ARTS 2.5.11 (git: 6827797f)
Zeeman Namespace Reference

Implements Zeeman modeling. More...

Classes

struct  AllPolarizationVectors
 PolarizationVector for each Polarization. More...
 
struct  Derived
 Contains derived values useful for Zeeman calculations. More...
 
class  Model
 Main Zeeman Model. More...
 
struct  PolarizationVector
 Polarization vector for Zeeman Propagation Matrix. More...
 
struct  SplittingData
 Main storage for Zeeman splitting coefficients. More...
 

Enumerations

enum class  Polarization : char { SigmaMinus , Pi , SigmaPlus , None }
 Zeeman polarization selection. More...
 

Functions

std::ostream & operator<< (std::ostream &os, const Model &m)
 
std::istream & operator>> (std::istream &is, Model &m)
 
std::ostream & operator<< (bofstream &bof, const Model &m)
 
std::istream & operator>> (bifstream &bif, Model &m)
 
AllPolarizationVectors AllPolarization (Numeric theta, Numeric eta) noexcept
 Computes the polarization of each polarization type.
 
AllPolarizationVectors AllPolarization_dtheta (Numeric theta, const Numeric eta) noexcept
 The derivative of AllPolarization wrt theta.
 
AllPolarizationVectors AllPolarization_deta (Numeric theta, Numeric eta) noexcept
 The derivative of AllPolarization wrt eta.
 
const PolarizationVectorSelectPolarization (const AllPolarizationVectors &data, Polarization type) noexcept
 Selects the polarization vector depending on polarization type.
 
void sum (PropagationMatrix &pm, const ComplexVectorView &abs, const PolarizationVector &polvec, const bool do_phase=true) ARTS_NOEXCEPT
 Sums the Zeeman components into a propagation matrix.
 
void dsum (PropagationMatrix &dpm, const ComplexVectorView &abs, const ComplexVectorView &dabs, const PolarizationVector &polvec, const PolarizationVector &dpolvec_dtheta, const PolarizationVector &dpolvec_deta, const Numeric dH, const Numeric dtheta, const Numeric deta, const bool do_phase=true) ARTS_NOEXCEPT
 Sums the Zeeman components derivatives into a propagation matrix.
 
constexpr Index dM (Polarization type) noexcept
 Gives the change of M given a polarization type.
 
constexpr Rational start (Rational Ju, Rational Jl, Polarization type) noexcept
 Gives the lowest M for a polarization type of this transition.
 
constexpr Rational end (Rational Ju, Rational Jl, Polarization type) noexcept
 Gives the largest M for a polarization type of this transition.
 
constexpr Index nelem (Rational Ju, Rational Jl, Polarization type) noexcept
 Gives the number of elements of the polarization type of this transition.
 
constexpr Rational Mu (Rational Ju, Rational Jl, Polarization type, Index n) noexcept
 Gives the upper state M value at an index.
 
constexpr Rational Ml (Rational Ju, Rational Jl, Polarization type, Index n) noexcept
 Gives the lower state M value at an index.
 
constexpr Numeric PolarizationFactor (Polarization type) noexcept
 The renormalization factor of a polarization type.
 
constexpr Numeric SimpleGCaseB (Rational N, Rational J, Rational Lambda, Rational S, Numeric GS, Numeric GL) noexcept
 Computes the Zeeman splitting coefficient.
 
constexpr Numeric SimpleGCaseA (Rational Omega, Rational J, Rational Lambda, Rational Sigma, Numeric GS, Numeric GL) noexcept
 Computes the Zeeman splitting coefficient.
 
Model GetSimpleModel (const QuantumIdentifier &qid) ARTS_NOEXCEPT
 Returns a simple Zeeman model.
 
Model GetAdvancedModel (const QuantumIdentifier &qid) ARTS_NOEXCEPT
 Returns an advanced Zeeman model.
 
Derived FromGrids (Numeric u, Numeric v, Numeric w, Numeric z, Numeric a) noexcept
 Computes the derived plane from ARTS grids.
 
constexpr Derived FromPreDerived (Numeric H, Numeric theta, Numeric eta) noexcept
 Sets Derived from predefined Derived parameters.
 

