CxxWorkspace
- class pyarts3.arts.CxxWorkspace(*args, **kwargs)
The core ARTS Workspace
Overview
Method
Ignore a workspace variable.
Method
Inversion by the so called optimal estimation method (OEM).
Method
Reads split catalog data from a folder structure similar to
arts-cat-data
Method
Reads a workspace variable from an XML file.
Method
As
ReadXML()
, but reads indexed file names.Method
Sets an atmospheric target.
Method
Set a measurement error to polynomial fit.
Method
Set magnetic field derivative.
Method
Set magnetic field derivative for overlapping fields.
Method
Set wind field derivative for overlapping fields.
Method
Set pressure derivative.
Method
Set sensor frequency derivative to use polynomial fitting offset
Method
Set isotopologue ratio derivative
Method
Set volume mixing ratio derivative.
Method
Sets a subsurface target
Method
Sets a surface target
Method
Set temperature derivative.
Method
Set wind field derivative.
Method
Finalize the retrieval setup.
Method
Initialize the retrieval setup.
Method
Integrate Disort spectral radiance.
Method
As
Ignore()
but for agenda output.Method
Update state of the model in preparation for a forward model run
Method
Initialize the Wigner tables
Method
Unloads the Wigner tables from static data (see
WignerInit()
)Method
Writes all the builtin partition functions to file.
Method
Writes a workspace variable to an XML file.
Method
As
WriteXML()
, but creates indexed file names.Method
Sets
absorption_bands
to the state of the model.Method
Keeps first band of ID
Method
Adapts select band to use ordered Line mixing coefficients.
Method
Reads HITRAN data from a file.
Method
Same as
absorption_bandsReadSpeciesSplitCatalog()
but for reading the old ARTSCAT format.Method
Reads all species in
absorption_species
from a basenameMethod
Saves all bands in
absorption_bands
to a directoryMethod
Remove first band of with a matching ID
Method
Saves all bands fin
absorption_bands
to a directoryMethod
Remove all bands whose lines all strictly falls outside a frequency range
Method
Remove all lines that strictly falls outside a frequency range
Method
Set all bands to use non-LTE calculations.
Method
Set the Zeeman splitting for lines within the frequency range
Method
Takes CIARecord as input and appends the results in the appropriate place.
Method
Read data from a CIA data file for all CIA molecules defined
Method
Read data from a CIA XML file and check that all CIA tags defined
Method
Reads a species split CIA dataset.
Method
Get
absorption_lookup_table
from available data.Method
Compute the lookup table for all species in
absorption_bands
.Method
Initialize an empty lookup table.
Method
Precompute the lookup table for a single species, adding it to the map.
Method
Compute the lookup table for all species in
absorption_bands
.Method
Set up a simple wide lookup table for all species in
absorption_bands
.Method
Sets the data for MT CKD 4.0 Water model
Method
Initialize the predefined model data
Method
Reads
absorption_predefined_model_data
catalog but only forabsorption_species
Method
Sets
absorption_species
[i][0] to all species in ARTSMethod
Set
absorption_species
to the named species.Method
Reads HITRAN Crosssection coefficients
Method
Set the magnetic field to use the magnitude field functional.
Method
Set the wind field to use the magnitude field functional.
Method
Append data to the atmospheric field based all absorption data
Method
Append base data to the atmospheric field
Method
Append species data to the atmospheric field based on collision-induced data data
Method
Append isotopologue data to the atmospheric field based on line data
Method
Append NLTE data to the atmospheric field based on line data
Method
Append species data to the atmospheric field based on line data
Method
Append species data to the atmospheric field based on lookup data
Method
Append species data to the atmospheric field based on predefined model data
Method
Append species data to the atmospheric field based on species data
Method
Append species data to the atmospheric field based on cross-section data
Method
Fits non-LTE atmospheric field values
Method
Sets
atmospheric_field
to the state of the model.Method
Sets the atmospheric field to be the 1D atmospheric profile.
Method
Add the hydrostatic pressure to the atmospheric field
Method
Use IGRF to compute the magnetic field at each point.
Method
Initialize the atmospheric field with some altitude and isotopologue ratios
Method
Initialize the non-LTE atmospheric field from the LTE temperature field.
Method
Read atmospheric data files from a directory
Method
Regrid the input atmospheric field parameter to a new grid.
Method
Regrid all parameters of the input atmospheric field to a new grid
Method
For forward calculations, this should be similar to
atmospheric_fieldIGRF()
.Method
Initialize an atmospheric point with some isotopologue ratios
Method
Extends the atmospheric profile in pressure.
Method
Extract an atmospheric profile from the atmospheric field.
Method
Fits non-LTE distributions to the level data.
Method
Extract an atmospheric profile and its grids.
Method
Space radiation into Disort is isotropic cosmic background radiation.
Method
Perform Disort calculations for spectral flux.
Method
Same as
disort_settingsLayerThermalEmissionLinearInTau()
but considers non-LTEMethod
Use a source function that changes linearly in optical thickness.
Method
Sets the legendre coefficients from the path-variable.
Method
Turns off fractional scattering in Disort calculations.
Method
Turns off source radiation in Disort calculations.
Method
Turns off Legendre coefficients in Disort calculations.
Method
Turns off single albedo scattering in Disort calculations.
Method
Turns off boundary condition from space for Disort calculations.
Method
Turns off solar radiation in Disort calculations.
Method
Turns boundary condition from surface for Disort calculations.
Method
Turns off BDRF in Disort calculations.
Method
Get optical thickness from path.
Method
Uses Set the FOV to the sun input for Disort calculations.
Method
Sets the single scattering albedo from the path-variable.
Method
Surface radiation into Disort is isotropic from surface temperature.
Method
Sets the surface to Lambertian.
Method
Executes
disort_settings_agenda
, see it for more detailsMethod
Executes an operator emulating
disort_settings_agenda
, see it, and alsodisort_settings_agendaOperator
, for more detailsMethod
Set
disort_settings_agenda
to exclusively use provided external operator. Seedisort_settings_agendaOperator
for more details.Method
Setup for Disort standard calculations.
Method
Perform Disort calculations for spectral flux.
Method
Use Disort for clearsky calculations of spectral flux field
Method
Extract a 1D path through the atmospheric field and calculate spectral flux using Disort
Method
Perform Disort calculations for spectral radiance.
Method
Perform CDisort calculations for spectral radiance.
Method
Use the disort settings agenda to calculate spectral radiance
Method
Use the disort settings agenda to calculate spectral radiance
Method
Extract a 1D path through the atmospheric field and calculate spectral radiance using Disort
Method
Extract a 1D path through the atmospheric field and calculate spectral radiance using Disort
Method
Sets the O2-66 microwave band data for ECS.
Method
Sets ECS data for air from other data if available.
Method
Sets the CO2-626, CO2-628, and CO2-636 band data for ECS.
Method
Sets the CO2-626, CO2-628, and CO2-636 band data for ECS.
Method
Resets/initializes the ECS data.
Method
Computes the spectral flux
Method
Frequency grid useful for
atmospheric_profileFitNonLTE()
.Method
Applies wind shift to the
frequency_grid
for the local frequency grid.Method
Gets the value of the variable with the given name.
Method
Sets a gravity operator from the gravitational constant and the mass of the planet
Method
Checks if the workspace contains the variable.
Method
Overloaded function.
Method
Executes
inversion_iterate_agenda
, see it for more detailsMethod
Executes an operator emulating
inversion_iterate_agenda
, see it, and alsoinversion_iterate_agendaOperator
, for more detailsMethod
Set
inversion_iterate_agenda
to a specific predefined optionMethod
Set
inversion_iterate_agenda
to exclusively use provided external operator. Seeinversion_iterate_agendaOperator
for more details.Method
Sets an atmospheric target.
Method
Set a measurement error to polynomial fit.
Method
Set magnetic field derivative.
Method
Set magnetic field derivative for overlapping fields.
Method
Set wind field derivative for overlapping fields.
Method
Set pressure derivative.
Method
Set sensor frequency derivative to use polynomial fitting offset
Method
Set isotopologue ratio derivative
Method
Set volume mixing ratio derivative.
Method
Sets a subsurface target
Method
Sets a surface target
Method
Set temperature derivative.
Method
Set wind field derivative.
Method
Clears
jacobian_targets
ifdo_jacobian
evaluates false.Method
Finalize
jacobian_targets
.Method
Initialize or reset the
jacobian_targets
.Method
Turns off
jacobian_targets
Method
Toggles logarithmic/relative or absolute retrievals.
Method
Toggles logarithmic/relative or absolute retrievals.
Method
Toggles logarithmic/relative or absolute retrievals.
Method
Toggles logarithmic or absolute retrievals.
Method
Toggles logarithmic or absolute retrievals.
Method
Toggles logarithmic or absolute retrievals.
Method
Toggles relative or absolute retrievals.
Method
Toggles relative humidity or absolute retrievals.
Method
Toggles relative or absolute retrievals.
Method
Toggles relative or absolute retrievals.
Method
Sets
legendre_degree
todisort_settings
legendre_polynomial_dimension
Method
Calculate the averaging kernel matrix.
Method
Executes
measurement_inversion_agenda
, see it for more detailsMethod
Executes an operator emulating
measurement_inversion_agenda
, see it, and alsomeasurement_inversion_agendaOperator
, for more detailsMethod
Set
measurement_inversion_agenda
to a specific predefined optionMethod
Set
measurement_inversion_agenda
to exclusively use provided external operator. Seemeasurement_inversion_agendaOperator
for more details.Method
Applies transformations to the atmospheric state Jacobian
Method
Applies transformations to the line-by-line state Jacobian
Method
Applies transformations to the measurement sensor state Jacobian
Method
Applies transformations to the subsurface state Jacobian
Method
Applies transformations to the surface state Jacobian
Method
Apply all transformations to the Jacobian related to states in
model_state_vectorFromData()
Method
Adds sensor elements from a raw perturbation of the sensor
Method
Adds a sensor with a dirac channel opening around the frequency grid.
Method
Adds a sensor with a Gaussian channel opening around the frequency grid.
Method
Adds a sensor with a Gaussian channel opening around the frequency grid.
Method
Update
measurement_sensor
frommodel_state_vector
.Method
Initialize
measurement_sensor
to empty.Method
Make the
measurement_sensor
excluive.Method
Creates a single simple dirac-opening sensor
Method
Creates a single simple Gaussian-opening sensor
Method
Creates a single simple Gaussian-opening sensor
Method
Add the measurement error to the measurement. Conditionally, also to the Jacobian.
Method
Sets measurement vector by looping over all sensor elements
Method
Sets measurement vector by looping over all sensor elements
Method
Set the error and its Jacobian from the state of the model.
Method
Sets a constant measurement vector error covariance matrix.
Method
measurement_vector_error_covariance_matrix_observation_systemCalc()
Calculates the covariance matrix describing the error due to uncertainties in the observation system.
Method
Sets the fitted measurement vector to the current measurement vector.
Method
Set a species model state covariance matrix element.
Method
Initialises the model state covariance matrix to the identity matrix.
Method
Calculates the covariance matrix describing the error due to smoothing.
Method
Sets
model_state_vector
’s atmospheric part.Method
Sets
model_state_vector
’s absorption line part.Method
Get
model_state_vector
from available dataMethod
Sets
model_state_vector
’s sensor part.Method
Sets
model_state_vector
’s subsurface part.Method
Sets
model_state_vector
’s surface part.Method
Sets
model_state_vector
to the sizejacobian_targets
demand.Method
Get
model_state_vector_apriori
from available dataMethod
Sets the a priori state of the model state vector to the current state.
Method
Integrate the spectral flux profile to get the line non-LTE flux
Method
Add absorption coefficients for HITRAN collision induced absorption (CIA).
Method
Calculates absorption matrix describing Faraday rotation.
Method
Line-by-line calculations.
Method
Lookup calculations.
Method
Adds all of the predefined models in
absorption_species
to the propagation_matrixMethod
Calculate absorption cross sections per tag group for HITRAN xsec species.
Method
Initialize
propagation_matrix
,propagation_matrix_source_vector_nonlte
, and their derivatives to zeroes.Method
Sets the
propagation_matrix_agenda
automatically from absorption data and species tag meta information.Method
Executes
propagation_matrix_agenda
, see it for more detailsMethod
Executes an operator emulating
propagation_matrix_agenda
, see it, and alsopropagation_matrix_agendaOperator
, for more detailsMethod
Set
propagation_matrix_agenda
to a specific predefined optionMethod
Set
propagation_matrix_agenda
to exclusively use provided external operator. Seepropagation_matrix_agendaOperator
for more details.Method
Fix for the wind field derivative.
Method
propagation_matrix_scatteringAddSpectralScatteringSpeciesTRO()
Adds
scattering_species
results for totally random oriented spectral calculations toMethod
Add simple air to
propagation_matrix_scattering
.Method
Initialize
propagation_matrix_scattering
to zeroes.Method
Initialize
propagation_matrix_scattering
and co to zeroes.Method
Executes
propagation_matrix_scattering_agenda
, see it for more detailsMethod
Executes an operator emulating
propagation_matrix_scattering_agenda
, see it, and alsopropagation_matrix_scattering_agendaOperator
, for more detailsMethod
Set
propagation_matrix_scattering_agenda
to a specific predefined optionMethod
Set
propagation_matrix_scattering_agenda
to exclusively use provided external operator. Seepropagation_matrix_scattering_agendaOperator
for more details.Method
Executes
propagation_matrix_scattering_spectral_agenda
, see it for more detailsMethod
propagation_matrix_scattering_spectral_agendaExecuteOperator()
Executes an operator emulating
propagation_matrix_scattering_spectral_agenda
, see it, and alsopropagation_matrix_scattering_spectral_agendaOperator
, for more detailsMethod
Set
propagation_matrix_scattering_spectral_agenda
to a specific predefined optionMethod
Set
propagation_matrix_scattering_spectral_agenda
to exclusively use provided external operator. Seepropagation_matrix_scattering_spectral_agendaOperator
for more details.Method
Fill the path with with points that crosses the grid of the atmspheric field.
Method
Add the limb point to the ray path
Method
Fill the path with geometric step points.
Method
Fill the path with geometric step points.
Method
Fix azimuth angle errors that can occur for 180 and 0 degrees zenith.
Method
Get a geometric radiation path
Method
Wraps
ray_pathGeometric()
for straight downlooking paths from the top-of-the-atmosphere altitudeMethod
Wraps
ray_pathGeometric()
for straight uplooking paths from the surface altitude at the positionMethod
Initialize the ray path with a single point.
Method
Remove points that are too close to each other.
Method
Remove non-atmospheric points to the ray path
Method
Remove all non-geometric grid crossings from the ray path.
Method
Add the geometric extremes to the ray path.
Method
Gets the atmospheric points along the path.
Method
Set
ray_path_atmospheric_point = atmospheric_profile
.Method
Adds observers that covers all zenith angles for each altitude point.
Method
Create a ray path field from a set of observers.
Method
Gets the frequency grids along the path.
Method
Executes
ray_path_observer_agenda
, see it for more detailsMethod
Executes an operator emulating
ray_path_observer_agenda
, see it, and alsoray_path_observer_agendaOperator
, for more detailsMethod
Set
ray_path_observer_agenda
from programmable geometric settings.Method
Set
ray_path_observer_agenda
to exclusively use provided external operator. Seeray_path_observer_agendaOperator
for more details.Method
Get a list of observer positions and line of sights to represent observing all angles of a profile.
Method
Add \(n\) observers per altitude point.
Method
Sets
ray_path_point
to the expected background point ofray_path
Method
Sets
ray_path_point
to the expected foreground point ofray_path
Method
Sets
ray_path_point
to the highest altitude point ofray_path
.Method
Sets
ray_path_point
to the lowest altitude point ofray_path
.Method
Adds the scattering part of the propagation matrix to the rest along the path.
Method
Gets the propagation matrix and non-LTE source term along the path.
Method
Gets the propagation matrix for scattering along the path.
Method
Compute
ray_path_propagation_matrix_scattering
and co for a path.Method
As
ray_path_propagation_matrixFromPath()
but the output is split between the species in theMethod
ray_path_spectral_radiance_scatteringSunsFirstOrderRayleigh()
Method
Adds the scattering part of the propagation matrix to the rest along the path.
Method
Gets the source term along the path.
