propmat_clearskyAddPredefined
- Workspace.propmat_clearskyAddPredefined(self: pyarts.arts._Workspace, propmat_clearsky: pyarts.arts.WorkspaceVariable | pyarts.arts.PropagationMatrix | None = self.propmat_clearsky, dpropmat_clearsky_dx: pyarts.arts.WorkspaceVariable | pyarts.arts.ArrayOfPropagationMatrix | None = self.dpropmat_clearsky_dx, predefined_model_data: pyarts.arts.WorkspaceVariable | pyarts.arts.PredefinedModelData | None = self.predefined_model_data, abs_species: pyarts.arts.WorkspaceVariable | pyarts.arts.ArrayOfArrayOfSpeciesTag | None = self.abs_species, select_abs_species: pyarts.arts.WorkspaceVariable | pyarts.arts.ArrayOfSpeciesTag | None = self.select_abs_species, jacobian_quantities: pyarts.arts.WorkspaceVariable | pyarts.arts.ArrayOfRetrievalQuantity | None = self.jacobian_quantities, f_grid: pyarts.arts.WorkspaceVariable | pyarts.arts.Vector | None = self.f_grid, rtp_pressure: pyarts.arts.WorkspaceVariable | pyarts.arts.Numeric | None = self.rtp_pressure, rtp_temperature: pyarts.arts.WorkspaceVariable | pyarts.arts.Numeric | None = self.rtp_temperature, rtp_vmr: pyarts.arts.WorkspaceVariable | pyarts.arts.Vector | None = self.rtp_vmr, verbosity: pyarts.arts.WorkspaceVariable | pyarts.arts.Verbosity | None = self.verbosity) None
Adds all of the predefined models in
abs_species
to the propmat_clearskyOnly supports temperature and wind speed derivatives
Available models:
O2-MPM2020: 60 GHz and 118 GHz lines only (no continua, no higher Hz line centers)
Dmitriy S. Makarov, Mikhail Yu. Tretyakov, Philip W. Rosenkranz, JQSRT 243, 2020, Revision of the 60-GHz atmospheric oxygen absorption band models for practical use, https://doi.org/10.1016/j.jqsrt.2019.106798
H2O-ForeignContCKDMT350: Foreign continua. Expects H2O line center cutoff at 25 cm-1
CKD_MTv3.50 H2O foreign continuum from the FORTRAN77 code written by Atmospheric and Environmental Research Inc. (AER), Radiation and Climate Group 131 Hartwell Avenue Lexington, MA 02421, USA http://www.rtweb.aer.com/continuum_frame.html
H2O-SelfContCKDMT350: Self continua. Expects H2O line center cutoff at 25 cm-1
CKD_MTv3.50 H2O self continuum from the FORTRAN77 code written by Atmospheric and Environmental Research Inc. (AER), Radiation and Climate Group 131 Hartwell Avenue Lexington, MA 02421, USA http://www.rtweb.aer.com/continuum_frame.html
H2O-ForeignContCKDMT320: Foreign continua. Expects H2O line center cutoff at 25 cm-1
CKD_MTv3.20 H2O foreign continuum from the FORTRAN77 code written by Atmospheric and Environmental Research Inc. (AER), Radiation and Climate Group 131 Hartwell Avenue Lexington, MA 02421, USA http://www.rtweb.aer.com/continuum_frame.html
H2O-SelfContCKDMT320: Self continua. Expects H2O line center cutoff at 25 cm-1
CKD_MTv3.20 H2O self continuum from the FORTRAN77 code written by Atmospheric and Environmental Research Inc. (AER), Radiation and Climate Group 131 Hartwell Avenue Lexington, MA 02421, USA http://www.rtweb.aer.com/continuum_frame.html
H2O-SelfContCKDMT400: Self continuum for water. General reference: Mlawer et al. (2012), doi:10.1098/rsta.2011.0295
Our code is reimplemented based on original Fortran90 code that is/was/will-be-made available via hitran.org
Note that this model comes with the copyright statement [1].
