ARTS  2.2.66
Faddeeva.cc File Reference
#include "Faddeeva.h"
#include <float.h>
#include <math.h>

Go to the source code of this file.

Macros

#define _GNU_SOURCE
 
#define FADDEEVA(name)   Faddeeva_ ## name
 
#define FADDEEVA_RE(name)   Faddeeva_ ## name ## _re
 
#define C(a, b)   ((a) + I*(b))
 
#define Inf   (1./0.)
 
#define NaN   (0./0.)
 
#define USE_CONTINUED_FRACTION   1
 

Typedefs

typedef double complex cmplx
 

Functions

cmplx FADDEEVA() erfcx (cmplx z, double relerr)
 
double FADDEEVA_RE() erf (double x)
 
cmplx FADDEEVA() erf (cmplx z, double relerr)
 
cmplx FADDEEVA() erfi (cmplx z, double relerr)
 
double FADDEEVA_RE() erfi (double x)
 
double FADDEEVA_RE() erfc (double x)
 
cmplx FADDEEVA() erfc (cmplx z, double relerr)
 
double FADDEEVA_RE() Dawson (double x)
 
cmplx FADDEEVA() Dawson (cmplx z, double relerr)
 
cmplx FADDEEVA() w (cmplx z, double relerr)
 
double FADDEEVA_RE() erfcx (double x)
 
double FADDEEVA() w_im (double x)
 

Macro Definition Documentation

◆ _GNU_SOURCE

#define _GNU_SOURCE

Definition at line 220 of file Faddeeva.cc.

◆ C

#define C (   a,
 
)    ((a) + I*(b))

Definition at line 254 of file Faddeeva.cc.

◆ FADDEEVA

#define FADDEEVA (   name)    Faddeeva_ ## name

Definition at line 227 of file Faddeeva.cc.

◆ FADDEEVA_RE

#define FADDEEVA_RE (   name)    Faddeeva_ ## name ## _re

Definition at line 228 of file Faddeeva.cc.

◆ Inf

#define Inf   (1./0.)

Definition at line 255 of file Faddeeva.cc.

◆ NaN

#define NaN   (0./0.)

Definition at line 256 of file Faddeeva.cc.

◆ USE_CONTINUED_FRACTION

#define USE_CONTINUED_FRACTION   1

Typedef Documentation

◆ cmplx

typedef double complex cmplx

Definition at line 225 of file Faddeeva.cc.

Function Documentation

◆ Dawson() [1/2]

cmplx FADDEEVA() Dawson ( cmplx  z,
double  relerr 
)

Definition at line 473 of file Faddeeva.cc.

References C, erfcx(), FADDEEVA, FADDEEVA_RE, NaN, w(), and w_im().

◆ Dawson() [2/2]

double FADDEEVA_RE() Dawson ( double  x)

Definition at line 466 of file Faddeeva.cc.

References FADDEEVA, and w_im().

◆ erf() [1/2]

cmplx FADDEEVA() erf ( cmplx  z,
double  relerr 
)

Definition at line 311 of file Faddeeva.cc.

References C, erf(), FADDEEVA, FADDEEVA_RE, Inf, NaN, w(), and w_im().

◆ erf() [2/2]

double FADDEEVA_RE() erf ( double  x)

Definition at line 279 of file Faddeeva.cc.

References erfcx(), and FADDEEVA_RE.

Referenced by erf(), and erfi().

◆ erfc() [1/2]

cmplx FADDEEVA() erfc ( cmplx  z,
double  relerr 
)

Definition at line 432 of file Faddeeva.cc.

References C, erfcx(), FADDEEVA, FADDEEVA_RE, Inf, w(), and w_im().

◆ erfc() [2/2]

double FADDEEVA_RE() erfc ( double  x)

Definition at line 417 of file Faddeeva.cc.

References erfcx(), and FADDEEVA_RE.

◆ erfcx() [1/2]

cmplx FADDEEVA() erfcx ( cmplx  z,
double  relerr 
)

Definition at line 273 of file Faddeeva.cc.

References C, FADDEEVA, and w().

Referenced by Dawson(), erf(), erfc(), and w().

◆ erfcx() [2/2]

double FADDEEVA_RE() erfcx ( double  x)

Definition at line 1421 of file Faddeeva.cc.

◆ erfi() [1/2]

cmplx FADDEEVA() erfi ( cmplx  z,
double  relerr 
)

Definition at line 403 of file Faddeeva.cc.

References C, erf(), and FADDEEVA.

◆ erfi() [2/2]

double FADDEEVA_RE() erfi ( double  x)

Definition at line 410 of file Faddeeva.cc.

References FADDEEVA, Inf, and w_im().

◆ w()

◆ w_im()

double FADDEEVA() w_im ( double  x)

Definition at line 1863 of file Faddeeva.cc.

Referenced by Dawson(), erf(), erfc(), and erfi().