Method
Wraps
sun_pathFromObserverAgenda()
for all paths to all suns.Method
Gets the transmission matrix in layers along the path.
Method
Sets
ray_path_transmission_matrix_cumulative
by forward iteration ofray_path_transmission_matrix
Method
Sets a path of Zeeman effect magnetic field properties.
Method
Read variable from file
Method
Saves variable to file
Method
Initialize scattering species.
Method
Selects all main absorbers from the absorption data.
Method
Set the variable to the new value.
Method
Get the sorting of the bands by first quantum identifier then some
criteria
Method
Computes the spectral flux from a field of paths.
Method
Computes the spectral flux. The input field must be a profile.
Method
Computes the spectral flux profile using pseudo-2D geometry
Method
Helper to call
spectral_radianceApplyUnit()
when you do not havespectral_radiance_jacobian
.Method
Applies a unit to
spectral_radiance
, returning a new fieldMethod
Helper method for calling
spectral_radianceApplyUnit()
.Method
Computes clearsky transmission of spectral radiances
Method
Computes clearsky emission of spectral radiances
Method
Computes clearsky emission of spectral radiances with solar Rayleigh scattering
Method
Computes clearsky transmission of spectral radiances
Method
Gets the spectral radiance from the path transmission.
Method
Sets default
spectral_radiance
andspectral_radiance_jacobian
for transmission.Method
Set surface spectral radiance from Planck function of the surface temperature and the reflectance of incoming radiation
Method
Integrate Disort spectral radiance.
Method
Gets the spectral radiance from the path.
Method
Get the spectral radiance of a sun or of the cosmic background if the sun is not hit.
Method
Get the spectral radiance of a sun or of the cosmic background if no sun is hit.
Method
Set surface spectral radiance from Planck function of the surface temperature
Method
Background spectral radiance is from a uniform cosmic background temperature.
Method
Computes the background radiation.
Method
Computes the spectral radiance field using
ray_path_observer_agenda
.Method
Computes the spectral radiance field assuming planar geometric paths
Method
Computes the spectral radiance field assuming a profile and a pseudo-2D path.
Method
Adds the propagation variables to
spectral_radiance_jacobian
Method
Adds sensor properties to the
spectral_radiance_jacobian
.Method
Set the cosmic background radiation derivative to empty.
Method
Sets
spectral_radiance_jacobian
from the background valuesMethod
Executes
spectral_radiance_observer_agenda
, see it for more detailsMethod
Executes an operator emulating
spectral_radiance_observer_agenda
, see it, and alsospectral_radiance_observer_agendaOperator
, for more detailsMethod
Set
spectral_radiance_observer_agenda
to a specific predefined optionMethod
Set
spectral_radiance_observer_agenda
to exclusively use provided external operator. Seespectral_radiance_observer_agendaOperator
for more details.Method
Set up a 1D spectral radiance operator
Method
Executes
spectral_radiance_space_agenda
, see it for more detailsMethod
Executes an operator emulating
spectral_radiance_space_agenda
, see it, and alsospectral_radiance_space_agendaOperator
, for more detailsMethod
Set
spectral_radiance_space_agenda
to a specific predefined optionMethod
Set
spectral_radiance_space_agenda
to exclusively use provided external operator. Seespectral_radiance_space_agendaOperator
for more details.Method
Executes
spectral_radiance_surface_agenda
, see it for more detailsMethod
Executes an operator emulating
spectral_radiance_surface_agenda
, see it, and alsospectral_radiance_surface_agendaOperator
, for more detailsMethod
Set
spectral_radiance_surface_agenda
to a specific predefined optionMethod
Set
spectral_radiance_surface_agenda
to exclusively use provided external operator. Seespectral_radiance_surface_agendaOperator
for more details.Method
Creates a
SpectralRadianceTransformOperator
from aSpectralRadianceUnitType
.Method
Sets
subsurface_field
to the state of the model.Method
Set
sun
to blackbody.Method
Extracts a sun spectrum from a field of such data.
Method
Find a path that hits the sun if possible
Method
Method
Earth reference ellipsoids.
Method
Europa reference ellipsoids.
Method
Sets
surface_field
to the state of the model.Method
Ganymede reference ellipsoids.
Method
Manual setting of the reference ellipsoid.
Method
Io reference ellipsoids.
Method
Jupiter reference ellipsoids.
Method
Mars reference ellipsoids.
Method
Moon reference ellipsoids.
Method
Initialize the surface field with the ellipsoid of a planet.
Method
Venus reference ellipsoids.
Method
Swap the workspace for andother.
Method
Sets
transmission_matrix_background
to back ofray_path_transmission_matrix_cumulative
.Method
Sets
transmission_matrix_background
to front ofray_path_transmission_matrix_cumulative
.Method
Sets an operator to compute the water equivalent pressure according to Murphy and Koop, 2005.
Method
A custom zenith grid for
spectral_radiance_fieldProfilePseudo2D()
Static Method
Create variable from file
Attribute
Bands of absorption lines for line-by-line (LBL) calculations.
Attribute
HITRAN Collision-Induced Absorption (CIA) Data.
Attribute
Absorption lookup table for scalar gas absorption coefficients.
Attribute
This contains predefined model data.
Attribute
Tag groups for gas absorption.
Attribute
The absorption vector of totally random orientation particles at a single point along a path using spectral representation
Attribute
Fitting model coefficients for cross section species.
Attribute
A single altitude in the atmosphere.
Attribute
An ascending list of
altitude
. Often related to a field or a profile.Attribute
An atmospheric field in ARTS.
Attribute
An atmospheric point in ARTS.
Attribute
An atmospheric profile in ARTS.
Attribute
A helper map for setting the covariance matrix.
Attribute
The number of Fourier modes for Disort.
Attribute
The number of input Legendre polynimials for Disort.
Attribute
The quadrature angles for Disort with accompying weights.
Attribute
The quadrature size for Disort.
Attribute
Contains the full settings of spectral Disort calculations.
Attribute
An agenda for setting up Disort.
Attribute
The spectral flux field from Disort.
Attribute
The spectral radiance field from Disort.
Attribute
A boolean calculations related to the
measurement_jacobian
should be ignored.Attribute
Error corrected sudden data
Attribute
A single frequency grid.
Attribute
The frequency grid wind shift Jacobian.
Attribute
The gravity operator.
Attribute
Work in progress …
Attribute
A counter for the inversion iterate agenda.
Attribute
A list of targets for the Jacobian Matrix calculations.
Attribute
A single latitude.
Attribute
An ascending list of
latitude
. Often related to a field or a profile.Attribute
The degree of a Legendre polynimial.
Attribute
A single longitude.
Attribute
An ascending list of
longitude
. Often related to a field or a profile.Attribute
Averaging kernel matrix.
Attribute
Contribution function (or gain) matrix.
Attribute
This is a helper
Agenda
intended for use withininversion_iterate_agenda
.Attribute
The first order partial derivatives of the
measurement_vector
.Attribute
The partial derivatives of the
measurement_vector_error
.Attribute
A list of sensor elements.
Attribute
The measurment vector for, e.g., a sensor.
Attribute
The model measurment vector error for, e.g., a sensor.
Attribute
Covariance matrix for observation uncertainties.
Attribute
As
measurement_vector
, but fitted to the model.Attribute
Covariance matrix of a priori distribution.
Attribute
A state vector of the model.
Attribute
An apriori state vector of the model.
Attribute
A per-line flux profile.
Attribute
The spectral phase matrix of totally random orientation particles at a single point along a path using spectral representation
Attribute
This contains the fully polarized propagation matrix for the current path point.
Attribute
Compute the propagation matrix, the non-LTE source vector, and their derivatives.
Attribute
Partial derivative of the
propagation_matrix
with regards tojacobian_targets
.Attribute
The propgation matrix of totally random orientation particles at a single point along a path using spectral representation
Attribute
Compute the part of the propagation matrix that relates to scattering.
Attribute
Get the scattering propagation matrix, the scattering absorption vector, and the scattering spectral phase matrix.
Attribute
The part of the source vector that is due to non-LTE.
Attribute
Partial derivative of the
propagation_matrix_source_vector_nonlte
with regards tojacobian_targets
.Attribute
A list path points making up a propagation path.
Attribute
The absorption vector of totally random orientation particles along the propagation path using spectral representation
Attribute
Atmospheric points along the propagation path.
Attribute
A list of
ray_path
intended to build up a field of observations.Attribute
All
frequency_grid
along the propagation path.Attribute
A list of
frequency_grid_wind_shift_jacobian
for a ray path.Attribute
Get the propagation path as it is obeserved.
Attribute
A list path points making up the observers of a propagation path.
Attribute
The spectral phase matrix of totally random orientation particles along the propagation path using spectral representation
Attribute
A single path point.
Attribute
Propagation matrices along the propagation path
Attribute
Propagation derivative matrices along the propagation path
Attribute
Propagation matrices along the propagation path for scattering
Attribute
Additional non-LTE along the propagation path
Attribute
Additional non-LTE derivative along the propagation path
Attribute
Spectral radiance derivative along the propagation path
Attribute
Spectral radiance scattered into the propagation path
Attribute
Source vectors along the propagation path
Attribute
Source derivative vectors along the propagation path
Attribute
A list of paths to the suns from the ray path.
Attribute
Transmission matrices along the propagation path.
Attribute
Cumulative transmission matrices along the propagation path
Attribute
Transmission derivative matrices along the propagation path.
Attribute
The scattering species
Attribute
Species selection.
Attribute
Species selection.
Attribute
An altitude profile of spectral flux.
Attribute
A spectral radiance vector.
Attribute
Spectral radiance from the background
Attribute
Spectral radiance derivative from the background
Attribute
The spectral radiance field.
Attribute
Jacobian of
spectral_radiance
with respect tojacobian_targets
.Attribute
Spectral radiance as seen from the input position and environment
Attribute
The line-of-sight of the observer of spectral radiance.
Attribute
The position of an observer of spectral radiance.
Attribute
The spectral radiance operator.
Attribute
Spectral radiance as seen of space.
Attribute
Spectral radiance as seen of the surface.
Attribute
The spectral radiance transform operator
Attribute
The sub0surface field describes the sub-surface properties.
Attribute
A sun.
Attribute
A path to a sun if it is visible.
Attribute
A list of
Sun
.Attribute
The surface field describes the surface properties.
Attribute
Transmittance from the background
Attribute
The water equivalent pressure operator.
Attribute
A single zenith angle grid.
Operator
Return self==value.
Operator
__format__(self, arg: str, /) -> str
Operator
Return self>=value.
Operator
Helper for pickle.
Operator
Return self>value.
Operator
Return hash(self).
Operator
__init__(self, with_defaults: bool = True) -> None
Operator
Allows iter(self)
Operator
Return self<=value.
Operator
Return self<value.
Operator
Return self!=value.
Operator
__repr__(self) -> str
Operator
__str__(self) -> str
Constructors
Methods
- Ignore(self, input: object | None = None) None
Ignore a workspace variable.
This method is handy for use in agendas in order to suppress warnings about unused input workspace variables. What it does is: Nothing! In other words, it just ignores the variable it is called on.
This method can ignore any workspace variable you want.
Author: Stefan Buehler
- Parameters:
input (Any) – Variable to be ignored. [IN]
- OEM(self, model_state_vector: pyarts3.arts.Vector | None = None, measurement_vector_fitted: pyarts3.arts.Vector | None = None, measurement_jacobian: pyarts3.arts.Matrix | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, measurement_sensor: pyarts3.arts.ArrayOfSensorObsel | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, subsurface_field: pyarts3.arts.SubsurfaceField | None = None, measurement_gain_matrix: pyarts3.arts.Matrix | None = None, oem_diagnostics: pyarts3.arts.Vector | None = None, lm_ga_history: pyarts3.arts.Vector | None = None, errors: pyarts3.arts.ArrayOfString | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, model_state_vector_apriori: pyarts3.arts.Vector | None = None, model_state_covariance_matrix: pyarts3.arts.CovarianceMatrix | None = None, measurement_vector: pyarts3.arts.Vector | None = None, measurement_vector_error_covariance_matrix: pyarts3.arts.CovarianceMatrix | None = None, inversion_iterate_agenda: pyarts3.arts.Agenda | None = None, method: pyarts3.arts.String | None = None, max_start_cost: pyarts3.arts.Numeric | None = None, model_state_covariance_matrix_normalization: pyarts3.arts.Vector | None = None, max_iter: pyarts3.arts.Index | None = None, stop_dx: pyarts3.arts.Numeric | None = None, lm_ga_settings: pyarts3.arts.Vector | None = None, clear_matrices: pyarts3.arts.Index | None = None, display_progress: pyarts3.arts.Index | None = None) None
Inversion by the so called optimal estimation method (OEM).
Work in progress …
The cost function to minimise, including a normalisation with length of
measurement_vector
, is:\[\chi^2 = \chi^2_y + \chi^2_x\]where:
\[\chi^2_y = \frac{1}{m} \left(\vec{y}-\vec{y}_f\right)^\top \mathbf{S}_\epsilon^{-1} \left(\vec{y}-\vec{y}_f\right)\]\[\chi^2_x = \frac{1}{m} \left(\vec{x}-\vec{x}_a\right)^\top \mathbf{S}_a^{-1} \left(\vec{x}-\vec{x}_a\right)\]where:
Variable
ARTS parameter
Meaning
\(\vec{x}\)
The model state vector. All model states that are allowed to vary.
\(\vec{x}_a\)
The a priori model state vector.
\(\vec{y}\)
The measurement vector. This is the measurement that the OEM is trying to fit.
\(\vec{y}_f\)
The fitted measurement vector. The simulated measurement vector for the model state vector.
\(\mathbf{S}_\epsilon\)
The error covariance matrix of the measurement vector.
\(\mathbf{S}_a\)
The a priori covariance matrix of the model state vector.
The current implementation provides 3 methods for the minimization of the cost functional: Linear, Gauss-Newton and Levenberg-Marquardt. The Gauss-Newton minimizer attempts to find a minimum solution by fitting a quadratic function to the cost functional. The linear minimizer is a special case of the Gauss-Newton method, since for a linear forward model the exact solution of the minimization problem is obtained after the first step. The Levenberg-Marquardt method adaptively constrains the search region for the next iteration step by means of the so-called gamma-factor. This makes the method more suitable for strongly non-linear problems. If the gamma-factor is 0, Levenberg-Marquardt and Gauss-Newton method are identical. Each minimization method (li,gn,lm) has an indirect variant (li_cg,gn_cg,lm_cg), which uses the conjugate gradient solver for the linear system that has to be solved in each minimzation step. This of advantage for very large problems, that would otherwise require the computation of expensive matrix products.
Description of the special input arguments:
method
:"li"
: A linear problem is assumed and a single iteration is performed."li_cg"
: A linear problem is assumed and solved using the CG solver."gn"
: Non-linear, with Gauss-Newton iteration scheme."gn_cg"
: Non-linear, with Gauss-Newton and conjugate gradient solver."lm"
: Non-linear, with Levenberg-Marquardt (LM) iteration scheme."lm_cg"
: Non-linear, with Levenberg-Marquardt (LM) iteration scheme and conjugate gradient solver.
max_start_cost
:No inversion is done if the cost matching the a priori state is above this value. If set to a negative value, all values are accepted. This argument also controls if the start cost is calculated. If set to <= 0, the start cost in
oem_diagnostics
is set to NaN when using “li” and “gn”.x_norm
:A normalisation vector for
model_state_vector
. A normalisation ofmodel_state_vector
can be needed due to limited numerical precision. If this vector is set to be empty no normalisation is done (defualt case). Otherwise, this must be a vector with same length asmodel_state_vector
, just having values above zero. Elementwise division betweenmodel_state_vector
andx_norm
(x./x_norm) shall give a vector where all values are in the order of unity. Maybe the best way to setx_norm
is x_norm = sqrt( diag( Sx ) ).max_iter
:Maximum number of iterations to perform. No effect for “li”.
stop_dx
:n”Iteration stop criterion. The criterion used is the same as given in Rodgers' “Inverse Methods for Atmospheric Sounding”
lm_ga_settings
:Settings controlling the gamma factor, part of the “LM” method. This is a vector of length 6, having the elements (0-based index):
Start value.
Fractional decrease after succesfull iteration.
Fractional increase after unsuccessful iteration.
Maximum allowed value. If the value is passed, the inversion is halted.
Lower treshold. If the threshold is passed, gamma is set to zero. If gamma must be increased from zero, gamma is set to this value.