Note also that this model requires
predefined_model_data
to contain relevant data set either usingpredefined_model_dataAddWaterMTCKD400()
or via some file reading routine.H2O-ForeignContCKDMT400: Foreign continuum for water. General reference: Mlawer et al. (2012), doi:10.1098/rsta.2011.0295
Our code is reimplemented based on original Fortran90 code that is/was/will-be-made available via hitran.org
Note that this model comes with the copyright statement [1].
Note also that this model requires
predefined_model_data
to contain relevant data set either usingpredefined_model_dataAddWaterMTCKD400()
or via some file reading routine.H2O-ForeignContStandardType: Water microwave continua
P. W. Rosenkranz., Radio Science, 33(4), 919, 1998 and Radio Science, Vol. 34(4), 1025, 1999.
H2O-SelfContStandardType: Water microwave continua
P. W. Rosenkranz., Radio Science, 33(4), 919, 1998 and Radio Science, Vol. 34(4), 1025, 1999.
H2O-MPM89: Microwave water absorption model
Liebe, Int. J. Infrared and Millimeter Waves, 10(6), 1989, 631.
H2O-PWR98: Microwave water absorption model
P. W. Rosenkranz., Radio Science, 33(4), 919, 1998 and Radio Science, Vol. 34(4), 1025, 1999.
H2O-PWR2021: Microwave water absorption model developed by P.W. Rosenkranz.
Our code is reimplemented based on the Fortran code available at http://cetemps.aquila.infn.it/mwrnet/lblmrt_ns.html
H2O-PWR2022: Microwave water absorption model developed by P.W. Rosenkranz.
Our code is reimplemented based on the Fortran code available at http://cetemps.aquila.infn.it/mwrnet/lblmrt_ns.html
CO2-CKDMT252: MT CKD absorption for CO2
This absorption model is taken from the FORTRAN77 code of CKD_MT version 2.50 written by<br> Atmospheric and Environmental Research Inc. (AER),<br> Radiation and Climate Group<br> 131 Hartwell Avenue<br> Lexington, MA 02421, USA<br> http://www.rtweb.aer.com/continuum_frame.html
O2-CIAfunCKDMT100: CIA for oxygen from MT CKD
F. Thibault, V. Menoux, R. Le Doucen, L. Rosenman, J.-M. Hartmann, Ch. Boulet,<br> Infrared collision-induced absorption by O2 near 6.4 microns for atmospheric applications: measurements and emprirical modeling,<br> Appl. Optics, 35, 5911-5917, (1996).
This absorption model is taken from the FORTRAN77 code of CKD_MT version 1.00 written by<br> Atmospheric and Environmental Research Inc. (AER),<br> Radiation and Climate Group<br> 131 Hartwell Avenue<br> Lexington, MA 02421, USA<br> http://www.rtweb.aer.com/continuum_frame.html
O2-MPM89: Oxygen microwave absorption model
Reference: H. J. Liebe and G. A. Hufford and M. G. Cotton,<br> <i>Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz</i>,<br> AGARD 52nd Specialists Meeting of the Electromagnetic Wave Propagation Panel,<br> Palma de Mallorca, Spain, 1993, May 17-21
O2-PWR98: Oxygen microwave absorption model
P.W. Rosenkranz, CHAP. 2 and appendix, in ATMOSPHERIC REMOTE SENSING BY MICROWAVE RADIOMETRY (M.A. Janssen, ed., 1993). H.J. Liebe et al, JQSRT V.48, PP.629-643 (1992). M.J. Schwartz, Ph.D. thesis, M.I.T. (1997). SUBMILLIMETER LINE INTENSITIES FROM HITRAN96.
O2-PWR2021: Oxygen microwave absorption model developed by P.W. Rosenkranz.
Our code is reimplemented based on the Fortran code available at http://cetemps.aquila.infn.it/mwrnet/lblmrt_ns.html
O2-PWR2022: Oxygen microwave absorption model developed by P.W. Rosenkranz.
