Bibliography

[1]

P. Alken, E. Thébault, C. D. Beggan, H. Amit, J. Aubert, J. Baerenzung, T. N. Bondar, W. J. Brown, S. Califf, A. Chambodut, A. Chulliat, G. A. Cox, C. C. Finlay, A. Fournier, N. Gillet, A. Grayver, M. D. Hammer, M. Holschneider, L. Huder, G. Hulot, T. Jager, C. Kloss, M. Korte, W. Kuang, A. Kuvshinov, B. Langlais, J.-M. Léger, V. Lesur, P. W. Livermore, F. J. Lowes, S. Macmillan, W. Magnes, M. Mandea, S. Marsal, J. Matzka, M. C. Metman, T. Minami, A. Morschhauser, J. E. Mound, M. Nair, S. Nakano, N. Olsen, F. J. Pavón-Carrasco, V. G. Petrov, G. Ropp, M. Rother, T. J. Sabaka, S. Sanchez, D. Saturnino, N. R. Schnepf, X. Shen, C. Stolle, A. Tangborn, L. Tøffner-Clausen, H. Toh, J. M. Torta, J. Varner, F. Vervelidou, P. Vigneron, I. Wardinski, J. Wicht, A. Woods, Y. Yang, Z. Zeren, and B. Zhou. International geomagnetic reference field: the thirteenth generation. Earth, Planets and Space, 2021. doi:10.1186/s40623-020-01288-x.

[2]

Atmospheric, Radiation Environmental Research Inc. (AER), and USA Climate Group 131 Hartwell Avenue Lexington, MA 02421. MT_CKD. https://github.com/AER-RC/MT_CKD, 2024.

[3]

R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition. SIAM, Philadelphia, PA, 1994.

[4]

I. Bogaert. Iteration-free computation of Gauss–Legendre quadrature nodes and weights. SIAM Journal on Scientific Computing, 36(3):A1008–A1026, 2014. doi:10.1137/140954969.

[5]

A. Borysow and L. Frommhold. Collision induced rototranslational absorption spectra of N₂–N₂ pairs for temperatures from 50 to 300 K. The Astrophysical Journal, 311:1043–1057, 1986.

[6]

Robert Buras, Timothy Dowling, and Claudia Emde. New secondary-scattering correction in DISORT with increased efficiency for forward scattering. Journal of Quantitative Spectroscopy and Radiative Transfer, 112(12):2028–2034, 2011. URL: https://www.sciencedirect.com/science/article/pii/S0022407311001385, doi:https://doi.org/10.1016/j.jqsrt.2011.03.019.

[7]

J. J. Dongarra and C. B. Moler. EISPACK - A PACKAGE FOR SOLVING MATRIX EIGENVALUE PROBLEMS., pages 68–87. Prentice-Hall Inc, 1984.

[8]

W. J. Ellison. Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0-25thz and the temperature range 0-100°c. Journal of Physical and Chemical Reference Data, 36(1):1–18, 02 2007. URL: https://doi.org/10.1063/1.2360986, arXiv:https://pubs.aip.org/aip/jpr/article-pdf/36/1/1/14719718/1_1_online.pdf, doi:10.1063/1.2360986.

[9]

Gary D. Greenblatt, John J. Orlando, James B. Burkholder, and A. R. Ravishankara. Absorption measurements of oxygen between 330 and 1140 nm. Journal of Geophysical Research: Atmospheres, 95(D11):18577–18582, 1990. URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JD095iD11p18577, arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/JD095iD11p18577, doi:https://doi.org/10.1029/JD095iD11p18577.

[10]

Dion J. Ho. Pythonic-DISORT: a Python reimplementation of the discrete ordinate radiative transfer package DISORT. Journal of Open Source Software, 9(103):6442, 2024. URL: https://doi.org/10.21105/joss.06442, doi:10.21105/joss.06442.

[11]

H. Johansson and C. Forssén. Fast and accurate evaluation of Wigner 3j, 6j, and 9j symbols using prime factorization and multiword integer arithmetic. SIAM Journal on Scientific Computing, 38(1):A376–A384, 2016. URL: https://doi.org/10.1137/15M1021908, arXiv:https://doi.org/10.1137/15M1021908, doi:10.1137/15M1021908.

[12]

Walter J. Lafferty, Alexander M. Solodov, Alfons Weber, Wm. Bruce Olson, and Jean-Michel Hartmann. Infrared collision-induced absorption by n2 near 4.3µm for atmospheric applications: measurements and empiricalmodeling. Appl. Opt., 35(30):5911–5917, Oct 1996. URL: https://opg.optica.org/ao/abstract.cfm?URI=ao-35-30-5911, doi:10.1364/AO.35.005911.