Gamma limit. This is an additional stop criterion. Convergence is not considered until there has been one succesful iteration having a gamma <= this value.
The default setting triggers an error if “lm” is selected.
clear matrices
:With this flag set to 1,
measurement_jacobian
andmeasurement_gain_matrix
are returned as empty matrices.display_progress
:Controls if there is any screen output. The overall report level is ignored by this WSM.
Author: Patrick Eriksson
- Parameters:
model_state_vector (Vector, optional) – A state vector of the model. See
model_state_vector
, defaults toself.model_state_vector
[INOUT]measurement_vector_fitted (Vector, optional) – As
measurement_vector
, but fitted to the model. Seemeasurement_vector_fitted
, defaults toself.measurement_vector_fitted
[INOUT]measurement_jacobian (Matrix, optional) – The first order partial derivatives of the
measurement_vector
. Seemeasurement_jacobian
, defaults toself.measurement_jacobian
[INOUT]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[INOUT]absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[INOUT]measurement_sensor (ArrayOfSensorObsel, optional) – A list of sensor elements. See
measurement_sensor
, defaults toself.measurement_sensor
[INOUT]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[INOUT]subsurface_field (SubsurfaceField, optional) – The sub0surface field describes the sub-surface properties. See
subsurface_field
, defaults toself.subsurface_field
[INOUT]measurement_gain_matrix (Matrix, optional) – Contribution function (or gain) matrix. See
measurement_gain_matrix
, defaults toself.measurement_gain_matrix
[OUT]oem_diagnostics (Vector) – Basic diagnostics of an OEM type inversion. Defaults to create and/or use
self.oem_diagnostics
:Vector
. [OUT]lm_ga_history (Vector) – The series of gamma values for a Marquardt-levenberg inversion. Defaults to create and/or use
self.lm_ga_history
:Vector
. [OUT]errors (ArrayOfString) – Errors encountered during OEM execution. Defaults to create and/or use
self.errors
:ArrayOfString
. [OUT]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]model_state_vector_apriori (Vector, optional) – An apriori state vector of the model. See
model_state_vector_apriori
, defaults toself.model_state_vector_apriori
[IN]model_state_covariance_matrix (CovarianceMatrix, optional) – Covariance matrix of a priori distribution. See
model_state_covariance_matrix
, defaults toself.model_state_covariance_matrix
[IN]measurement_vector (Vector, optional) – The measurment vector for, e.g., a sensor. See
measurement_vector
, defaults toself.measurement_vector
[IN]measurement_vector_error_covariance_matrix (CovarianceMatrix, optional) – Covariance matrix for observation uncertainties. See
measurement_vector_error_covariance_matrix
, defaults toself.measurement_vector_error_covariance_matrix
[IN]inversion_iterate_agenda (Agenda, optional) – Work in progress … See
inversion_iterate_agenda
, defaults toself.inversion_iterate_agenda
[IN]method (String) – Iteration method. For this and all options below, see further above. [IN]
max_start_cost (Numeric, optional) – Maximum allowed value of cost function at start. Defaults to
inf
[IN]model_state_covariance_matrix_normalization (Vector, optional) – Normalisation of Sx. Defaults to
[]
[IN]max_iter (Index, optional) – Maximum number of iterations. Defaults to
10
[IN]stop_dx (Numeric, optional) – Stop criterion for iterative inversions. Defaults to
0.01
[IN]lm_ga_settings (Vector, optional) – Settings associated with the ga factor of the LM method. Defaults to
[]
[IN]clear_matrices (Index, optional) – An option to save memory. Defaults to
0
[IN]display_progress (Index, optional) – Flag to control if inversion diagnostics shall be printed on the screen. Defaults to
0
[IN]
- ReadCatalogData(self, absorption_predefined_model_data: pyarts3.arts.PredefinedModelData | None = None, absorption_xsec_fit_data: pyarts3.arts.ArrayOfXsecRecord | None = None, absorption_cia_data: pyarts3.arts.ArrayOfCIARecord | None = None, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, absorption_species: pyarts3.arts.ArrayOfArrayOfSpeciesTag | None = None, basename: pyarts3.arts.String | None = None, ignore_missing: pyarts3.arts.Index | None = None) None
Reads split catalog data from a folder structure similar to
arts-cat-data
Wraps:
absorption_bandsReadSpeciesSplitCatalog()
with “lines/” added tobasename
absorption_cia_dataReadSpeciesSplitCatalog()
with “cia/” added tobasename
absorption_xsec_fit_dataReadSpeciesSplitCatalog()
with “xsec/” added tobasename
absorption_predefined_model_dataReadSpeciesSplitCatalog()
with “predef/” added tobasename
andname_missing
= 1
Author: Richard Larsson
- Parameters:
absorption_predefined_model_data (PredefinedModelData, optional) – This contains predefined model data. See
absorption_predefined_model_data
, defaults toself.absorption_predefined_model_data
[OUT]absorption_xsec_fit_data (ArrayOfXsecRecord, optional) – Fitting model coefficients for cross section species. See
absorption_xsec_fit_data
, defaults toself.absorption_xsec_fit_data
[OUT]absorption_cia_data (ArrayOfCIARecord, optional) – HITRAN Collision-Induced Absorption (CIA) Data. See
absorption_cia_data
, defaults toself.absorption_cia_data
[OUT]absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[OUT]absorption_species (ArrayOfArrayOfSpeciesTag, optional) – Tag groups for gas absorption. See
absorption_species
, defaults toself.absorption_species
[IN]basename (String, optional) – Absolute or relative path to the data. Defaults to
""
[IN]ignore_missing (Index, optional) – Ignore missing files instead of throwing an error. Defaults to
0
[IN]
- ReadXML(self, output: object | None = None, filename: pyarts3.arts.String | None = None) None
Reads a workspace variable from an XML file.
This method can read variables of any group.
If the given filename does not exist, this method will also look for files with an added .xml, .xml.gz and .gz extension
Author: Oliver Lemke
- ReadXMLIndexed(self, output: object | None = None, file_index: pyarts3.arts.Index | None = None, filename: pyarts3.arts.String | None = None, digits: pyarts3.arts.Index | None = None) None
As
ReadXML()
, but reads indexed file names.The variable is read from a file with name:
<filename>.<file_index>.xml.
where <file_index> is the value of
file_index
.This means that
filename
shall here not include the .xml extension.Author: Oliver Lemke
- Parameters:
output (Any) – Workspace variable to be read. Defaults to create and/or use
self.output
:Any
. [OUT]file_index (Index) – Index of the file to read. [IN]
filename (String) – File name. See above. [IN]
digits (Index, optional) – Equalize the widths of all numbers by padding with zeros as necessary. 0 means no padding (default). Defaults to
0
[IN]
- RetrievalAddAtmosphere(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, covariance_matrix_diagonal_blocks: pyarts3.arts.JacobianTargetsDiagonalCovarianceMatrixMap | None = None, target: pyarts3.arts.AtmKey | pyarts3.arts.SpeciesEnum | pyarts3.arts.SpeciesIsotope | pyarts3.arts.QuantumLevelIdentifier | None = None, d: pyarts3.arts.Numeric | None = None, matrix: pyarts3.arts.BlockMatrix | None = None, inverse: pyarts3.arts.BlockMatrix | None = None) None
Sets an atmospheric target.
This method wraps
jacobian_targetsAddAtmosphere()
together with adding the covariance matrices, to thecovariance_matrix_diagonal_blocks
, which are required to performOEM()
.The input covariance matrices must fit the size of the later computed model state represented by the
jacobian_targets
. The covariance matrix inverseAuthor: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[INOUT]covariance_matrix_diagonal_blocks (JacobianTargetsDiagonalCovarianceMatrixMap, optional) – A helper map for setting the covariance matrix. See
covariance_matrix_diagonal_blocks
, defaults toself.covariance_matrix_diagonal_blocks
[INOUT]target (AtmKey,SpeciesEnum,SpeciesIsotope,QuantumLevelIdentifier) – The target of interest. [IN]
d (Numeric, optional) – The perturbation used in methods that cannot compute derivatives analytically. Defaults to
0.1
[IN]matrix (BlockMatrix) – The covariance diagonal block matrix. [IN]
inverse (BlockMatrix, optional) – The inverse covariance diagonal block matrix. Defaults to
pyarts.arts.BlockMatrix()
[IN]
- RetrievalAddErrorPolyFit(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, covariance_matrix_diagonal_blocks: pyarts3.arts.JacobianTargetsDiagonalCovarianceMatrixMap | None = None, measurement_sensor: pyarts3.arts.ArrayOfSensorObsel | None = None, t: pyarts3.arts.Vector | None = None, sensor_elem: pyarts3.arts.Index | None = None, polyorder: pyarts3.arts.Index | None = None, matrix: pyarts3.arts.BlockMatrix | None = None, inverse: pyarts3.arts.BlockMatrix | None = None) None
Set a measurement error to polynomial fit.
This is a generic error that is simply added to
measurement_vector
as if\[y = y_0 + \epsilon(p_0,\; p_1,\; \cdots,\; p_n),\]where \(y\) represents
measurement_vector
and \(y_0\) is the measurement vector without any errors)Order 0 means constant: \(y = y_0 + a\)
Order 1 means linear: \(y = y_0 + a + b t\)
and so on. The derivatives that are added to the
model_state_vector
are those with regards to a, b, etc..Note
The rule for the
sensor_elem
GIN is a bit complex. Generally, methods such asmeasurement_sensorAddSimple()
will simply add a single unique frequency grid to all the differentSensorObsel
that they add to themeasurement_sensor
. The GINsensor_elem
is 0 for the first unique frequency grid, 1 for the second, and so on. SeeArrayOfSensorObsel
member methods in python for help identifying and manipulating how many unique frequency grids are available inmeasurement_sensor
.This method wraps
jacobian_targetsAddErrorPolyFit()
together with adding the covariance matrices, to thecovariance_matrix_diagonal_blocks
, which are required to performOEM()
.The input covariance matrices must fit the size of the later computed model state represented by the
jacobian_targets
. The covariance matrix inverseAuthor: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[INOUT]covariance_matrix_diagonal_blocks (JacobianTargetsDiagonalCovarianceMatrixMap, optional) – A helper map for setting the covariance matrix. See
covariance_matrix_diagonal_blocks
, defaults toself.covariance_matrix_diagonal_blocks
[INOUT]measurement_sensor (ArrayOfSensorObsel, optional) – A list of sensor elements. See
measurement_sensor
, defaults toself.measurement_sensor
[IN]t (Vector) – The grid of \(y\). As \(t\) above. [IN]
sensor_elem (Index) – The sensor element whose frequency grid to use. [IN]
polyorder (Index, optional) – The order of the polynomial fit. Maximum \(n\) above. Defaults to
0
[IN]matrix (BlockMatrix) – The covariance diagonal block matrix. [IN]
inverse (BlockMatrix, optional) – The inverse covariance diagonal block matrix. Defaults to
pyarts.arts.BlockMatrix()
[IN]
- RetrievalAddMagneticField(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, covariance_matrix_diagonal_blocks: pyarts3.arts.JacobianTargetsDiagonalCovarianceMatrixMap | None = None, component: pyarts3.arts.String | None = None, d: pyarts3.arts.Numeric | None = None, matrix: pyarts3.arts.BlockMatrix | None = None, inverse: pyarts3.arts.BlockMatrix | None = None) None
Set magnetic field derivative.
See
FieldComponent
for validcomponent
.This method wraps
jacobian_targetsAddMagneticField()
together with adding the covariance matrices, to thecovariance_matrix_diagonal_blocks
, which are required to performOEM()
.The input covariance matrices must fit the size of the later computed model state represented by the
jacobian_targets
. The covariance matrix inverseAuthor: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[INOUT]covariance_matrix_diagonal_blocks (JacobianTargetsDiagonalCovarianceMatrixMap, optional) – A helper map for setting the covariance matrix. See
covariance_matrix_diagonal_blocks
, defaults toself.covariance_matrix_diagonal_blocks
[INOUT]component (String) – The component to use [u, v, w]. [IN]
d (Numeric, optional) – The perturbation used in methods that cannot compute derivatives analytically. Defaults to
0.1
[IN]matrix (BlockMatrix) – The covariance diagonal block matrix. [IN]
inverse (BlockMatrix, optional) – The inverse covariance diagonal block matrix. Defaults to
pyarts.arts.BlockMatrix()
[IN]
- RetrievalAddOverlappingMagneticField(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, covariance_matrix_diagonal_blocks: pyarts3.arts.JacobianTargetsDiagonalCovarianceMatrixMap | None = None, matrix: pyarts3.arts.BlockMatrix | None = None, inverse: pyarts3.arts.BlockMatrix | None = None) None
Set magnetic field derivative for overlapping fields.
An overlapping field means that the derivative is computed but that the x-component of the jacobian is at the same position as another Jacobian target.
To call this method, you first have added 1 component of the magnetic field derivative, and then you call this method to add the second and third component.
This method wraps
jacobian_targetsAddOverlappingMagneticField()
together with adding the covariance matrices, to thecovariance_matrix_diagonal_blocks
, which are required to performOEM()
.The input covariance matrices must fit the size of the later computed model state represented by the
jacobian_targets
. The covariance matrix inverseAuthor: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[INOUT]covariance_matrix_diagonal_blocks (JacobianTargetsDiagonalCovarianceMatrixMap, optional) – A helper map for setting the covariance matrix. See
covariance_matrix_diagonal_blocks
, defaults toself.covariance_matrix_diagonal_blocks
[INOUT]matrix (BlockMatrix) – The covariance diagonal block matrix. [IN]
inverse (BlockMatrix, optional) – The inverse covariance diagonal block matrix. Defaults to
pyarts.arts.BlockMatrix()
[IN]
- RetrievalAddOverlappingWindField(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, covariance_matrix_diagonal_blocks: pyarts3.arts.JacobianTargetsDiagonalCovarianceMatrixMap | None = None, matrix: pyarts3.arts.BlockMatrix | None = None, inverse: pyarts3.arts.BlockMatrix | None = None) None
Set wind field derivative for overlapping fields.
An overlapping field means that the derivative is computed but that the x-component of the jacobian is at the same position as another Jacobian target.
To call this method, you first have added 1 component of the wind field derivative, and then you call this method to add the second and third component.
This method wraps
jacobian_targetsAddOverlappingWindField()
together with adding the covariance matrices, to thecovariance_matrix_diagonal_blocks
, which are required to performOEM()
.The input covariance matrices must fit the size of the later computed model state represented by the
jacobian_targets
. The covariance matrix inverseAuthor: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[INOUT]covariance_matrix_diagonal_blocks (JacobianTargetsDiagonalCovarianceMatrixMap, optional) – A helper map for setting the covariance matrix. See
covariance_matrix_diagonal_blocks
, defaults toself.covariance_matrix_diagonal_blocks
[INOUT]matrix (BlockMatrix) – The covariance diagonal block matrix. [IN]
inverse (BlockMatrix, optional) – The inverse covariance diagonal block matrix. Defaults to
pyarts.arts.BlockMatrix()
[IN]
- RetrievalAddPressure(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, covariance_matrix_diagonal_blocks: pyarts3.arts.JacobianTargetsDiagonalCovarianceMatrixMap | None = None, d: pyarts3.arts.Numeric | None = None, matrix: pyarts3.arts.BlockMatrix | None = None, inverse: pyarts3.arts.BlockMatrix | None = None) None
Set pressure derivative.