Our code is reimplemented based on the Fortran code available at http://cetemps.aquila.infn.it/mwrnet/lblmrt_ns.html
O2-SelfContStandardType: Microwave continua term
Reference: P. W. Rosenkranz, Chapter 2, in M. A. Janssen, <br> <I>Atmospheric Remote Sensing by Microwave Radiometry</i>,<br> John Wiley & Sons, Inc., 1993.<br> <br> Reference: H. J. Liebe and G. A. Hufford and M. G. Cotton,<br> <i>Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz</i>,<br> AGARD 52nd Specialists Meeting of the Electromagnetic Wave Propagation Panel,<br> Palma de Mallorca, Spain, 1993, May 17-21
O2-TRE05: Oxygen microwave absorption model
References: H. J. Liebe and G. A. Hufford and M. G. Cotton,<br> <i>Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz</i>,<br> AGARD 52nd Specialists Meeting of the Electromagnetic Wave Propagation Panel,<br> Palma de Mallorca, Spain, 1993, May 17-21
M.Yu. Tretyakov, M.A. Koshelev, V.V. Dorovskikh, D.S. Makarov, P.W. Rosenkranz; 60-GHz oxygen band: precise broadening and central frequencies of fine-structure lines, absolute absorption profile at atmospheric pressure, and revision of mixing coefficients doi:10.1016/j.jms.2004.11.011
O2-v0v0CKDMT100: MT CKD
CKD_MT 1.00 implementation of oxygen collision induced fundamental model of O2 continuum formulated by Mate et al. over the spectral region 7550-8486 cm-1: B. Mate, C. Lugez, G.T. Fraser, W.J. Lafferty, “Absolute Intensities for the O2 1.27 micron continuum absorption”, J. Geophys. Res., 104, 30,585-30,590, 1999.
Also, refer to the paper “Observed Atmospheric Collision Induced Absorption in Near Infrared Oxygen Bands”, Mlawer, Clough, Brown, Stephen, Landry, Goldman, & Murcray, Journal of Geophysical Research (1997).
This absorption model is taken from the FORTRAN77 code of CKD_MT version 1.00 written by<br> Atmospheric and Environmental Research Inc. (AER),<br> Radiation and Climate Group<br> 131 Hartwell Avenue<br> Lexington, MA 02421, USA<br> http://www.rtweb.aer.com/continuum_frame.html<br> <br>
O2-v1v0CKDMT100: MT CKD
Mlawer, Clough, Brown, Stephen, Landry, Goldman, Murcray,<br> Observed Atmospheric Collision Induced Absorption in Near Infrared Oxygen Bands,<br> J. Geophys. Res., 103, D4, 3859-3863, 1998.
This absorption model is taken from the FORTRAN77 code of CKD_MT version 1.00 written by<br> Atmospheric and Environmental Research Inc. (AER),<br> Radiation and Climate Group<br> 131 Hartwell Avenue<br> Lexington, MA 02421, USA<br> http://www.rtweb.aer.com/continuum_frame.html<br>
O2-visCKDMT252: MT CKD
O2 continuum formulated by Greenblatt et al. over the spectral region 8797-29870 cm-1: “Absorption Coefficients of Oxygen Between 330 and 1140 nm, G.D. Green blatt, J.J. Orlando, J.B. Burkholder, and A.R. Ravishabkara, J. Geophys. Res., 95, 18577-18582, 1990.
This absorption model is taken from the FORTRAN77 code of CKD_MT version 2.50 written by<br> Atmospheric and Environmental Research Inc. (AER),<br> Radiation and Climate Group<br> 131 Hartwell Avenue<br> Lexington, MA 02421, USA<br> http://www.rtweb.aer.com/continuum_frame.html<br>
N2-CIAfunCKDMT252: MT CKD
Lafferty, W.J., A.M. Solodov,A. Weber, W.B. Olson and J._M. Hartmann,<br> Infrared collision-induced absorption by N2 near 4.3 microns for atmospheric applications: Measurements and emprirical modeling, <br> Appl. Optics, 35, 5911-5917, (1996)
This absorption model is taken from the FORTRAN77 code of CKD_MT version 1.00 written by<br> Atmospheric and Environmental Research Inc. (AER),<br> Radiation and Climate Group<br> 131 Hartwell Avenue<br> Lexington, MA 02421, USA<br> http://www.rtweb.aer.com/continuum_frame.html
N2-CIArotCKDMT252: MT CKD
Borysow, A, and L. Frommhold,<br> Collision-induced rototranslational absorption spectra of N2-N2 pairs for temperatures from 50 to 300 K,<br> The Astrophysical Journal, 311, 1043-1057, 1986.
