blocks

	II Atmospheric properties
	Gas absorption
	Introduction
	Key physical quantities
	Agendas
	Gas absorption in radiative transfer simulations
	Calculating gas absorption
	Absorption species
	Explicit line-by-line calculations
	Continua and complete absorption models
	Collision-induced absorption
	Absorption cross section model
	Zeeman calculations
	Internal line-mixing
	Faraday rotation
	Absorbing particles
	Further input data and parameters for calculating gas absorption
	Spectral line data
	Isotopologue ratios
	Partition functions

	The gas absorption lookup table
	Introduction
	Lookup table concept
	Pressure dependence
	Temperature dependence
	Trace gas concentration dependence
	Interpolation

	Workspace variables and methods
	Format of the lookup table

	Stand-alone gas absorption calculation

	Refractive index
	Gases
	Free electrons

	Description of scattering media
	Introduction
	Single scattering properties
	Scattering data structure
	Definition of ptypes
	``totally_random''
	``azimuthally_random''
	``general''

	Generating single scattering properties
	Generating particle number density fields
	Externally created particle number density fields
	Internal calculation of particle number density fields
	Scattering meta data structure

	Implementation
	Work space methods and variables

	III Radiative transfer: clear-sky + general functionality
	Clear-sky radiative transfer
	Overall calculation procedure
	Propagation paths
	The radiative background
	Basic radiative transfer variables and expressions
	Unpolarised absorption
	Polarised absorption
	Blackbody and cosmic background radiation

	Output unit and the n2-law
	Single pencil beam calculations
	Dispersion
	Auxiliary data
	Calculation accuracy

	Propagation paths
	Practical usage
	Calculation approach
	Spacing of additional path points
	Tangent points
	The propagation path data structure
	Further reading

	Reference ellipsoid and surface properties
	The reference ellipsoid
	Ellipsoid models
	Geocentric and geodetic latitudes

	Surface altitude
	Surface radiative properties
	Blackbody surface
	Specular reflections
	Lambertian surface

	Sensor characteristics
	General
	Some comments

	Doppler effects and winds
	Winds
	Planet rotation
	Sensor velocity
	Limitations
	Equations

	Faraday rotation
	Practical usage
	Theory

	Transmission calculations
	Pure transmission calculations

	Clear-sky Jacobians
	Introduction
	Perturbations
	Analytical expressions
	Workspace variables and methods

	Basis functions
	Basis functions for piece-wise linear quantities
	Polynomial basis functions

	Atmospheric variables, common expressions
	Matrix derivatives
	Analytical expression for partial derivation of the propagation matrix
	Parameterized absorption models
	Line-by-line absorption

	Separation of terms
	s/xi, general case
	Including the surface
	s/xi, locally unpolarized absorption
	Limitations

	Absorption species
	Common practicalities
	Perturbation calculations
	Analytical expressions

	Winds
	Atmospheric temperatures
	Common practicalities
	Perturbation calculations
	Analytical expressions
	Unpolarized absorption
	General case
	Hydrostatic equilibrium and limitations

	Magnetic field
	Common practicalities
	The analytical solutions
	Strength component
	Angular components

	Non-LTE effects
	Sensor pointing
	Sensor frequencies
	Polynomial baseline fit
	Sinusoidal baseline fit

	Batch calculations
	Batch calculations of measurement vector y
	Control file examples

	IV Radiative transfer: dedicated scattering methods
	Scattering calculations – The DOIT module
	The 1D control file example
	DOIT frame
	The DOIT main agenda
	Agendas used in cloudbox_field_monoIterate
	Calculation of the scattering integral:
	Radiative transfer with fixed scattering integral term:
	Convergence test:

	Propagation of the DOIT result towards the sensor

	3D DOIT calculations

	Scattering calculations – The Monte Carlo scattering module
	Radar measurements
	Single scattering
	Theory
	Units
	Practical usage
	Jacobian calculations

	Multiple scattering

	V Retrieval calculations
	Optimal estimation method
	Formulation
	Fundamental assumptions
	The retrieval as optimization problem

	Overview
	Usage
	Setup
	Defining the state space
	Defining observations and measurement error
	Inversion iteration agenda

	Running OEM
	Gauss-Newton optimization
	Levenberg-Marquardt
	Conjugate gradient solver
	Convergence

	Diagnostic quantities
	Averaging kernel matrix
	Smoothing error
	Retrieval noise

	VI Bibliography and Appendices
	VII Index