This method wraps
jacobian_targetsAddPressure()
together with adding the covariance matrices, to thecovariance_matrix_diagonal_blocks
, which are required to performOEM()
.The input covariance matrices must fit the size of the later computed model state represented by the
jacobian_targets
. The covariance matrix inverseAuthor: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[INOUT]covariance_matrix_diagonal_blocks (JacobianTargetsDiagonalCovarianceMatrixMap, optional) – A helper map for setting the covariance matrix. See
covariance_matrix_diagonal_blocks
, defaults toself.covariance_matrix_diagonal_blocks
[INOUT]d (Numeric, optional) – The perturbation used in methods that cannot compute derivatives analytically. Defaults to
0.1
[IN]matrix (BlockMatrix) – The covariance diagonal block matrix. [IN]
inverse (BlockMatrix, optional) – The inverse covariance diagonal block matrix. Defaults to
pyarts.arts.BlockMatrix()
[IN]
- RetrievalAddSensorFrequencyPolyOffset(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, covariance_matrix_diagonal_blocks: pyarts3.arts.JacobianTargetsDiagonalCovarianceMatrixMap | None = None, measurement_sensor: pyarts3.arts.ArrayOfSensorObsel | None = None, d: pyarts3.arts.Numeric | None = None, sensor_elem: pyarts3.arts.Index | None = None, polyorder: pyarts3.arts.Index | None = None, matrix: pyarts3.arts.BlockMatrix | None = None, inverse: pyarts3.arts.BlockMatrix | None = None) None
Set sensor frequency derivative to use polynomial fitting offset
Order 0 means constant: \(f := f_0 + a\)
Order 1 means linear: \(f := f_0 + a + b f_0\)
and so on. The derivatives that are added to the
model_state_vector
are those with regards to a, b, etc..Note
The rule for the
sensor_elem
GIN is a bit complex. Generally, methods such asmeasurement_sensorAddSimple()
will simply add a single unique frequency grid to all the differentSensorObsel
that they add to themeasurement_sensor
. The GINsensor_elem
is 0 for the first unique frequency grid, 1 for the second, and so on. SeeArrayOfSensorObsel
member methods in python for help identifying and manipulating how many unique frequency grids are available inmeasurement_sensor
.This method wraps
jacobian_targetsAddSensorFrequencyPolyOffset()
together with adding the covariance matrices, to thecovariance_matrix_diagonal_blocks
, which are required to performOEM()
.The input covariance matrices must fit the size of the later computed model state represented by the
jacobian_targets
. The covariance matrix inverseAuthor: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[INOUT]covariance_matrix_diagonal_blocks (JacobianTargetsDiagonalCovarianceMatrixMap, optional) – A helper map for setting the covariance matrix. See
covariance_matrix_diagonal_blocks
, defaults toself.covariance_matrix_diagonal_blocks
[INOUT]measurement_sensor (ArrayOfSensorObsel, optional) – A list of sensor elements. See
measurement_sensor
, defaults toself.measurement_sensor
[IN]d (Numeric, optional) – The perturbation used in methods that cannot compute derivatives analytically. Defaults to
0.1
[IN]sensor_elem (Index) – The sensor element whose frequency grid to use. [IN]
polyorder (Index, optional) – The order of the polynomial fit. Defaults to
0
[IN]matrix (BlockMatrix) – The covariance diagonal block matrix. [IN]
inverse (BlockMatrix, optional) – The inverse covariance diagonal block matrix. Defaults to
pyarts.arts.BlockMatrix()
[IN]
- RetrievalAddSpeciesIsotopologueRatio(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, covariance_matrix_diagonal_blocks: pyarts3.arts.JacobianTargetsDiagonalCovarianceMatrixMap | None = None, species: pyarts3.arts.SpeciesIsotope | None = None, d: pyarts3.arts.Numeric | None = None, matrix: pyarts3.arts.BlockMatrix | None = None, inverse: pyarts3.arts.BlockMatrix | None = None) None
Set isotopologue ratio derivative
See
SpeciesIsotope
for validspecies
This method wraps
jacobian_targetsAddSpeciesIsotopologueRatio()
together with adding the covariance matrices, to thecovariance_matrix_diagonal_blocks
, which are required to performOEM()
.The input covariance matrices must fit the size of the later computed model state represented by the
jacobian_targets
. The covariance matrix inverseAuthor: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[INOUT]covariance_matrix_diagonal_blocks (JacobianTargetsDiagonalCovarianceMatrixMap, optional) – A helper map for setting the covariance matrix. See
covariance_matrix_diagonal_blocks
, defaults toself.covariance_matrix_diagonal_blocks
[INOUT]species (SpeciesIsotope) – The species isotopologue of interest. [IN]
d (Numeric, optional) – The perturbation used in methods that cannot compute derivatives analytically. Defaults to
0.1
[IN]matrix (BlockMatrix) – The covariance diagonal block matrix. [IN]
inverse (BlockMatrix, optional) – The inverse covariance diagonal block matrix. Defaults to
pyarts.arts.BlockMatrix()
[IN]
- RetrievalAddSpeciesVMR(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, covariance_matrix_diagonal_blocks: pyarts3.arts.JacobianTargetsDiagonalCovarianceMatrixMap | None = None, species: pyarts3.arts.SpeciesEnum | None = None, d: pyarts3.arts.Numeric | None = None, matrix: pyarts3.arts.BlockMatrix | None = None, inverse: pyarts3.arts.BlockMatrix | None = None) None
Set volume mixing ratio derivative.
See
SpeciesEnum
for validspecies
This method wraps
jacobian_targetsAddSpeciesVMR()
together with adding the covariance matrices, to thecovariance_matrix_diagonal_blocks
, which are required to performOEM()
.The input covariance matrices must fit the size of the later computed model state represented by the
jacobian_targets
. The covariance matrix inverseAuthor: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[INOUT]covariance_matrix_diagonal_blocks (JacobianTargetsDiagonalCovarianceMatrixMap, optional) – A helper map for setting the covariance matrix. See
covariance_matrix_diagonal_blocks
, defaults toself.covariance_matrix_diagonal_blocks
[INOUT]species (SpeciesEnum) – The species of interest. [IN]
d (Numeric, optional) – The perturbation used in methods that cannot compute derivatives analytically. Defaults to
0.1
[IN]matrix (BlockMatrix) – The covariance diagonal block matrix. [IN]
inverse (BlockMatrix, optional) – The inverse covariance diagonal block matrix. Defaults to
pyarts.arts.BlockMatrix()
[IN]
- RetrievalAddSubsurface(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, covariance_matrix_diagonal_blocks: pyarts3.arts.JacobianTargetsDiagonalCovarianceMatrixMap | None = None, target: pyarts3.arts.SubsurfaceKey | None = None, d: pyarts3.arts.Numeric | None = None, matrix: pyarts3.arts.BlockMatrix | None = None, inverse: pyarts3.arts.BlockMatrix | None = None) None
Sets a subsurface target
This method wraps
jacobian_targetsAddSubsurface()
together with adding the covariance matrices, to thecovariance_matrix_diagonal_blocks
, which are required to performOEM()
.The input covariance matrices must fit the size of the later computed model state represented by the
jacobian_targets
. The covariance matrix inverseAuthor: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[INOUT]covariance_matrix_diagonal_blocks (JacobianTargetsDiagonalCovarianceMatrixMap, optional) – A helper map for setting the covariance matrix. See
covariance_matrix_diagonal_blocks
, defaults toself.covariance_matrix_diagonal_blocks
[INOUT]target (SubsurfaceKey) – The target of interest. [IN]
d (Numeric, optional) – The perturbation used in methods that cannot compute derivatives analytically. Defaults to
0.1
[IN]matrix (BlockMatrix) – The covariance diagonal block matrix. [IN]
inverse (BlockMatrix, optional) – The inverse covariance diagonal block matrix. Defaults to
pyarts.arts.BlockMatrix()
[IN]
- RetrievalAddSurface(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, covariance_matrix_diagonal_blocks: pyarts3.arts.JacobianTargetsDiagonalCovarianceMatrixMap | None = None, target: pyarts3.arts.SurfaceKey | pyarts3.arts.SurfacePropertyTag | None = None, d: pyarts3.arts.Numeric | None = None, matrix: pyarts3.arts.BlockMatrix | None = None, inverse: pyarts3.arts.BlockMatrix | None = None) None
Sets a surface target
This method wraps
jacobian_targetsAddSurface()
together with adding the covariance matrices, to thecovariance_matrix_diagonal_blocks
, which are required to performOEM()
.The input covariance matrices must fit the size of the later computed model state represented by the
jacobian_targets
. The covariance matrix inverseAuthor: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[INOUT]covariance_matrix_diagonal_blocks (JacobianTargetsDiagonalCovarianceMatrixMap, optional) – A helper map for setting the covariance matrix. See
covariance_matrix_diagonal_blocks
, defaults toself.covariance_matrix_diagonal_blocks
[INOUT]target (SurfaceKey,SurfacePropertyTag) – The target of interest. [IN]
d (Numeric, optional) – The perturbation used in methods that cannot compute derivatives analytically. Defaults to
0.1
[IN]matrix (BlockMatrix) – The covariance diagonal block matrix. [IN]
inverse (BlockMatrix, optional) – The inverse covariance diagonal block matrix. Defaults to
pyarts.arts.BlockMatrix()
[IN]
- RetrievalAddTemperature(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, covariance_matrix_diagonal_blocks: pyarts3.arts.JacobianTargetsDiagonalCovarianceMatrixMap | None = None, d: pyarts3.arts.Numeric | None = None, matrix: pyarts3.arts.BlockMatrix | None = None, inverse: pyarts3.arts.BlockMatrix | None = None) None
Set temperature derivative.
This method wraps
jacobian_targetsAddTemperature()
together with adding the covariance matrices, to thecovariance_matrix_diagonal_blocks
, which are required to performOEM()
.The input covariance matrices must fit the size of the later computed model state represented by the
jacobian_targets
. The covariance matrix inverseAuthor: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[INOUT]covariance_matrix_diagonal_blocks (JacobianTargetsDiagonalCovarianceMatrixMap, optional) – A helper map for setting the covariance matrix. See
covariance_matrix_diagonal_blocks
, defaults toself.covariance_matrix_diagonal_blocks
[INOUT]d (Numeric, optional) – The perturbation used in methods that cannot compute derivatives analytically. Defaults to
0.1
[IN]matrix (BlockMatrix) – The covariance diagonal block matrix. [IN]
inverse (BlockMatrix, optional) – The inverse covariance diagonal block matrix. Defaults to
pyarts.arts.BlockMatrix()
[IN]
- RetrievalAddWindField(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, covariance_matrix_diagonal_blocks: pyarts3.arts.JacobianTargetsDiagonalCovarianceMatrixMap | None = None, component: pyarts3.arts.String | None = None, d: pyarts3.arts.Numeric | None = None, matrix: pyarts3.arts.BlockMatrix | None = None, inverse: pyarts3.arts.BlockMatrix | None = None) None
Set wind field derivative.
Note that the derivatives from methods that takes the freqeuncy will return their derivatives as if these were frequency derivatives.
See
FieldComponent
for validcomponent
This method wraps
jacobian_targetsAddWindField()
together with adding the covariance matrices, to thecovariance_matrix_diagonal_blocks
, which are required to performOEM()
.The input covariance matrices must fit the size of the later computed model state represented by the
jacobian_targets
. The covariance matrix inverseAuthor: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[INOUT]covariance_matrix_diagonal_blocks (JacobianTargetsDiagonalCovarianceMatrixMap, optional) – A helper map for setting the covariance matrix. See
covariance_matrix_diagonal_blocks
, defaults toself.covariance_matrix_diagonal_blocks
[INOUT]component (String) – The component to use [u, v, w]. [IN]
d (Numeric, optional) – The perturbation used in methods that cannot compute derivatives analytically. Defaults to
0.1
[IN]matrix (BlockMatrix) – The covariance diagonal block matrix. [IN]
inverse (BlockMatrix, optional) – The inverse covariance diagonal block matrix. Defaults to
pyarts.arts.BlockMatrix()
[IN]
- RetrievalFinalizeDiagonal(self, model_state_covariance_matrix: pyarts3.arts.CovarianceMatrix | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, covariance_matrix_diagonal_blocks: pyarts3.arts.JacobianTargetsDiagonalCovarianceMatrixMap | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, subsurface_field: pyarts3.arts.SubsurfaceField | None = None, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, measurement_sensor: pyarts3.arts.ArrayOfSensorObsel | None = None) None
Finalize the retrieval setup.
See
jacobian_targetsFinalize()
for more information.Author: Richard Larsson
- Parameters:
model_state_covariance_matrix (CovarianceMatrix, optional) – Covariance matrix of a priori distribution. See
model_state_covariance_matrix
, defaults toself.model_state_covariance_matrix
[OUT]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[INOUT]covariance_matrix_diagonal_blocks (JacobianTargetsDiagonalCovarianceMatrixMap, optional) – A helper map for setting the covariance matrix. See
covariance_matrix_diagonal_blocks
, defaults toself.covariance_matrix_diagonal_blocks
[IN]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]subsurface_field (SubsurfaceField, optional) – The sub0surface field describes the sub-surface properties. See
subsurface_field
, defaults toself.subsurface_field
[IN]absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[IN]measurement_sensor (ArrayOfSensorObsel, optional) – A list of sensor elements. See
measurement_sensor
, defaults toself.measurement_sensor
[IN]
- RetrievalInit(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, model_state_covariance_matrix: pyarts3.arts.CovarianceMatrix | None = None, covariance_matrix_diagonal_blocks: pyarts3.arts.JacobianTargetsDiagonalCovarianceMatrixMap | None = None) None
Initialize the retrieval setup.
Author: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[OUT]model_state_covariance_matrix (CovarianceMatrix, optional) – Covariance matrix of a priori distribution. See
model_state_covariance_matrix
, defaults toself.model_state_covariance_matrix
[OUT]covariance_matrix_diagonal_blocks (JacobianTargetsDiagonalCovarianceMatrixMap, optional) – A helper map for setting the covariance matrix. See
covariance_matrix_diagonal_blocks
, defaults toself.covariance_matrix_diagonal_blocks
[OUT]
- SpectralFluxDisort(self, spectral_flux_field_up: pyarts3.arts.Matrix | None = None, spectral_flux_field_down: pyarts3.arts.Matrix | None = None, disort_spectral_flux_field: pyarts3.arts.DisortFlux | None = None) None
Integrate Disort spectral radiance.
Author: Richard Larsson
- Parameters:
spectral_flux_field_up (Matrix) – Upward spectral flux field. Defaults to create and/or use
self.spectral_flux_field_up
:Matrix
. [OUT]spectral_flux_field_down (Matrix) – Downward spectral flux field. Defaults to create and/or use
self.spectral_flux_field_down
:Matrix
. [OUT]disort_spectral_flux_field (DisortFlux, optional) – The spectral flux field from Disort. See
disort_spectral_flux_field
, defaults toself.disort_spectral_flux_field
[IN]
- Touch(self, input: object | None = None) None
As
Ignore()
but for agenda output.This method is handy for use in agendas in order to suppress warnings about not-produced output workspace variables.
What it does, in case the variable is initialized already, is: Nothing! In case the variable is not yet initialized, it is default initialized.
Author: Oliver Lemke
- UpdateModelStates(self, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, subsurface_field: pyarts3.arts.SubsurfaceField | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, measurement_sensor: pyarts3.arts.ArrayOfSensorObsel | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, model_state_vector: pyarts3.arts.Vector | None = None) None
Update state of the model in preparation for a forward model run
Wrapper calling Methods (in order):
Equivalent (mostly) Python code:
1ws = pyarts.Workspace() 2 3# ... 4 5 ws.absorption_bandsFromModelState() 6 ws.surface_fieldFromModelState() 7 ws.subsurface_fieldFromModelState() 8 ws.atmospheric_fieldFromModelState() 9 ws.measurement_sensorFromModelState()
Author: Richard Larsson
- Parameters:
absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[INOUT]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[INOUT]subsurface_field (SubsurfaceField, optional) – The sub0surface field describes the sub-surface properties. See
subsurface_field
, defaults toself.subsurface_field
[INOUT]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[INOUT]measurement_sensor (ArrayOfSensorObsel, optional) – A list of sensor elements. See
measurement_sensor
, defaults toself.measurement_sensor
[INOUT]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]model_state_vector (Vector, optional) – A state vector of the model. See
model_state_vector
, defaults toself.model_state_vector
[IN]
- WignerInit(self, fast_wigner_stored_symbols: pyarts3.arts.Index | None = None, largest_wigner_symbol_parameter: pyarts3.arts.Index | None = None, symbol_type: pyarts3.arts.Index | None = None) None
Initialize the Wigner tables
The default values take about 1 Gb memory.
The static data is kept in an external library and is therefore only available inside ARTS. Nevertheless, this must be set by the application because any default value might be too small or too large for the needs of any one application.