[13]

R. Larsson and B. Lankhaar. Zeeman effect splitting coefficients for ClO, OH and NO in some earth atmosphere applications. Journal of Quantitative Spectroscopy and Radiative Transfer, 224:107050, 2020. doi:10.1016/j.jqsrt.2020.107050.

[14]

R. Larsson, B. Lankhaar, and P. Eriksson. Updated Zeeman effect splitting coefficients for molecular oxygen in planetary applications. Journal of Quantitative Spectroscopy and Radiative Transfer, 224:432–438, 2019. doi:10.1016/j.jqsrt.2018.12.004.

[15]

H. J. Liebe, G. A. Hufford, and M. G. Cotton. Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz. In AGARD 52nd Specialists Meeting of the Electromagnetic Wave Propagation Panel, Palma de Mallorca, Spain. May 17-21 1993. ftp://ftp.its.bldrdoc.gov/pub/mpm93/+.

[16]

Hans J. Liebe. MPM – an atmospheric millimeter–wave propagation model. International Journal of Infrared and Millimeter Waves, 10(6):631–650, 1989.

[17]

Hans J. Liebe, P. W. Rosenkranz, and G. A. Hufford. Atmospheric \mbox 60-GHz oxygen spectrum: new laboratory measurements and line parameters. Journal of Quantitative Spectroscopy and Radiative Transfer, 48(5/6):629–643, 1992.

[18]

Dmitriy S. Makarov, Mikhail Yu. Tretyakov, and Philip W. Rosenkranz. Revision of the 60-ghz atmospheric oxygen absorption band models for practical use. Journal of Quantitative Spectroscopy and Radiative Transfer, 243:106798, 2020. URL: https://www.sciencedirect.com/science/article/pii/S002240731930576X, doi:https://doi.org/10.1016/j.jqsrt.2019.106798.

[19]

B. Maté, C. Lugez, G. T. Fraser, and W. J. Lafferty. Absolute intensities for the o2 1.27 μm continuum absorption. Journal of Geophysical Research: Atmospheres, 104(D23):30585–30590, 1999. URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/1999JD900824, arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/1999JD900824, doi:https://doi.org/10.1029/1999JD900824.

[20]

Michael I. Mishchenko, Larry D. Travis, and Andrew A. Lacis. Scattering, Absorption and Emission of Light by Small Particles. Cambridge University Press, 2002. ISBN 0-521-78252.

[21]

A. R. Mitchell. J. H. Wilkinson, the algebraic eigenvalue problem (Clarendon Press, Oxford, 1965), 662pp., 110s. Proceedings of the Edinburgh Mathematical Society, 15(4):328–328, 1967. doi:10.1017/S0013091500012104.

[22]

Eli J. Mlawer, Shepard A. Clough, Patrick D. Brown, Thomas M. Stephen, Joseph C. Landry, Aaron Goldman, and Frank J. Murcray. Observed atmospheric collision-induced absorption in near-infrared oxygen bands. Journal of Geophysical Research: Atmospheres, 103(D4):3859–3863, 1998. URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/97JD03141, arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/97JD03141, doi:https://doi.org/10.1029/97JD03141.

[23]

Eli J. Mlawer, Vivienne H. Payne, Jean-Luc Moncet, Jennifer S. Delamere, Matthew J. Alvarado, and David C. Tobin. Development and recent evaluation of the MT_CKD model of continuum absorption. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1968):2520–2556, 2012. URL: https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2011.0295, arXiv:https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2011.0295, doi:10.1098/rsta.2011.0295.

[24]

B. N. Parlett and C. Reinsch. Balancing a matrix for calculation of eigenvalues and eigenvectors. Numerische Mathematik, 17(13):293–304, 1969. doi:https://doi.org/10.1007/BF02165404.

[25]

W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical recipes in C. Cambridge University Press, 2 edition, 1997.

[26]

C. Richard, I.E. Gordon, L.S. Rothman, M. Abel, L. Frommhold, M. Gustafsson, J.-M. Hartmann, C. Hermans, W.J. Lafferty, G.S. Orton, K.M. Smith, and H. Tran. New section of the hitran database: collision-induced absorption (cia). Journal of Quantitative Spectroscopy and Radiative Transfer, 113(11):1276–1285, 2012. Three Leaders in Spectroscopy. URL: https://www.sciencedirect.com/science/article/pii/S0022407311003773, doi:https://doi.org/10.1016/j.jqsrt.2011.11.004.