Detailed Description

Implements Zeeman modeling.

Enumeration Type Documentation

◆ Polarization

enum class Zeeman::Polarization : char
strong

Zeeman polarization selection.

Enumerator
SigmaMinus 
Pi 
SigmaPlus 
None 

Definition at line 27 of file zeemandata.h.

Function Documentation

◆ AllPolarization()

AllPolarizationVectors Zeeman::AllPolarization ( Numeric  theta,
Numeric  eta 
)
noexcept

Computes the polarization of each polarization type.

Parameters
[in]thetaThe angle along the magnetic field
[in]etaThe angle counter-clockwise in the magnetic field plane
Returns
The polarization vectors of all Zeeman polarization

Definition at line 352 of file zeemandata.cc.

References Zeeman::AllPolarizationVectors::pi, Zeeman::AllPolarizationVectors::sm, and Zeeman::AllPolarizationVectors::sp.

Referenced by propmat_clearskyAddOnTheFlyLineMixingWithZeeman(), and zeeman_on_the_fly().

◆ AllPolarization_deta()

AllPolarizationVectors Zeeman::AllPolarization_deta ( Numeric  theta,
Numeric  eta 
)
noexcept

The derivative of AllPolarization wrt eta.

Parameters
[in]thetaThe angle along the magnetic field
[in]etaThe angle counter-clockwise in the magnetic field plane
Returns
The derivative of AllPolarization wrt eta

Definition at line 384 of file zeemandata.cc.

References Zeeman::AllPolarizationVectors::pi, Zeeman::AllPolarizationVectors::sm, and Zeeman::AllPolarizationVectors::sp.

Referenced by propmat_clearskyAddOnTheFlyLineMixingWithZeeman(), and zeeman_on_the_fly().

◆ AllPolarization_dtheta()

AllPolarizationVectors Zeeman::AllPolarization_dtheta ( Numeric  theta,
const Numeric  eta 
)
noexcept

The derivative of AllPolarization wrt theta.

Parameters
[in]thetaThe angle along the magnetic field
[in]etaThe angle counter-clockwise in the magnetic field plane
Returns
The derivative of AllPolarization wrt theta

Definition at line 367 of file zeemandata.cc.

References Zeeman::AllPolarizationVectors::pi, Zeeman::AllPolarizationVectors::sm, and Zeeman::AllPolarizationVectors::sp.

Referenced by propmat_clearskyAddOnTheFlyLineMixingWithZeeman(), and zeeman_on_the_fly().

◆ dM()

constexpr Index Zeeman::dM ( Polarization  type)
constexprnoexcept

Gives the change of M given a polarization type.

Parameters
[in]typeThe polarization type
Returns
The change in M

Definition at line 35 of file zeemandata.h.

References None, Pi, SigmaMinus, and SigmaPlus.

Referenced by Ml(), and Zeeman::Model::Strength().

◆ dsum()

void Zeeman::dsum ( PropagationMatrix &  dpm,
const ComplexVectorView &  abs,
const ComplexVectorView &  dabs,
const PolarizationVector polvec,
const PolarizationVector dpolvec_dtheta,
const PolarizationVector dpolvec_deta,
const Numeric  dH,
const Numeric  dtheta,
const Numeric  deta,
const bool  do_phase = true 
)

Sums the Zeeman components derivatives into a propagation matrix.

Parameters
[in,out]pmThe propagation matrix derivative
[in]absThe complex absorption vector
[in]dabsThe complex absorption vector derivative w.r.t. H
[in]polvecThe polarization vector
[in]dpolvec_dthetaThe polarization vector derivative w.r.t. theta
[in]dpolvec_detaThe polarization vector derivative w.r.t. eta
[in]dHThe derivative w.r.t. H
[in]dthetaThe derivative w.r.t. theta
[in]detaThe derivative w.r.t. eta

Definition at line 437 of file zeemandata.cc.