Author: Richard Larsson
- Parameters:
fast_wigner_stored_symbols (Index, optional) – Number of stored symbols possible before replacements. Defaults to
20000000
[IN]largest_wigner_symbol_parameter (Index, optional) – Largest symbol used for initializing factorials (e.g., largest J or L). Defaults to
250
[IN]symbol_type (Index, optional) – Type of symbol (3 or 6). Defaults to
6
[IN]
- WignerUnload(self) None
Unloads the Wigner tables from static data (see
WignerInit()
)Author: Richard Larsson
- WriteBuiltinPartitionFunctionsXML(self, output_file_format: pyarts3.arts.String | None = None, dir: pyarts3.arts.String | None = None, Tlow: pyarts3.arts.Numeric | None = None, Tupp: pyarts3.arts.Numeric | None = None, N: pyarts3.arts.Index | None = None) None
Writes all the builtin partition functions to file.
All available partition functions are written to files in the select format in the select directory
The temperature will be linearly spaced between [Tlow, Tupp] with N values
See
FileType
for validoutput_file_format
.Author: Richard Larsson
- Parameters:
- WriteXML(self, output_file_format: pyarts3.arts.String | None = None, input: object | None = None, filename: pyarts3.arts.String | None = None, no_clobber: pyarts3.arts.Index | None = None) None
Writes a workspace variable to an XML file.
This method can write variables of any group.
If no_clobber is set to 1, an increasing number will be appended to the filename if the file already exists.
See
FileType
for validoutput_file_format
.Author: Oliver Lemke
- WriteXMLIndexed(self, output_file_format: pyarts3.arts.String | None = None, file_index: pyarts3.arts.Index | None = None, input: object | None = None, filename: pyarts3.arts.String | None = None, digits: pyarts3.arts.Index | None = None) None
As
WriteXML()
, but creates indexed file names.The variable is written to a file with name:
<filename>.<file_index>.xml.
where <file_index> is the value of
file_index
.This means that
filename
shall here not include the .xml extension.See
FileType
for validoutput_file_format
.Author: Patrick Eriksson, Oliver Lemke
- Parameters:
output_file_format (String, optional) – The format of the output. Defaults to
"ascii"
[IN]file_index (Index) – Index number for files. [IN]
input (Any) – Workspace variable to be saved. [IN]
filename (String) – File name. See above. [IN]
digits (Index, optional) – Equalize the widths of all numbers by padding with zeros as necessary. 0 means no padding (default). Defaults to
0
[IN]
- absorption_bandsFromModelState(self, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, model_state_vector: pyarts3.arts.Vector | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None) None
Sets
absorption_bands
to the state of the model.Author: Richard Larsson
Used by wrapper method
- Parameters:
absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[INOUT]model_state_vector (Vector, optional) – A state vector of the model. See
model_state_vector
, defaults toself.model_state_vector
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]
- absorption_bandsKeepID(self, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, id: pyarts3.arts.QuantumIdentifier | None = None, line: pyarts3.arts.Index | None = None) None
Keeps first band of ID
If
line
is positive, also keep only the line of this indexAuthor: Richard Larsson
- Parameters:
absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[INOUT]id (QuantumIdentifier) – Band to keep. [IN]
line (Index, optional) – Line to keep (if positive). Defaults to
-1
[IN]
- absorption_bandsLineMixingAdaptation(self, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, ecs_data: pyarts3.arts.LinemixingEcsData | None = None, atmospheric_point: pyarts3.arts.AtmPoint | None = None, temperatures: pyarts3.arts.AscendingGrid | None = None, band_key: pyarts3.arts.QuantumIdentifier | None = None, rosenkranz_fit_order: pyarts3.arts.Index | None = None, polynomial_fit_degree: pyarts3.arts.Index | None = None) None
Adapts select band to use ordered Line mixing coefficients.
This is an experimental feature and might not work.
The computations of line mixing are done on the grid of temperatures provided.
Author: Richard Larsson
- Parameters:
absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[INOUT]ecs_data (LinemixingEcsData, optional) – Error corrected sudden data. See
ecs_data
, defaults toself.ecs_data
[IN]atmospheric_point (AtmPoint, optional) – An atmospheric point in ARTS. See
atmospheric_point
, defaults toself.atmospheric_point
[IN]temperatures (AscendingGrid) – The temperatures to use for the internal fitting. [IN]
band_key (QuantumIdentifier) – The band to adapt. [IN]
rosenkranz_fit_order (Index, optional) – The degree of Rosenkranz coefficients (1 for just fitting y, 2 for fitting also g and dv). Defaults to
1
[IN]polynomial_fit_degree (Index, optional) – The highest order of the polynomial fit (2 means square, 3 means cubic, etc). Defaults to
3
[IN]
- absorption_bandsReadHITRAN(self, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, file: pyarts3.arts.String | None = None, frequency_range: pyarts3.arts.Vector2 | None = None, line_strength_option: pyarts3.arts.String | None = None, compute_zeeman_parameters: pyarts3.arts.Index | None = None) None
Reads HITRAN data from a file.
The HITRAN file is assumed sorted in frequency, with each line record filling up one line of text.
If the full 160-char line record is consumed without reaching the end of the line, qns’ and qns’’ are assumed appended with default HITRANonline format.
You may pass an inclusive frequency range to limit what is read. This will limit the data read to the range [fmin, fmax]. All data before fmin is limited to parsing just up until the frequency, and the database is returned if the fmax frequency is exceeded.
The optional parameter
einstein_coefficient
is used to indicate if it is to be computed from the line strength, or simply read from the Hitran data.Warning
Several HITRAN lines has Einstein coefficients that will not reproduce the results of pure line strength simulations. If the option is set to read the Einstein coefficicent (“A”) instead of computing it (“S”) the program will throw an error if missing data is encountered. For the computed Einstein coeffcient, if the upper degeneracy is missing, it will be set to either - (2J+1) or -1 if J is not a local quantum number. Note that this will also make the Einstein coefficient negative. This should not affect the simulation, but it is a warning that the data is not complete.
Author: Richard Larsson
- Parameters:
absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[OUT]file (String) – Filename. [IN]
frequency_range (Vector2, optional) – Frequency range selection. Defaults to
-inf inf
[IN]line_strength_option (String, optional) – Whether the Hitran line strenght or the Hitran Einstein coefficient is used, the latter has historically been less reliable. Defaults to
"S"
[IN]compute_zeeman_parameters (Index, optional) – Compute the Zeeman parameters from the HITRAN data (will not activate Zeeman calculations, this must be done manually afterwards). Defaults to
1
[IN]
- absorption_bandsReadSpeciesSplitARTSCAT(self, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, absorption_species: pyarts3.arts.ArrayOfArrayOfSpeciesTag | None = None, basename: pyarts3.arts.String | None = None, ignore_missing: pyarts3.arts.Index | None = None, pure_species: pyarts3.arts.Index | None = None) None
Same as
absorption_bandsReadSpeciesSplitCatalog()
but for reading the old ARTSCAT format.One key difference is that ARTSCAT were often stored in a single file per
SpeciesEnum
rather than perSpeciesIsotope
, so the optional argumentpure_species
is available and evaluates to true by default to useSpeciesEnum
. Switch this off to use theSpeciesIsotope
instead.Note that ARTSCAT does not support many of the features of the modern line catalog format. This reading routine is intended for use-as-is of the produced
absorption_bands
. Or after minor changes, like removing absorption lines outside of some frequency span.Author: Richard Larsson
- Parameters:
absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[OUT]absorption_species (ArrayOfArrayOfSpeciesTag, optional) – Tag groups for gas absorption. See
absorption_species
, defaults toself.absorption_species
[IN]basename (String) – Absolute or relative path to the directory. [IN]
ignore_missing (Index, optional) – Flag to ignore missing files instead of throwing an error. Defaults to
0
[IN]pure_species (Index, optional) – Flag that when true uses
SpeciesEnum
instead ofSpeciesIsotope
for file names. Defaults to1
[IN]
- absorption_bandsReadSpeciesSplitCatalog(self, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, absorption_species: pyarts3.arts.ArrayOfArrayOfSpeciesTag | None = None, basename: pyarts3.arts.String | None = None, ignore_missing: pyarts3.arts.Index | None = None) None
Reads all species in
absorption_species
from a basenamebasename follows the standard ARTS rules. For example if
absorption_species
contains onlyH2O-161
, then a basename of"lbl"
will read the file"lbl.H2O-161.xml"
, and a basename of"lbl/"
will read the file"lbl/H2O-161.xml"
.ignore_missing is a boolean that indicates if the method should ignore missing files or not. If set to true, the method will ignore missing files and continue. If set to false, the method will throw an error if any file is missing.
Author: Richard Larsson
- Parameters:
absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[OUT]absorption_species (ArrayOfArrayOfSpeciesTag, optional) – Tag groups for gas absorption. See
absorption_species
, defaults toself.absorption_species
[IN]basename (String) – Absolute or relative path to the directory. [IN]
ignore_missing (Index, optional) – Ignore missing files instead of throwing an error. Defaults to
0
[IN]
- absorption_bandsReadSplit(self, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, dir: pyarts3.arts.String | None = None) None
Saves all bands in
absorption_bands
to a directoryThis will create the directory if it does not exist. It will also create subdirectories that are the short-form of the isotopologue names. The bands will be stored as 0.xml, 1.xml, 2.xml, and so on
The
dir
path has to be absolute or relative to the working path, the environment variables are not consideredAuthor: Richard Larsson
- Parameters:
absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[OUT]dir (String) – Absolute or relative path to the directory. [IN]
- absorption_bandsRemoveID(self, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, id: pyarts3.arts.QuantumIdentifier | None = None) None
Remove first band of with a matching ID
Author: Richard Larsson
- Parameters:
absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[INOUT]id (QuantumIdentifier) – Identifier to remove. [IN]
- absorption_bandsSaveSplit(self, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, dir: pyarts3.arts.String | None = None) None
Saves all bands fin
absorption_bands
to a directoryThis will create the directory if it does not exist. It will also create subdirectories that are the short-form of the isotopologue names. The bands will be stored as 0.xml, 1.xml, 2.xml, and so on
The
dir
path has to be absolute or relative to the working path, the environment variables are not consideredAuthor: Richard Larsson
- Parameters:
absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[IN]dir (String) – Absolute or relative path to the directory. [IN]
- absorption_bandsSelectFrequencyByBand(self, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, fmin: pyarts3.arts.Numeric | None = None, fmax: pyarts3.arts.Numeric | None = None) None
Remove all bands whose lines all strictly falls outside a frequency range
Authors: Richard Larsson, Oliver Lemke
- Parameters:
absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[INOUT]fmin (Numeric, optional) – Minimum frequency to keep. Defaults to
-inf
[IN]fmax (Numeric, optional) – Maximum frequency to keep. Defaults to
inf
[IN]
- absorption_bandsSelectFrequencyByLine(self, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, fmin: pyarts3.arts.Numeric | None = None, fmax: pyarts3.arts.Numeric | None = None) None
Remove all lines that strictly falls outside a frequency range
Also remove bands whose lines are all removed.
Authors: Richard Larsson, Oliver Lemke
- Parameters:
absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[INOUT]fmin (Numeric, optional) – Minimum frequency to keep. Defaults to
-inf
[IN]fmax (Numeric, optional) – Maximum frequency to keep. Defaults to
inf
[IN]
- absorption_bandsSetNonLTE(self, absorption_bands: pyarts3.arts.AbsorptionBands | None = None) None
Set all bands to use non-LTE calculations.
Author: Richard Larsson
- Parameters:
absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[INOUT]
- absorption_bandsSetZeeman(self, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, species: pyarts3.arts.SpeciesIsotope | None = None, fmin: pyarts3.arts.Numeric | None = None, fmax: pyarts3.arts.Numeric | None = None, on: pyarts3.arts.Index | None = None) None
Set the Zeeman splitting for lines within the frequency range
See
SpeciesIsotope
for validspecies
Author: Richard Larsson
- Parameters:
absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[INOUT]species (SpeciesIsotope) – Isotopologue of the species. [IN]
fmin (Numeric) – Minimum line frequency to set Zeeman splitting for. [IN]
fmax (Numeric) – Maximum line frequency to set Zeeman splitting for. [IN]
on (Index, optional) – On or off. Defaults to
1
[IN]
- absorption_cia_dataAddCIARecord(self, absorption_cia_data: pyarts3.arts.ArrayOfCIARecord | None = None, cia_record: pyarts3.arts.CIARecord | None = None, clobber: pyarts3.arts.Index | None = None) None
Takes CIARecord as input and appends the results in the appropriate place.
If CIARecord has same species as species in
absorption_cia_data
, then the array position is used to append all of the CIARecord into the array. If clobber evaluates as true, cia_record overwrites the appropriateabsorption_cia_data
. If species in cia_record are not inabsorption_cia_data
, the CIARecord is pushed back.Author: Richard Larsson
- Parameters:
absorption_cia_data (ArrayOfCIARecord, optional) – HITRAN Collision-Induced Absorption (CIA) Data. See
absorption_cia_data
, defaults toself.absorption_cia_data
[INOUT]cia_record (CIARecord) – CIA record to append to
absorption_cia_data
. [IN]clobber (Index, optional) – If true, the new input clobbers the old cia data. Defaults to
0
[IN]
- absorption_cia_dataReadFromCIA(self, absorption_cia_data: pyarts3.arts.ArrayOfCIARecord | None = None, absorption_species: pyarts3.arts.ArrayOfArrayOfSpeciesTag | None = None, catalogpath: pyarts3.arts.String | None = None) None
Read data from a CIA data file for all CIA molecules defined in
absorption_species
.The units in the HITRAN file are:
Frequency: cm^(-1)
Binary absorption cross-section: cm^5 molec^(-2)
Upon reading we convert this to the ARTS internal SI units of Hz and m^5 molec^(-2).
Author: Oliver Lemke
- Parameters:
absorption_cia_data (ArrayOfCIARecord, optional) – HITRAN Collision-Induced Absorption (CIA) Data. See
absorption_cia_data
, defaults toself.absorption_cia_data
[OUT]absorption_species (ArrayOfArrayOfSpeciesTag, optional) – Tag groups for gas absorption. See
absorption_species
, defaults toself.absorption_species
[IN]catalogpath (String) – Path to the CIA catalog directory. [IN]
- absorption_cia_dataReadFromXML(self, absorption_cia_data: pyarts3.arts.ArrayOfCIARecord | None = None, absorption_species: pyarts3.arts.ArrayOfArrayOfSpeciesTag | None = None, filename: pyarts3.arts.String | None = None) None
Read data from a CIA XML file and check that all CIA tags defined in
absorption_species
are present in the file.The units of the data are described in
absorption_cia_dataReadFromCIA()
.Author: Oliver Lemke
- Parameters:
absorption_cia_data (ArrayOfCIARecord, optional) – HITRAN Collision-Induced Absorption (CIA) Data. See
absorption_cia_data
, defaults toself.absorption_cia_data
[OUT]absorption_species (ArrayOfArrayOfSpeciesTag, optional) – Tag groups for gas absorption. See
absorption_species
, defaults toself.absorption_species
[IN]filename (String, optional) – Name of the XML file. Defaults to
""
[IN]
- absorption_cia_dataReadSpeciesSplitCatalog(self, absorption_cia_data: pyarts3.arts.ArrayOfCIARecord | None = None, absorption_species: pyarts3.arts.ArrayOfArrayOfSpeciesTag | None = None, basename: pyarts3.arts.String | None = None, ignore_missing: pyarts3.arts.Index | None = None) None
Reads a species split CIA dataset.