This absorption model is taken from the FORTRAN77 code of CKD_MT version 1.00 written by<br> Atmospheric and Environmental Research Inc. (AER),<br> Radiation and Climate Group<br> 131 Hartwell Avenue<br> Lexington, MA 02421, USA<br> http://www.rtweb.aer.com/continuum_frame.html
N2-SelfContStandardType: Microwave nitrogen absorption continua
Reference: P. W. Rosenkranz, Chapter 2, in M. A. Janssen, <br> <I>Atmospheric Remote Sensing by Microwave Radiometry</i>,<br> John Wiley & Sons, Inc., 1993.
N2-SelfContMPM93: Microwave nitrogen absorption continua from MPM93 model
Reference: H. J. Liebe and G. A. Hufford and M. G. Cotton,<br> <i>Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz</i>,<br> AGARD 52nd Specialists Meeting of the Electromagnetic Wave Propagation Panel,<br> Palma de Mallorca, Spain, 1993, May 17-21
N2-SelfContPWR2021: Microwave nitrogen absorption continua developed by P.W. Rosenkranz.
Note that this also includes O2-N2 and O2-O2 collision-induced absorption and is only applicable to Earth
Our code is reimplemented based on the Fortran code available at http://cetemps.aquila.infn.it/mwrnet/lblmrt_ns.html
liquidcloud-ELL07: Water droplet absorption
W. J. Ellison, <br> <i>Permittivity of Pure Water, at Standard Atmospheric Pressure, over the Frequency Range 0-25 THz and Temperature Range 0-100C</i>,<br> J. Phys. Chem. Ref. Data, Vol. 36, No. 1, 2007
Author(s): Richard Larsson
- Parameters:
propmat_clearsky (PropagationMatrix, optional) – This contains the absorption coefficients for one point in the atmosphere. See
propmat_clearsky
, defaults toself.propmat_clearsky
[INOUT]dpropmat_clearsky_dx (ArrayOfPropagationMatrix, optional) – Partial derivative of absorption coefficients. See
dpropmat_clearsky_dx
, defaults toself.dpropmat_clearsky_dx
[INOUT]predefined_model_data (PredefinedModelData, optional) – This contains predefined model data. See
predefined_model_data
, defaults toself.predefined_model_data
[IN]abs_species (ArrayOfArrayOfSpeciesTag, optional) – Tag groups for gas absorption. See
abs_species
, defaults toself.abs_species
[IN]select_abs_species (ArrayOfSpeciesTag, optional) – A select species tag group from
abs_species
. Seeselect_abs_species
, defaults toself.select_abs_species
[IN]jacobian_quantities (ArrayOfRetrievalQuantity, optional) – The retrieval quantities in the Jacobian matrix. See
jacobian_quantities
, defaults toself.jacobian_quantities
[IN]f_grid (Vector, optional) – The frequency grid for monochromatic pencil beam calculations. See
f_grid
, defaults toself.f_grid
[IN]rtp_pressure (Numeric, optional) – Pressure at a radiative transfer point. See
rtp_pressure
, defaults toself.rtp_pressure
[IN]rtp_temperature (Numeric, optional) – Temperature at a radiative transfer point. See
rtp_temperature
, defaults toself.rtp_temperature
[IN]rtp_vmr (Vector, optional) – Absorption species abundances for radiative transfer calculations. See
rtp_vmr
, defaults toself.rtp_vmr
[IN]verbosity (Verbosity) – ARTS verbosity. See
verbosity
, defaults toself.verbosity
[IN]