References ARTS_ASSERT.

Referenced by propmat_clearskyAddOnTheFlyLineMixingWithZeeman(), and zeeman_on_the_fly().

◆ end()

constexpr Rational Zeeman::end ( Rational  Ju,
Rational  Jl,
Polarization  type 
)
constexprnoexcept

Gives the largest M for a polarization type of this transition.

Since the polarization determines the change in M, this function gives the last M of interest in the range of M possible for a given transition

The user has to ensure that Ju and Jl is a valid transition

Parameters
[in]JuJ of the upper state
[in]JlJ of the upper state
[in]typeThe polarization type
Returns
The largest M value

Definition at line 96 of file zeemandata.h.

References min(), None, Pi, SigmaMinus, and SigmaPlus.

Referenced by nelem().

◆ FromGrids()

Zeeman::Derived Zeeman::FromGrids ( Numeric  u,
Numeric  v,
Numeric  w,
Numeric  z,
Numeric  a 
)
noexcept

Computes the derived plane from ARTS grids.

When done and if everything is well-defined:

\[ H = \sqrt{u^2 + v^2 + w^2}, \]

\[ \theta = \arccos \left( \vec{n} \cdot \vec{n}_H \right), \]

\[ \eta = \arctan\left( \frac{y}{x} \right), \]

\[ \frac{\partial H}{\partial \vec{H}} = \vec{n}_H, \]

\[ \frac{\partial \theta}{\partial \vec{H}} = \frac{\vec{n}_H \cos{\theta} - \vec{n}}{H\sin\theta}, \]

\[ \frac{\partial \eta}{\partial \vec{H}} = \frac{\vec{n}\times\vec{n}_H}{H\left(x^2 + y^2\right)} \]

With these helpers (some defined, others not):

\[ \vec{H} = \left[\begin{array}{l} v \\ u \\ w \end{array}\right], \]

\[ \vec{n}_H = \frac{\vec{H}}{H} , \]

\[ \vec{n} = \left[\begin{array}{r} \cos a \sin z \\ \sin a\sin z \\ \cos z \end{array}\right], \]

\[ \vec{e}_v = \left[\begin{array}{r} \cos a \cos z \\ \sin a\cos z \\ -\sin z \end{array}\right], \]

\[ y = \left\{\vec{e}_v \times \left[\vec{n}_H - \left(\vec{n}_H\cdot\vec{n}\right)\vec{n}\right]\right\} \cdot \vec{n}, \]

\[ x = \vec{e}_v \cdot \left[\vec{n}_H - \left(\vec{n}_H\cdot\vec{n}\right)\vec{n}\right] \]

Note that all other values are zero if \( H \) is zero, that \( \frac{\partial \theta}{\partial \vec{H}} \) is zero if \( \sin{\theta} \) is zero, that \( \frac{\partial \eta}{\partial \vec{H}} \) is zero if \( x \) and \( y \) are zero, and that the atan2(y, x) function is used for \( \eta \) to compensate for when \( x \) is zero.

Parameters
[in]uMagnetic field u-parameter
[in]vMagnetic field b-parameter
[in]wMagnetic field w-parameter
[in]zZenith angle
[in]aAzimuth angle
Returns
The derived plane

Definition at line 261 of file zeemandata.cc.

References a, Zeeman::Derived::deta_du, Zeeman::Derived::deta_dv, Zeeman::Derived::deta_dw, Zeeman::Derived::dH_du, Zeeman::Derived::dH_dv, Zeeman::Derived::dH_dw, Zeeman::Derived::dtheta_du, Zeeman::Derived::dtheta_dv, Zeeman::Derived::dtheta_dw, Zeeman::Derived::eta, ev_xyz_by_za_local(), FromPreDerived(), Zeeman::Derived::H, los_xyz_by_uvw_local(), los_xyz_by_za_local(), Math::pow2(), Zeeman::Derived::theta, u, v, and w.

Referenced by propmat_clearskyAddOnTheFlyLineMixingWithZeeman(), and zeeman_on_the_fly().