Author: Richard Larsson
- Parameters:
absorption_cia_data (ArrayOfCIARecord, optional) – HITRAN Collision-Induced Absorption (CIA) Data. See
absorption_cia_data
, defaults toself.absorption_cia_data
[OUT]absorption_species (ArrayOfArrayOfSpeciesTag, optional) – Tag groups for gas absorption. See
absorption_species
, defaults toself.absorption_species
[IN]basename (String) – The path to the split catalog files. [IN]
ignore_missing (Index, optional) – Flag to continue in case nothing is found [0 throws, 1 continues]. Defaults to
0
[IN]
- absorption_lookup_tableCalc(self, absorption_lookup_table: pyarts3.arts.AbsorptionLookupTables | None = None, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, altitude_grid: pyarts3.arts.AscendingGrid | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, ecs_data: pyarts3.arts.LinemixingEcsData | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, latitude: pyarts3.arts.Numeric | None = None, longitude: pyarts3.arts.Numeric | None = None, water_perturbation: pyarts3.arts.AscendingGrid | None = None, water_affected_species: pyarts3.arts.ArrayOfSpeciesEnum | None = None, temperature_perturbation: pyarts3.arts.AscendingGrid | None = None) None
Get
absorption_lookup_table
from available data.This method will use the
atmospheric_field
andabsorption_bands
to calculate theabsorption_lookup_table
. The atmospheric field is first gridded usingatmospheric_profileExtract()
.Wrapper calling Methods (in order):
Equivalent (mostly) Python code:
1ws = pyarts.Workspace() 2 3# ... 4 5 ws.atmospheric_profileExtract() 6 ws.absorption_lookup_tableInit() 7 ws.absorption_lookup_tablePrecomputeAll()
Author: Richard Larsson
- Parameters:
absorption_lookup_table (AbsorptionLookupTables, optional) – Absorption lookup table for scalar gas absorption coefficients. See
absorption_lookup_table
, defaults toself.absorption_lookup_table
[OUT]absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[IN]altitude_grid (AscendingGrid, optional) – An ascending list of
altitude
. Often related to a field or a profile. Seealtitude_grid
, defaults toself.altitude_grid
[IN]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]ecs_data (LinemixingEcsData, optional) – Error corrected sudden data. See
ecs_data
, defaults toself.ecs_data
[IN]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]latitude (Numeric, optional) – A single latitude. See
latitude
, defaults toself.latitude
[IN]longitude (Numeric, optional) – A single longitude. See
longitude
, defaults toself.longitude
[IN]water_perturbation (AscendingGrid, optional) – Water vapor perturbation to use for the lookup table. Defaults to
pyarts.arts.AscendingGrid()
[IN]water_affected_species (ArrayOfSpeciesEnum, optional) – A list of absorption species that are affected by water vapor perturbations nonlinearly. Defaults to
[]
[IN]temperature_perturbation (AscendingGrid, optional) – Temperature perturbation to use for the lookup table. Defaults to
pyarts.arts.AscendingGrid()
[IN]
- absorption_lookup_tableFromProfiles(self, absorption_lookup_table: pyarts3.arts.AbsorptionLookupTables | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, ecs_data: pyarts3.arts.LinemixingEcsData | None = None, pressure_profile: pyarts3.arts.DescendingGrid | None = None, temperature_profile: pyarts3.arts.Vector | None = None, vmr_profiles: pyarts3.arts.SpeciesEnumVectors | None = None, temperature_perturbation: pyarts3.arts.AscendingGrid | None = None, water_perturbation: pyarts3.arts.AscendingGrid | None = None, water_affected_species: pyarts3.arts.ArrayOfSpeciesEnum | None = None, default_isotopologue_ratios: pyarts3.arts.String | None = None) None
Compute the lookup table for all species in
absorption_bands
.Wraps
absorption_lookup_tablePrecomputeAll()
after creating a simpleray_path_atmospheric_point
from the input data.Unlike
absorption_lookup_tablePrecomputeAll()
, this method will initializeabsorption_lookup_table
Author: Richard Larsson
- Parameters:
absorption_lookup_table (AbsorptionLookupTables, optional) – Absorption lookup table for scalar gas absorption coefficients. See
absorption_lookup_table
, defaults toself.absorption_lookup_table
[OUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[IN]ecs_data (LinemixingEcsData, optional) – Error corrected sudden data. See
ecs_data
, defaults toself.ecs_data
[IN]pressure_profile (DescendingGrid) – Pressure profile [Pa]. [IN]
temperature_profile (Vector) – Temperature profile [K]. [IN]
vmr_profiles (SpeciesEnumVectors) – Volume mixing ratio profiles {SpeciesEnum: [VMR]}. [IN]
temperature_perturbation (AscendingGrid, optional) – Temperature perturbation to use for the lookup table. Defaults to
pyarts.arts.AscendingGrid()
[IN]water_perturbation (AscendingGrid, optional) – Water vapor perturbation to use for the lookup table. Defaults to
pyarts.arts.AscendingGrid()
[IN]water_affected_species (ArrayOfSpeciesEnum, optional) – A list of absorption species that are affected by water vapor perturbations nonlinearly. Defaults to
[]
[IN]default_isotopologue_ratios (String, optional) – Default isotopologue ratio option to initialize the
AtmPoint
with. Defaults to"Builtin"
[IN]
- absorption_lookup_tableInit(self, absorption_lookup_table: pyarts3.arts.AbsorptionLookupTables | None = None) None
Initialize an empty lookup table.
Author: Richard Larsson
Used by wrapper method
- Parameters:
absorption_lookup_table (AbsorptionLookupTables, optional) – Absorption lookup table for scalar gas absorption coefficients. See
absorption_lookup_table
, defaults toself.absorption_lookup_table
[OUT]
- absorption_lookup_tablePrecompute(self, absorption_lookup_table: pyarts3.arts.AbsorptionLookupTables | None = None, atmospheric_profile: pyarts3.arts.ArrayOfAtmPoint | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, ecs_data: pyarts3.arts.LinemixingEcsData | None = None, select_species: pyarts3.arts.SpeciesEnum | None = None, temperature_perturbation: pyarts3.arts.AscendingGrid | None = None, water_perturbation: pyarts3.arts.AscendingGrid | None = None) None
Precompute the lookup table for a single species, adding it to the map.
Author: Richard Larsson
- Parameters:
absorption_lookup_table (AbsorptionLookupTables, optional) – Absorption lookup table for scalar gas absorption coefficients. See
absorption_lookup_table
, defaults toself.absorption_lookup_table
[INOUT]atmospheric_profile (ArrayOfAtmPoint, optional) – An atmospheric profile in ARTS. See
atmospheric_profile
, defaults toself.atmospheric_profile
[IN]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[IN]ecs_data (LinemixingEcsData, optional) – Error corrected sudden data. See
ecs_data
, defaults toself.ecs_data
[IN]select_species (SpeciesEnum, optional) – Species selection. See
select_species
, defaults toself.select_species
[IN]temperature_perturbation (AscendingGrid, optional) – Temperature perturbation to use for the lookup table. Defaults to
pyarts.arts.AscendingGrid()
[IN]water_perturbation (AscendingGrid, optional) – Water vapor perturbation to use for the lookup table (makes the species nonlinear). Defaults to
pyarts.arts.AscendingGrid()
[IN]
- absorption_lookup_tablePrecomputeAll(self, absorption_lookup_table: pyarts3.arts.AbsorptionLookupTables | None = None, atmospheric_profile: pyarts3.arts.ArrayOfAtmPoint | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, ecs_data: pyarts3.arts.LinemixingEcsData | None = None, temperature_perturbation: pyarts3.arts.AscendingGrid | None = None, water_perturbation: pyarts3.arts.AscendingGrid | None = None, water_affected_species: pyarts3.arts.ArrayOfSpeciesEnum | None = None) None
Compute the lookup table for all species in
absorption_bands
.Wraps
absorption_lookup_tablePrecompute()
for each species, passingwater_perturbation
along for those species that arewater_affected_species
.Author: Richard Larsson
Used by wrapper method
- Parameters:
absorption_lookup_table (AbsorptionLookupTables, optional) – Absorption lookup table for scalar gas absorption coefficients. See
absorption_lookup_table
, defaults toself.absorption_lookup_table
[INOUT]atmospheric_profile (ArrayOfAtmPoint, optional) – An atmospheric profile in ARTS. See
atmospheric_profile
, defaults toself.atmospheric_profile
[IN]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[IN]ecs_data (LinemixingEcsData, optional) – Error corrected sudden data. See
ecs_data
, defaults toself.ecs_data
[IN]temperature_perturbation (AscendingGrid, optional) – Temperature perturbation to use for the lookup table. Defaults to
pyarts.arts.AscendingGrid()
[IN]water_perturbation (AscendingGrid, optional) – Water vapor perturbation to use for the lookup table. Defaults to
pyarts.arts.AscendingGrid()
[IN]water_affected_species (ArrayOfSpeciesEnum, optional) – A list of absorption species that are affected by water vapor perturbations nonlinearly. Defaults to
[]
[IN]
- absorption_lookup_tableSimpleWide(self, absorption_lookup_table: pyarts3.arts.AbsorptionLookupTables | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, ecs_data: pyarts3.arts.LinemixingEcsData | None = None, water_affected_species: pyarts3.arts.ArrayOfSpeciesEnum | None = None, pressure_range: pyarts3.arts.Vector2 | None = None, temperature_range: pyarts3.arts.Vector2 | None = None, water_vmr_range: pyarts3.arts.Vector2 | None = None, isoratio_option: pyarts3.arts.String | None = None, vmr_value: pyarts3.arts.Numeric | None = None, atmospheric_steps: pyarts3.arts.Index | None = None, temperature_perturbation_steps: pyarts3.arts.Index | None = None, water_vmr_perturbation_steps: pyarts3.arts.Index | None = None) None
Set up a simple wide lookup table for all species in
absorption_bands
.This method simply computes the profiles for Earth-like atmospheres (by defaults) and pass them into
absorption_lookup_tableFromProfiles()
.The pressure range is set up logarithmically and all other ranges are set linearly.
Author: Richard Larsson
- Parameters:
absorption_lookup_table (AbsorptionLookupTables, optional) – Absorption lookup table for scalar gas absorption coefficients. See
absorption_lookup_table
, defaults toself.absorption_lookup_table
[OUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[IN]ecs_data (LinemixingEcsData, optional) – Error corrected sudden data. See
ecs_data
, defaults toself.ecs_data
[IN]water_affected_species (ArrayOfSpeciesEnum, optional) – A list of absorption species that are affected by water vapor perturbations nonlinearly. Defaults to
[]
[IN]pressure_range (Vector2, optional) – Pressure range to consider - in increasing order [Pa]. Defaults to
0.01 110000
[IN]temperature_range (Vector2, optional) – Temperature range to consider - in increasing order [K]. Defaults to
150 350
[IN]water_vmr_range (Vector2, optional) – Water VMR range to consider - in increasing order [vmr]. Defaults to
1e-04 0.15
[IN]isoratio_option (String, optional) – Default isotopologue ratio option to initialize the
AtmPoint
with. Defaults to"Builtin"
[IN]vmr_value (Numeric, optional) – The VMR to use for the self-value broadening. Defaults to
1e-09
[IN]atmospheric_steps (Index, optional) – Number of steps in the atmospheric profile. Defaults to
80
[IN]temperature_perturbation_steps (Index, optional) – Number of steps in the temperature perturbation. Defaults to
15
[IN]water_vmr_perturbation_steps (Index, optional) – Number of steps in the water vapor perturbation. Defaults to
15
[IN]
- absorption_predefined_model_dataAddWaterMTCKD400(self, absorption_predefined_model_data: pyarts3.arts.PredefinedModelData | None = None, ref_temp: pyarts3.arts.Numeric | None = None, ref_press: pyarts3.arts.Numeric | None = None, ref_h2o_vmr: pyarts3.arts.Numeric | None = None, self_absco_ref: pyarts3.arts.Vector | None = None, for_absco_ref: pyarts3.arts.Vector | None = None, wavenumbers: pyarts3.arts.Vector | None = None, self_texp: pyarts3.arts.Vector | None = None) None
Sets the data for MT CKD 4.0 Water model
Note that the vectors must have the same length, and that wavenumbers must be growing at a constant rate. The minimum length is 4.
Note also that as this is predefined model data, the units of the values of the vectors must be as described by each vector.
This is based on the works cited here: https://hitran.org/mtckd/
Note
The method itself is implemented from scratch. Using any version of data after version 4.0 is supported by this method - all that changes are the values of the vectors.
Author: Richard Larsson
- Parameters:
absorption_predefined_model_data (PredefinedModelData, optional) – This contains predefined model data. See
absorption_predefined_model_data
, defaults toself.absorption_predefined_model_data
[INOUT]ref_temp (Numeric) – Reference temperature. [IN]
ref_press (Numeric) – Reference pressure. [IN]
ref_h2o_vmr (Numeric) – Reference volume mixing ratio of water. [IN]
self_absco_ref (Vector) – Self absorption [1/(cm-1 molecules/cm^2]. [IN]
for_absco_ref (Vector) – Foreign absorption [1/(cm-1 molecules/cm^2)]. [IN]
wavenumbers (Vector) – Wavenumbers [cm-1]. [IN]
self_texp (Vector) – Self temperature exponent [-]. [IN]
- absorption_predefined_model_dataInit(self, absorption_predefined_model_data: pyarts3.arts.PredefinedModelData | None = None) None
Initialize the predefined model data
Author: Richard Larsson
- Parameters:
absorption_predefined_model_data (PredefinedModelData, optional) – This contains predefined model data. See
absorption_predefined_model_data
, defaults toself.absorption_predefined_model_data
[OUT]
- absorption_predefined_model_dataReadSpeciesSplitCatalog(self, absorption_predefined_model_data: pyarts3.arts.PredefinedModelData | None = None, absorption_species: pyarts3.arts.ArrayOfArrayOfSpeciesTag | None = None, basename: pyarts3.arts.String | None = None, name_missing: pyarts3.arts.Index | None = None, ignore_missing: pyarts3.arts.Index | None = None) None
Reads
absorption_predefined_model_data
catalog but only forabsorption_species
If
name_missing
is true, missing models are set to named model, which is the most common form of a predefined model.Author: Richard Larsson
- Parameters:
absorption_predefined_model_data (PredefinedModelData, optional) – This contains predefined model data. See
absorption_predefined_model_data
, defaults toself.absorption_predefined_model_data
[OUT]absorption_species (ArrayOfArrayOfSpeciesTag, optional) – Tag groups for gas absorption. See
absorption_species
, defaults toself.absorption_species
[IN]basename (String) – The path to the split catalog files. [IN]
name_missing (Index, optional) – Flag to name models that are missing. Defaults to
1
[IN]ignore_missing (Index, optional) – Flag to otherwise (if not name_missing is true) ignore missing models. Defaults to
0
[IN]
- absorption_speciesDefineAll(self, absorption_species: pyarts3.arts.ArrayOfArrayOfSpeciesTag | None = None) None
Sets
absorption_species
[i][0] to all species in ARTSAuthor: Richard Larsson
- Parameters:
absorption_species (ArrayOfArrayOfSpeciesTag, optional) – Tag groups for gas absorption. See
absorption_species
, defaults toself.absorption_species
[OUT]
- absorption_speciesSet(self, absorption_species: pyarts3.arts.ArrayOfArrayOfSpeciesTag | None = None, species: pyarts3.arts.ArrayOfString | None = None) None
Set
absorption_species
to the named species.The species that are defined by this method are used in various file reading routines to populate both atmosphere- and abosorption-related data variables.
A tag begins with a valid
SpeciesEnum
. The rest of the tag is optional. Here are the options:Leave it as is. Example: “H2O”. This selection means all pure isotopologues of water have been selected.
Make it a valid
SpeciesIsotope
. Example: “H2O-161” emphasis:or “H2O-PWR98”. The former selection is an actual isotopologue, whereas the latter selects a predefined model.Make it a valid cross-section species. Example: “H2O-XFIT”. This selects a cross-section species, which is defined in the
absorption_xsec_fit_data
variable. The tagtype “XFIT” is used to indicate that this is a cross-section species.Make it a valid collision-induced absorption (CIA) species. Example: “N2-CIA-N2”. This selection is used to select a CIA species, which is defined in the
absorption_cia_data
variable. The tagtype “CIA” is used to indicate that this is a CIA species.
Author: Stefan Buehler
- Parameters:
absorption_species (ArrayOfArrayOfSpeciesTag, optional) – Tag groups for gas absorption. See
absorption_species
, defaults toself.absorption_species
[OUT]species (ArrayOfString) – Specify one String for each tag group that you want to create. Inside the String, separate the tags by commas (plus optional blanks). [IN]
- absorption_xsec_fit_dataReadSpeciesSplitCatalog(self, absorption_xsec_fit_data: pyarts3.arts.ArrayOfXsecRecord | None = None, absorption_species: pyarts3.arts.ArrayOfArrayOfSpeciesTag | None = None, basename: pyarts3.arts.String | None = None, ignore_missing: pyarts3.arts.Index | None = None) None
Reads HITRAN Crosssection coefficients
Reads coefficient files for HITRAN Xsec species defined in
absorption_species
.Author: Oliver Lemke
- Parameters:
absorption_xsec_fit_data (ArrayOfXsecRecord, optional) – Fitting model coefficients for cross section species. See
absorption_xsec_fit_data
, defaults toself.absorption_xsec_fit_data
[OUT]absorption_species (ArrayOfArrayOfSpeciesTag, optional) – Tag groups for gas absorption. See
absorption_species
, defaults toself.absorption_species
[IN]basename (String) – Basepath to the files. [IN]
ignore_missing (Index, optional) – Ignore missing files (0: no, 1: yes). Defaults to
0
[IN]
- atmospheric_fieldAbsoluteMagneticField(self, atmospheric_field: pyarts3.arts.AtmField | None = None) None
Set the magnetic field to use the magnitude field functional.