[27]

C.D. Rodgers. Inverse methods for atmospheric sounding: Theory and practise. World Scientific Publishing, 1 edition, 2000.

[28]

R. Rodrigues, Gh. Blanquet, J. Walrand, B. Khalil, R.Le Doucen, F. Thibault, and J.-M. Hartmann. Line-mixing effects inqbranches of co2. Journal of Molecular Spectroscopy, 186(2):256–268, 1997. URL: https://www.sciencedirect.com/science/article/pii/S0022285297974531, doi:https://doi.org/10.1006/jmsp.1997.7453.

[29]

P. W. Rosenkranz. Absorption of microwaves by atmospheric gases. In M. A. Janssen, editor, Atmospheric remote sensing by microwave radiometry, pages 37–90. John Wiley & Sons, Inc., 1993.

[30]

P. W. Rosenkranz. Water vapor microwave continuum absorption: a comparison of measurements and models. Radio Science, 33(4):919–928, 1998. (correction in 34, 1025, 1999), ftp://mesa.mit.edu/phil/lbl_rt+.

[31]

P.W Rosenkranz. Line-by-line microwave radiative transfer (non-scattering) [software] (version 2024/07/03). http://cetemps.aquila.infn.it/mwrnet/lblmrt_ns.html. Accessed: 2024-07-03.

[32]

L.S. ROTHMAN, C.P. RINSLAND, A. GOLDMAN, S.T. MASSIE, D.P. EDWARDS, J-M. FLAUD, A. PERRIN, C. CAMY-PEYRET, V. DANA, J.-Y. MANDIN, J. SCHROEDER, A. MCCANN, R.R. GAMACHE, R.B. WATTSON, K. YOSHINO, K.V. CHANCE, K.W. JUCKS, L.R. BROWN, V. NEMTCHINOV, and P. VARANASI. The hitran molecular spectroscopic database and hawks (hitran atmospheric workstation): 1996 edition. Journal of Quantitative Spectroscopy and Radiative Transfer, 60(5):665–710, 1998. URL: https://www.sciencedirect.com/science/article/pii/S0022407398000788, doi:https://doi.org/10.1016/S0022-4073(98)00078-8.

[33]

Knut Stamnes, S-Chee Tsay, Warren Wiscombe, and Kolf Jayaweera. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 27(12):2502–2509, Jun 1988. URL: https://opg.optica.org/ao/abstract.cfm?URI=ao-27-12-2502, doi:10.1364/AO.27.002502.

[34]

F. Thibault, V. Menoux, R. Le Doucen, L. Rosenmann, J.-M. Hartmann, and Ch. Boulet. Infrared collision-induced absorption by o2near 6.4 \textmu m for atmospheric applications: measurements and empiricalmodeling. Appl. Opt., 36(3):563–567, Jan 1997. URL: https://opg.optica.org/ao/abstract.cfm?URI=ao-36-3-563, doi:10.1364/AO.36.000563.

[35]

H. Tran, C. Boulet, S. Stefani, M. Snels, and G. Piccioni. Measurements and modelling of high pressure pure co2 spectra from 750 to 8500cm−1. i—central and wing regions of the allowed vibrational bands. Journal of Quantitative Spectroscopy and Radiative Transfer, 112(6):925–936, 2011. URL: https://www.sciencedirect.com/science/article/pii/S0022407310004449, doi:https://doi.org/10.1016/j.jqsrt.2010.11.021.

[36]

M. Yu. Tretyakov, M. A. Koshelev, V.V. Dorovskikh, D. S. Makarov, and P. W. Rosenkranz. 60-GHz oxygen band: precise broadening and central frequencies of fine-structure lines, absolute absorption profile at atmospheric pressure, and revision of mixing coefficients. Journal of Molecular Structure, 231:1–14, 2005. doi:10.1016/j.jms.2004.11.011.

[37]

Mofreh R. Zaghloul and Ahmed N. Ali. Algorithm 916: computing the Faddeyeva and Voigt functions. ACM Trans. Math. Softw., 38(2):15:1–15:22, January 2012. URL: http://doi.acm.org/10.1145/2049673.2049679, doi:10.1145/2049673.2049679.

[38]

Yamada, T., Rezac, L., Larsson, R., Hartogh, P., Yoshida, N., and Kasai, Y. Solving non-lte problems in rotational transitions using the gauss–seidel method and its implementation in the atmospheric radiative transfer simulator. A&A, 619:A181, 2018. URL: https://doi.org/10.1051/0004-6361/201833566, doi:10.1051/0004-6361/201833566.