◆ FromPreDerived()

constexpr Derived Zeeman::FromPreDerived ( Numeric  H,
Numeric  theta,
Numeric  eta 
)
constexprnoexcept

Sets Derived from predefined Derived parameters.

Parameters
[in]HDerived magnetic field strength
[in]thetaDerived magnetic field theta angle
[in]etaDerived magnetic field eta angle
Returns
The pre-derived plane

Definition at line 551 of file zeemandata.h.

Referenced by FromGrids(), and zeeman_on_the_fly().

◆ GetAdvancedModel()

Zeeman::Model Zeeman::GetAdvancedModel ( const QuantumIdentifier qid)

Returns an advanced Zeeman model.

Will look at available Quantum numbers and use best approximation for the model to use. If no good approximation is available, it returns Model({0, 0}).

Parameters
[in]qidTransition type quantum id
Returns
Zeeman model

Definition at line 115 of file zeemandata.cc.

References case_b_g_coefficient_o2(), closed_shell_trilinear(), and Constant::mass_ratio_electrons_per_proton.

Referenced by Zeeman::Model::Model(), ReadArrayOfARTSCAT(), ReadARTSCAT(), ReadHITRAN(), ReadJPL(), and ReadLBLRTM().

◆ GetSimpleModel()

Zeeman::Model Zeeman::GetSimpleModel ( const QuantumIdentifier qid)

Returns a simple Zeeman model.

Will use the simple Hund case provided by input. Throws if the input is bad

Parameters
[in]qidTransition type quantum id
Returns
Zeeman model

Definition at line 55 of file zeemandata.cc.

References get_lande_lambda_constant(), get_lande_spin_constant(), and SimpleG().

Referenced by Zeeman::Model::Model().

◆ Ml()

constexpr Rational Zeeman::Ml ( Rational  Ju,
Rational  Jl,
Polarization  type,
Index  n 
)
constexprnoexcept

Gives the lower state M value at an index.

The user has to ensure that Ju and Jl is a valid transition

The user has to ensure n is less than the number of elements

Parameters
[in]JuJ of the upper state
[in]JlJ of the upper state
[in]typeThe polarization type
[in]nThe position
Returns
The lower state M

Definition at line 163 of file zeemandata.h.

References dM(), and Mu().

Referenced by Zeeman::Model::Splitting(), and Zeeman::Model::Strength().

◆ Mu()

constexpr Rational Zeeman::Mu ( Rational  Ju,
Rational  Jl,
Polarization  type,
Index  n 
)
constexprnoexcept

Gives the upper state M value at an index.

The user has to ensure that Ju and Jl is a valid transition

The user has to ensure n is less than the number of elements

Parameters
[in]JuJ of the upper state
[in]JlJ of the upper state
[in]typeThe polarization type
[in]nThe position
Returns
The upper state M

Definition at line 142 of file zeemandata.h.

References start().

Referenced by Ml(), Zeeman::Model::Splitting(), and Zeeman::Model::Strength().

◆ nelem()

constexpr Index Zeeman::nelem ( Rational  Ju,
Rational  Jl,
Polarization  type 
)
constexprnoexcept

Gives the number of elements of the polarization type of this transition.

The user has to ensure that Ju and Jl is a valid transition

Parameters
[in]JuJ of the upper state
[in]JlJ of the upper state
[in]typeThe polarization type
Returns
The number of elements

Definition at line 125 of file zeemandata.h.

References end(), and start().

Referenced by Absorption::Lines::ZeemanCount().

◆ operator<<() [1/2]

std::ostream & Zeeman::operator<< ( bofstream bof,
const Model m 
)

Definition at line 342 of file zeemandata.cc.

◆ operator<<() [2/2]

std::ostream & Zeeman::operator<< ( std::ostream &  os,
const Model m 
)

Definition at line 332 of file zeemandata.cc.

◆ operator>>() [1/2]

std::istream & Zeeman::operator>> ( bifstream bif,
Model m 
)

Definition at line 347 of file zeemandata.cc.