The input field must be a
GeodeticField3
for all three parameters to call this method.The main purpose of this method is to retrieve the magnitude rather than the vector field.
Author: Richard Larsson
- Parameters:
atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[INOUT]
- atmospheric_fieldAbsoluteWindField(self, atmospheric_field: pyarts3.arts.AtmField | None = None) None
Set the wind field to use the magnitude field functional.
The input field must be a
GeodeticField3
for all three parameters to call this method.The main purpose of this method is to retrieve the magnitude rather than the vector field.
Author: Richard Larsson
- Parameters:
atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[INOUT]
- atmospheric_fieldAppendAbsorptionData(self, atmospheric_field: pyarts3.arts.AtmField | None = None, basename: pyarts3.arts.String | None = None, extrapolation: pyarts3.arts.String | None = None, missing_is_zero: pyarts3.arts.Index | None = None, replace_existing: pyarts3.arts.Index | None = None, load_isot: pyarts3.arts.Index | None = None, load_nlte: pyarts3.arts.Index | None = None) None
Append data to the atmospheric field based all absorption data
See
InterpolationExtrapolation
for validextrapolation
.Wraps:
atmospheric_fieldAppendLineSpeciesData()
if the workspace containsabsorption_bands
atmospheric_fieldAppendLineIsotopologueData()
ifload_isot
is true and if the workspace containsabsorption_bands
atmospheric_fieldAppendLineLevelData()
ifload_nlte
is true and if the workspace containsabsorption_bands
atmospheric_fieldAppendTagsSpeciesData()
if the workspace containsabsorption_species
atmospheric_fieldAppendLookupTableSpeciesData()
if the workspace containsabsorption_lookup_table
atmospheric_fieldAppendCIASpeciesData()
if the workspace containsabsorption_cia_data
atmospheric_fieldAppendXsecSpeciesData()
if the workspace containsabsorption_xsec_fit_data
atmospheric_fieldAppendPredefSpeciesData()
if the workspace containsabsorption_predefined_model_data
Author: Richard Larsson
Used by wrapper method
- Parameters:
atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[INOUT]basename (String) – The base name of the files. [IN]
extrapolation (String, optional) – The extrapolation to use. Defaults to
"Linear"
[IN]missing_is_zero (Index, optional) – Whether or not to zero-out missing data. Defaults to
0
[IN]replace_existing (Index, optional) – Whether or not to replace existing data. Defaults to
0
[IN]load_isot (Index, optional) – Whether or not to load isotopologue data. Defaults to
0
[IN]load_nlte (Index, optional) – Whether or not to load NLTE data. Defaults to
0
[IN]
- atmospheric_fieldAppendBaseData(self, atmospheric_field: pyarts3.arts.AtmField | None = None, basename: pyarts3.arts.String | None = None, extrapolation: pyarts3.arts.String | None = None, deal_with_field_component: pyarts3.arts.String | None = None, replace_existing: pyarts3.arts.Index | None = None, allow_missing_pressure: pyarts3.arts.Index | None = None, allow_missing_temperature: pyarts3.arts.Index | None = None) None
Append base data to the atmospheric field
This will look at the valid
basename
for files matching base data. The base data file names are of the form“<…>t.xml”
“<…>p.xml”
“<…>wind_u.xml”
“<…>wind_v.xml”
“<…>wind_w.xml”
“<…>mag_u.xml”
“<…>mag_v.xml”
“<…>mag_w.xml”
If any of these files are found, they are appended to the atmospheric field.
See
InterpolationExtrapolation
for validextrapolation
.See
MissingFieldComponentError
for validdeal_with_field_component
.The
replace_existing
is used to determine if the data should be replaced if it already exists in the atmospheric field.The
allow_missing_pressure
andallow_missing_temperature
are used to determine if the method should throw if the pressure or temperature is missing.Author: Richard Larsson
Used by wrapper method
- Parameters:
atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[INOUT]basename (String) – The base name of the files. [IN]
extrapolation (String, optional) – The extrapolation to use. Defaults to
"Linear"
[IN]deal_with_field_component (String, optional) – How to deal with the field component. Defaults to
"Throw"
[IN]replace_existing (Index, optional) – Whether or not to replace existing data. Defaults to
1
[IN]allow_missing_pressure (Index, optional) – Whether or not to allow missing pressure data. Defaults to
0
[IN]allow_missing_temperature (Index, optional) – Whether or not to allow missing temperature data. Defaults to
0
[IN]
- atmospheric_fieldAppendCIASpeciesData(self, atmospheric_field: pyarts3.arts.AtmField | None = None, absorption_cia_data: pyarts3.arts.ArrayOfCIARecord | None = None, basename: pyarts3.arts.String | None = None, extrapolation: pyarts3.arts.String | None = None, missing_is_zero: pyarts3.arts.Index | None = None, replace_existing: pyarts3.arts.Index | None = None) None
Append species data to the atmospheric field based on collision-induced data data
This will look at the valid
basename
for files matching base data. The base data file names are of the short-name form: “species1.xml” “species2.xml” (e.g., “H2O.xml” “CO2.xml”). SeeSpeciesEnum
for valid short names.See
InterpolationExtrapolation
for validextrapolation
.The
missing_is_zero
sets missing data to zero.The
replace_existing
is used to determine if the data should be replaced if it already exists in the atmospheric field.Author: Richard Larsson
- Parameters:
atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[INOUT]absorption_cia_data (ArrayOfCIARecord, optional) – HITRAN Collision-Induced Absorption (CIA) Data. See
absorption_cia_data
, defaults toself.absorption_cia_data
[IN]basename (String) – The base name of the files. [IN]
extrapolation (String, optional) – The extrapolation to use. Defaults to
"Linear"
[IN]missing_is_zero (Index, optional) – Whether or not to zero-out missing data. Defaults to
0
[IN]replace_existing (Index, optional) – Whether or not to replace existing data. Defaults to
0
[IN]
- atmospheric_fieldAppendLineIsotopologueData(self, atmospheric_field: pyarts3.arts.AtmField | None = None, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, basename: pyarts3.arts.String | None = None, extrapolation: pyarts3.arts.String | None = None, missing_is_zero: pyarts3.arts.Index | None = None, replace_existing: pyarts3.arts.Index | None = None) None
Append isotopologue data to the atmospheric field based on line data
This will look at the valid
basename
for files matching base data. The base data file names are of the form: “species-n.xml” (e.g., “H2O-161.xml”). SeeSpeciesIsotopeRecord
for valid isotopologue names.See
InterpolationExtrapolation
for validextrapolation
.The
missing_is_zero
sets missing data to zero.The
replace_existing
is used to determine if the data should be replaced if it already exists in the atmospheric field.Author: Richard Larsson
- Parameters:
atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[INOUT]absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[IN]basename (String) – The base name of the files. [IN]
extrapolation (String, optional) – The extrapolation to use. Defaults to
"Linear"
[IN]missing_is_zero (Index, optional) – Whether or not to zero-out missing data. Defaults to
0
[IN]replace_existing (Index, optional) – Whether or not to replace existing data. Defaults to
0
[IN]
- atmospheric_fieldAppendLineLevelData(self, atmospheric_field: pyarts3.arts.AtmField | None = None, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, basename: pyarts3.arts.String | None = None, extrapolation: pyarts3.arts.String | None = None, missing_is_zero: pyarts3.arts.Index | None = None, replace_existing: pyarts3.arts.Index | None = None) None
Append NLTE data to the atmospheric field based on line data
This will look at the valid
basename
for files matching base data. The base data file names are of the form: “species-n QN1 N1 N1 QN2 N2 N2.xml” (e.g., “O2-66 J 1 1 N 0 0.xml”). SeeSpeciesIsotopeRecord
for valid isotopologue names andQuantumNumberValue
for valid quantum numbers.See
InterpolationExtrapolation
for validextrapolation
.The
missing_is_zero
sets missing data to zero.The
replace_existing
is used to determine if the data should be replaced if it already exists in the atmospheric field.Author: Richard Larsson
- Parameters:
atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[INOUT]absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[IN]basename (String) – The base name of the files. [IN]
extrapolation (String, optional) – The extrapolation to use. Defaults to
"Linear"
[IN]missing_is_zero (Index, optional) – Whether or not to zero-out missing data. Defaults to
0
[IN]replace_existing (Index, optional) – Whether or not to replace existing data. Defaults to
0
[IN]
- atmospheric_fieldAppendLineSpeciesData(self, atmospheric_field: pyarts3.arts.AtmField | None = None, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, basename: pyarts3.arts.String | None = None, extrapolation: pyarts3.arts.String | None = None, missing_is_zero: pyarts3.arts.Index | None = None, replace_existing: pyarts3.arts.Index | None = None) None
Append species data to the atmospheric field based on line data
This will look at the valid
basename
for files matching base data. The base data file names are of the short-name form: “species.xml” (e.g., “H2O.xml”). SeeSpeciesEnum
for valid short names.See
InterpolationExtrapolation
for validextrapolation
.The
missing_is_zero
sets missing data to zero.The
replace_existing
is used to determine if the data should be replaced if it already exists in the atmospheric field.Author: Richard Larsson
- Parameters:
atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[INOUT]absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[IN]basename (String) – The base name of the files. [IN]
extrapolation (String, optional) – The extrapolation to use. Defaults to
"Linear"
[IN]missing_is_zero (Index, optional) – Whether or not to zero-out missing data. Defaults to
0
[IN]replace_existing (Index, optional) – Whether or not to replace existing data. Defaults to
0
[IN]
- atmospheric_fieldAppendLookupTableSpeciesData(self, atmospheric_field: pyarts3.arts.AtmField | None = None, absorption_lookup_table: pyarts3.arts.AbsorptionLookupTables | None = None, basename: pyarts3.arts.String | None = None, extrapolation: pyarts3.arts.String | None = None, missing_is_zero: pyarts3.arts.Index | None = None, replace_existing: pyarts3.arts.Index | None = None) None
Append species data to the atmospheric field based on lookup data
This will look at the valid
basename
for files matching base data. The base data file names are of the short-name form: “species.xml” (e.g., “H2O.xml”). SeeSpeciesEnum
for valid short names.See
InterpolationExtrapolation
for validextrapolation
.The
missing_is_zero
sets missing data to zero.The
replace_existing
is used to determine if the data should be replaced if it already exists in the atmospheric field.Author: Richard Larsson
- Parameters:
atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[INOUT]absorption_lookup_table (AbsorptionLookupTables, optional) – Absorption lookup table for scalar gas absorption coefficients. See
absorption_lookup_table
, defaults toself.absorption_lookup_table
[IN]basename (String) – The base name of the files. [IN]
extrapolation (String, optional) – The extrapolation to use. Defaults to
"Linear"
[IN]missing_is_zero (Index, optional) – Whether or not to zero-out missing data. Defaults to
0
[IN]replace_existing (Index, optional) – Whether or not to replace existing data. Defaults to
0
[IN]
- atmospheric_fieldAppendPredefSpeciesData(self, atmospheric_field: pyarts3.arts.AtmField | None = None, absorption_predefined_model_data: pyarts3.arts.PredefinedModelData | None = None, basename: pyarts3.arts.String | None = None, extrapolation: pyarts3.arts.String | None = None, missing_is_zero: pyarts3.arts.Index | None = None, replace_existing: pyarts3.arts.Index | None = None) None
Append species data to the atmospheric field based on predefined model data
This will look at the valid
basename
for files matching base data. The base data file names are of the short-name form: “species-MODEL.xml” (e.g., “H2O-ForeignContCKDMT400.xml”). SeeSpeciesEnum
for valid short names.See
InterpolationExtrapolation
for validextrapolation
.The
missing_is_zero
sets missing data to zero.The
replace_existing
is used to determine if the data should be replaced if it already exists in the atmospheric field.Author: Richard Larsson
- Parameters:
atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[INOUT]absorption_predefined_model_data (PredefinedModelData, optional) – This contains predefined model data. See
absorption_predefined_model_data
, defaults toself.absorption_predefined_model_data
[IN]basename (String) – The base name of the files. [IN]
extrapolation (String, optional) – The extrapolation to use. Defaults to
"Linear"
[IN]missing_is_zero (Index, optional) – Whether or not to zero-out missing data. Defaults to
0
[IN]replace_existing (Index, optional) – Whether or not to replace existing data. Defaults to
0
[IN]
- atmospheric_fieldAppendTagsSpeciesData(self, atmospheric_field: pyarts3.arts.AtmField | None = None, absorption_species: pyarts3.arts.ArrayOfArrayOfSpeciesTag | None = None, basename: pyarts3.arts.String | None = None, extrapolation: pyarts3.arts.String | None = None, missing_is_zero: pyarts3.arts.Index | None = None, replace_existing: pyarts3.arts.Index | None = None) None
Append species data to the atmospheric field based on species data
This will look at the valid
basename
for files matching base data. The base data file names are of the short-name form: “species.xml” (e.g., “H2O.xml”). SeeSpeciesEnum
for valid short names.See
InterpolationExtrapolation
for validextrapolation
.The
missing_is_zero
sets missing data to zero.The
replace_existing
is used to determine if the data should be replaced if it already exists in the atmospheric field.Author: Richard Larsson
- Parameters:
atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[INOUT]absorption_species (ArrayOfArrayOfSpeciesTag, optional) – Tag groups for gas absorption. See
absorption_species
, defaults toself.absorption_species
[IN]basename (String) – The base name of the files. [IN]
extrapolation (String, optional) – The extrapolation to use. Defaults to
"Linear"
[IN]missing_is_zero (Index, optional) – Whether or not to zero-out missing data. Defaults to
0
[IN]replace_existing (Index, optional) – Whether or not to replace existing data. Defaults to
0
[IN]
- atmospheric_fieldAppendXsecSpeciesData(self, atmospheric_field: pyarts3.arts.AtmField | None = None, absorption_xsec_fit_data: pyarts3.arts.ArrayOfXsecRecord | None = None, basename: pyarts3.arts.String | None = None, extrapolation: pyarts3.arts.String | None = None, missing_is_zero: pyarts3.arts.Index | None = None, replace_existing: pyarts3.arts.Index | None = None) None
Append species data to the atmospheric field based on cross-section data
This will look at the valid
basename
for files matching base data. The base data file names are of the short-name form: “species.xml” (e.g., “H2O.xml”). SeeSpeciesEnum
for valid short names.See
InterpolationExtrapolation
for validextrapolation
.The
missing_is_zero
sets missing data to zero.The
replace_existing
is used to determine if the data should be replaced if it already exists in the atmospheric field.Author: Richard Larsson
- Parameters:
atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[INOUT]absorption_xsec_fit_data (ArrayOfXsecRecord, optional) – Fitting model coefficients for cross section species. See
absorption_xsec_fit_data
, defaults toself.absorption_xsec_fit_data
[IN]basename (String) – The base name of the files. [IN]
extrapolation (String, optional) – The extrapolation to use. Defaults to
"Linear"
[IN]missing_is_zero (Index, optional) – Whether or not to zero-out missing data. Defaults to
0
[IN]replace_existing (Index, optional) – Whether or not to replace existing data. Defaults to
0
[IN]
- atmospheric_fieldFitNonLTE(self, atmospheric_field: pyarts3.arts.AtmField | None = None, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, propagation_matrix_agenda: pyarts3.arts.Agenda | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, pol: pyarts3.arts.Stokvec | None = None, levels: pyarts3.arts.ArrayOfQuantumLevelIdentifier | None = None, key: pyarts3.arts.AtmKey | None = None, iteration_limit: pyarts3.arts.Index | None = None, dza: pyarts3.arts.Numeric | None = None, convergence_limit: pyarts3.arts.Numeric | None = None, consider_limb: pyarts3.arts.Index | None = None, collision_data: pyarts3.arts.QuantumIdentifierGriddedField1Map | None = None, azimuth: pyarts3.arts.Numeric | None = None, altitude_extrapolation: pyarts3.arts.InterpolationExtrapolation | None = None) None
Fits non-LTE atmospheric field values
Wrapper calling Methods (in order):
Equivalent (mostly) Python code:
1ws = pyarts.Workspace() 2 3# ... 4 5 ws.atmospheric_profileFromGrid() 6 ws.atmospheric_profileFitNonLTE() 7 ws.atmospheric_fieldFromProfile()
Author: Richard Larsson
- Parameters:
atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[INOUT]absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[IN]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]propagation_matrix_agenda (Agenda, optional) – Compute the propagation matrix, the non-LTE source vector, and their derivatives. See
propagation_matrix_agenda
, defaults toself.propagation_matrix_agenda
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]pol (Stokvec, optional) – The polarization selection vector (use the default unless you know what you are doing). Defaults to
1 0 0 0
[IN]levels (ArrayOfQuantumLevelIdentifier) – The order of the energy levels. [IN]
key (AtmKey, optional) – Key to find the
GriddedField3
in the atmospheric field. Defaults tot
[IN]iteration_limit (Index, optional) – Maximum number of iterations. Defaults to
100
[IN]dza (Numeric, optional) – The zenith angle limit for the internal call to
zenith_gridProfilePseudo2D()
. Defaults to5
[IN]convergence_limit (Numeric, optional) – Convergence criterion for the energy level distribution. Defaults to
1e-06
[IN]consider_limb (Index, optional) – Whether to add extra limb points in
zenith_gridProfilePseudo2D()
. Defaults to1
[IN]collision_data (QuantumIdentifierGriddedField1Map) – Collision data for the transitions - for \(C_{ij}\) and \(C_{ji}\). [IN]
azimuth (Numeric, optional) – The azimuth of the radiation. Defaults to
0
[IN]altitude_extrapolation (InterpolationExtrapolation, optional) – Extrapolation method along the altitude grid. Defaults to
Linear
[IN]
- atmospheric_fieldFromModelState(self, atmospheric_field: pyarts3.arts.AtmField | None = None, model_state_vector: pyarts3.arts.Vector | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None) None
Sets
atmospheric_field
to the state of the model.Author: Richard Larsson
Used by wrapper method
- Parameters:
atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[INOUT]model_state_vector (Vector, optional) – A state vector of the model. See
model_state_vector
, defaults toself.model_state_vector
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]
- atmospheric_fieldFromProfile(self, atmospheric_field: pyarts3.arts.AtmField | None = None, atmospheric_profile: pyarts3.arts.ArrayOfAtmPoint | None = None, altitude_grid: pyarts3.arts.AscendingGrid | None = None, altitude_extrapolation: pyarts3.arts.InterpolationExtrapolation | None = None) None
Sets the atmospheric field to be the 1D atmospheric profile.