◆ operator>>() [2/2]

std::istream & Zeeman::operator>> ( std::istream &  is,
Model m 
)

Definition at line 337 of file zeemandata.cc.

◆ PolarizationFactor()

constexpr Numeric Zeeman::PolarizationFactor ( Polarization  type)
constexprnoexcept

The renormalization factor of a polarization type.

The polarization comes from some geometry. This function returns the factor we need to compute that geometry and to turn it into something that normalizes every possible M for this type into some strength that sums to unity

Parameters
[in]typeThe polarization type
Returns
Rescale factor

Definition at line 181 of file zeemandata.h.

References None, Pi, SigmaMinus, and SigmaPlus.

Referenced by Zeeman::Model::Strength().

◆ SelectPolarization()

const PolarizationVector & Zeeman::SelectPolarization ( const AllPolarizationVectors data,
Polarization  type 
)
noexcept

Selects the polarization vector depending on polarization type.

Parameters
[in]dataThe pre-computed polarization vectors
[in]typeThe type of polarization to select

This should never be reached

Definition at line 402 of file zeemandata.cc.

References None, Pi, SigmaMinus, and SigmaPlus.

Referenced by propmat_clearskyAddOnTheFlyLineMixingWithZeeman(), and zeeman_on_the_fly().

◆ SimpleGCaseA()

constexpr Numeric Zeeman::SimpleGCaseA ( Rational  Omega,
Rational  J,
Rational  Lambda,
Rational  Sigma,
Numeric  GS,
Numeric  GL 
)
constexprnoexcept

Computes the Zeeman splitting coefficient.

The level should be Hund case a type and all the values have to be defined

Parameters
[in]OmegaThe Omega quantum number of the level
[in]JThe J quantum number of the level
[in]LambdaThe Lambda quantum number of the level
[in]SigmaThe Sigma quantum number of the level
[in]GSThe spin Landé coefficient of the molecule
[in]GLThe Landé coefficient of the molecule
Returns
Zeeman splitting coefficient of the level

Definition at line 245 of file zeemandata.h.

Referenced by SimpleG().

◆ SimpleGCaseB()

constexpr Numeric Zeeman::SimpleGCaseB ( Rational  N,
Rational  J,
Rational  Lambda,
Rational  S,
Numeric  GS,
Numeric  GL 
)
constexprnoexcept

Computes the Zeeman splitting coefficient.

The level should be Hund case b type and all the values have to be defined

Parameters
[in]NThe N quantum number of the level
[in]JThe J quantum number of the level
[in]LambdaThe Lambda quantum number of the level
[in]SThe S quantum number of the level
[in]GSThe spin Landé coefficient of the molecule
[in]GLThe Landé coefficient of the molecule
Returns
Zeeman splitting coefficient of the level

Definition at line 209 of file zeemandata.h.

Referenced by SimpleG().

◆ start()

constexpr Rational Zeeman::start ( Rational  Ju,
Rational  Jl,
Polarization  type 
)
constexprnoexcept

Gives the lowest M for a polarization type of this transition.

Since the polarization determines the change in M, this function gives the first M of interest in the range of M possible for a given transition

The user has to ensure that Ju and Jl is a valid transition

Parameters
[in]JuJ of the upper state
[in]JlJ of the upper state
[in]typeThe polarization type
Returns
The lowest M value

Definition at line 63 of file zeemandata.h.

References min(), None, Pi, SigmaMinus, and SigmaPlus.

Referenced by Mu(), and nelem().

◆ sum()

void Zeeman::sum ( PropagationMatrix &  pm,
const ComplexVectorView &  abs,
const PolarizationVector polvec,
const bool  do_phase = true 
)

Sums the Zeeman components into a propagation matrix.

Parameters
[in,out]pmThe propagation matrix
[in]absThe complex absorption vector
[in]polvecThe polarization vector

Definition at line 417 of file zeemandata.cc.

References ARTS_ASSERT.

Referenced by propmat_clearskyAddOnTheFlyLineMixingWithZeeman(), and zeeman_on_the_fly().