The top of the atmosphere is the last value of the altitude grid.
Author: Richard Larsson
Used by wrapper method
- Parameters:
atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[OUT]atmospheric_profile (ArrayOfAtmPoint, optional) – An atmospheric profile in ARTS. See
atmospheric_profile
, defaults toself.atmospheric_profile
[IN]altitude_grid (AscendingGrid, optional) – An ascending list of
altitude
. Often related to a field or a profile. Seealtitude_grid
, defaults toself.altitude_grid
[IN]altitude_extrapolation (InterpolationExtrapolation, optional) – Extrapolation method along the altitude grid. Defaults to
Linear
[IN]
- atmospheric_fieldHydrostaticPressure(self, atmospheric_field: pyarts3.arts.AtmField | None = None, gravity_operator: pyarts3.arts.NumericTernaryOperator | None = None, altitude_grid: pyarts3.arts.AscendingGrid | None = None, p0: pyarts3.arts.GeodeticField2 | pyarts3.arts.Numeric | None = None, fixed_specific_gas_constant: pyarts3.arts.Numeric | None = None, fixed_atmospheric_temperature: pyarts3.arts.Numeric | None = None, hydrostatic_option: pyarts3.arts.String | None = None) None
Add the hydrostatic pressure to the atmospheric field
The field must already be able to compute temperature as a function of altitude, latitude, and longitude.
If a positive
fixed_specific_gas_constant
is not provided, the field must also consist of correct volume mixing ratios so that the mass of an average molecule can be computed.The first altitude in
altitude_grid
is used as the altitude of thep0
grid. The extrapolation outside of this range simply uses the formalism of the selecthydrostatic_option
.Note
The gradient changes only at the grid points of the
altitude_grid
. Please make it dense enough to avoid missing features. A recommendation is to extract thealtitude_grid
directly from the temperature field.Also be aware that missing VMRs for important species, e.g., N \(_2\) or O \(_2\), will lead to incorrect results. The mean molecular mass need these VMRs, so if the VMRs are missing, the pressure will not be correct either.
Author: Richard Larsson
- Parameters:
atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[INOUT]gravity_operator (NumericTernaryOperator, optional) – The gravity operator. See
gravity_operator
, defaults toself.gravity_operator
[IN]altitude_grid (AscendingGrid, optional) – An ascending list of
altitude
. Often related to a field or a profile. Seealtitude_grid
, defaults toself.altitude_grid
[IN]p0 (GeodeticField2,Numeric) – Lowest altitude pressure field. \(P_0\) above. [IN]
fixed_specific_gas_constant (Numeric, optional) – Specific gas constant if larger than 0. Defaults to
-1
[IN]fixed_atmospheric_temperature (Numeric, optional) – Constant atmospheric temprature if larger than 0. Defaults to
-1
[IN]hydrostatic_option (String, optional) – Computational option for levels. See
HydrostaticPressureOption
for valid options. Defaults to"HydrostaticEquation"
[IN]
- atmospheric_fieldIGRF(self, atmospheric_field: pyarts3.arts.AtmField | None = None, time: pyarts3.arts.Time | None = None) None
Use IGRF to compute the magnetic field at each point.
The IGRF model is a model of the Earth’s magnetic field. It is based on spherical harmonics and is only valid for a limited time period.
Author: Richard Larsson
- Parameters:
atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[INOUT]time (Time, optional) – Time of data to use. Defaults to
2025-09-04 05:19:34.055137236
[IN]
- atmospheric_fieldInit(self, atmospheric_field: pyarts3.arts.AtmField | None = None, toa: pyarts3.arts.Numeric | None = None, default_isotopologue: pyarts3.arts.String | None = None) None
Initialize the atmospheric field with some altitude and isotopologue ratios
See
IsoRatioOption
for validdefault_isotopologue
.Author: Richard Larsson
Used by wrapper method
- Parameters:
atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[OUT]toa (Numeric) – Top of atmosphere altitude [m]. [IN]
default_isotopologue (String, optional) – Default option for the isotopologue ratios. Defaults to
"Builtin"
[IN]
- atmospheric_fieldInitializeNonLTE(self, atmospheric_field: pyarts3.arts.AtmField | None = None, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, normalization: pyarts3.arts.Numeric | None = None) None
Initialize the non-LTE atmospheric field from the LTE temperature field.
Note that the bands have to be 1-line long to work.
This is because of how non-LTE is implemented in ARTS.
Author: Richard Larsson
- Parameters:
atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[INOUT]absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[IN]normalization (Numeric, optional) – Normalization factor for the non-LTE field - all species of same isotopologue will be summed to this value (non-positive means no normalization). Defaults to
0
[IN]
- atmospheric_fieldRead(self, atmospheric_field: pyarts3.arts.AtmField | None = None, toa: pyarts3.arts.Numeric | None = None, missing_is_zero: pyarts3.arts.Index | None = None, load_nlte: pyarts3.arts.Index | None = None, load_isot: pyarts3.arts.Index | None = None, extrapolation: pyarts3.arts.String | None = None, default_isotopologue: pyarts3.arts.String | None = None, deal_with_field_component: pyarts3.arts.String | None = None, basename: pyarts3.arts.String | None = None, allow_missing_temperature: pyarts3.arts.Index | None = None, allow_missing_pressure: pyarts3.arts.Index | None = None) None
Read atmospheric data files from a directory
Wrapper calling Methods (in order):
Equivalent (mostly) Python code:
1ws = pyarts.Workspace() 2 3# ... 4 5 ws.atmospheric_fieldInit() 6 ws.atmospheric_fieldAppendBaseData() 7 ws.atmospheric_fieldAppendAbsorptionData()
Author: Richard Larsson
- Parameters:
atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[OUT]toa (Numeric) – Top of atmosphere altitude [m]. [IN]
missing_is_zero (Index, optional) – Whether or not to zero-out missing data. Defaults to
0
[IN]load_nlte (Index, optional) – Whether or not to load NLTE data. Defaults to
0
[IN]load_isot (Index, optional) – Whether or not to load isotopologue data. Defaults to
0
[IN]extrapolation (String, optional) – The extrapolation to use. Defaults to
"Linear"
[IN]default_isotopologue (String, optional) – Default option for the isotopologue ratios. Defaults to
"Builtin"
[IN]deal_with_field_component (String, optional) – How to deal with the field component. Defaults to
"Throw"
[IN]basename (String) – The base name of the files. [IN]
allow_missing_temperature (Index, optional) – Whether or not to allow missing temperature data. Defaults to
0
[IN]allow_missing_pressure (Index, optional) – Whether or not to allow missing pressure data. Defaults to
0
[IN]
- atmospheric_fieldRegrid(self, atmospheric_field: pyarts3.arts.AtmField | None = None, altitude_grid: pyarts3.arts.AscendingGrid | None = None, latitude_grid: pyarts3.arts.LatGrid | None = None, longitude_grid: pyarts3.arts.LonGrid | None = None, parameter: pyarts3.arts.AtmKey | pyarts3.arts.SpeciesEnum | pyarts3.arts.SpeciesIsotope | pyarts3.arts.QuantumLevelIdentifier | pyarts3.arts.ScatteringSpeciesProperty | None = None, extrapolation: pyarts3.arts.String | None = None) None
Regrid the input atmospheric field parameter to a new grid.
The atmospheric field parameter will have a
GriddedField3
with the input grid after the regridding.Author: Richard Larsson
- Parameters:
atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[INOUT]altitude_grid (AscendingGrid, optional) – An ascending list of
altitude
. Often related to a field or a profile. Seealtitude_grid
, defaults toself.altitude_grid
[IN]latitude_grid (LatGrid, optional) – An ascending list of
latitude
. Often related to a field or a profile. Seelatitude_grid
, defaults toself.latitude_grid
[IN]longitude_grid (LonGrid, optional) – An ascending list of
longitude
. Often related to a field or a profile. Seelongitude_grid
, defaults toself.longitude_grid
[IN]parameter (AtmKey,SpeciesEnum,SpeciesIsotope,QuantumLevelIdentifier,ScatteringSpeciesProperty) – The parameter to regrid. [IN]
extrapolation (String, optional) – The extrapolation to use (post regridding - pre regridding the current extrapolation is used). Defaults to
"Nearest"
[IN]
- atmospheric_fieldRegridAll(self, atmospheric_field: pyarts3.arts.AtmField | None = None, altitude_grid: pyarts3.arts.AscendingGrid | None = None, latitude_grid: pyarts3.arts.LatGrid | None = None, longitude_grid: pyarts3.arts.LonGrid | None = None, extrapolation: pyarts3.arts.String | None = None) None
Regrid all parameters of the input atmospheric field to a new grid
The atmospheric field will have a
GriddedField3
with the input grid after the regridding at all positions.Author: Richard Larsson
- Parameters:
atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[INOUT]altitude_grid (AscendingGrid, optional) – An ascending list of
altitude
. Often related to a field or a profile. Seealtitude_grid
, defaults toself.altitude_grid
[IN]latitude_grid (LatGrid, optional) – An ascending list of
latitude
. Often related to a field or a profile. Seelatitude_grid
, defaults toself.latitude_grid
[IN]longitude_grid (LonGrid, optional) – An ascending list of
longitude
. Often related to a field or a profile. Seelongitude_grid
, defaults toself.longitude_grid
[IN]extrapolation (String, optional) – The extrapolation to use (post regridding - pre regridding the current extrapolation is used). Defaults to
"Nearest"
[IN]
- atmospheric_fieldSchmidthFieldFromIGRF(self, atmospheric_field: pyarts3.arts.AtmField | None = None, time: pyarts3.arts.Time | None = None) None
For forward calculations, this should be similar to
atmospheric_fieldIGRF()
.What it does different is that it is 1) not a direct computations matching the IGRF field, instead averaging the Legendre coefficient matrices.
What it does very different is that it supports retrievals of the magnetic field Legendre coefficients.
Author: Richard Larsson
- Parameters:
atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[INOUT]time (Time, optional) – Time of IGRF data to use. Defaults to
2025-09-04 05:19:34.055138368
[IN]
- atmospheric_pointInit(self, atmospheric_point: pyarts3.arts.AtmPoint | None = None, default_isotopologue: pyarts3.arts.String | None = None) None
Initialize an atmospheric point with some isotopologue ratios
See
IsoRatioOption
for validdefault_isotopologue
.Author: Richard Larsson
- Parameters:
atmospheric_point (AtmPoint, optional) – An atmospheric point in ARTS. See
atmospheric_point
, defaults toself.atmospheric_point
[OUT]default_isotopologue (String, optional) – Default option for the isotopologue ratios. Defaults to
"Builtin"
[IN]
- atmospheric_profileExtendInPressure(self, atmospheric_profile: pyarts3.arts.ArrayOfAtmPoint | None = None, extended_max_pressure: pyarts3.arts.Numeric | None = None, extended_min_pressure: pyarts3.arts.Numeric | None = None, extrapolation_option: pyarts3.arts.String | None = None) None
Extends the atmospheric profile in pressure.
Author: Richard Larsson
- Parameters:
atmospheric_profile (ArrayOfAtmPoint, optional) – An atmospheric profile in ARTS. See
atmospheric_profile
, defaults toself.atmospheric_profile
[INOUT]extended_max_pressure (Numeric, optional) – Maximum pressure to extend to. Defaults to
nan
[IN]extended_min_pressure (Numeric, optional) – Minimum pressure to extend to. Defaults to
nan
[IN]extrapolation_option (String, optional) – Extrapolation option. Defaults to
"Nearest"
[IN]
- atmospheric_profileExtract(self, atmospheric_profile: pyarts3.arts.ArrayOfAtmPoint | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, altitude_grid: pyarts3.arts.AscendingGrid | None = None, latitude: pyarts3.arts.Numeric | None = None, longitude: pyarts3.arts.Numeric | None = None) None
Extract an atmospheric profile from the atmospheric field.
Author: Richard Larsson
Used by wrapper method
- Parameters:
atmospheric_profile (ArrayOfAtmPoint, optional) – An atmospheric profile in ARTS. See
atmospheric_profile
, defaults toself.atmospheric_profile
[OUT]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]altitude_grid (AscendingGrid, optional) – An ascending list of
altitude
. Often related to a field or a profile. Seealtitude_grid
, defaults toself.altitude_grid
[IN]latitude (Numeric, optional) – A single latitude. See
latitude
, defaults toself.latitude
[IN]longitude (Numeric, optional) – A single longitude. See
longitude
, defaults toself.longitude
[IN]
- atmospheric_profileFitNonLTE(self, atmospheric_profile: pyarts3.arts.ArrayOfAtmPoint | None = None, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, propagation_matrix_agenda: pyarts3.arts.Agenda | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, altitude_grid: pyarts3.arts.AscendingGrid | None = None, latitude: pyarts3.arts.Numeric | None = None, longitude: pyarts3.arts.Numeric | None = None, collision_data: pyarts3.arts.QuantumIdentifierGriddedField1Map | None = None, levels: pyarts3.arts.ArrayOfQuantumLevelIdentifier | None = None, pol: pyarts3.arts.Stokvec | None = None, azimuth: pyarts3.arts.Numeric | None = None, dza: pyarts3.arts.Numeric | None = None, convergence_limit: pyarts3.arts.Numeric | None = None, iteration_limit: pyarts3.arts.Index | None = None, consider_limb: pyarts3.arts.Index | None = None) None
Fits non-LTE distributions to the level data.
The spectral flux is computed from the pseudo-2D assumption.
This method fits non-LTE distributions to the level data in the atmospheric field. It only works for absorption band data that is separated by single-lines-per-band, and will produce nonsense for overlapping line data. If the lines overlap, the method will keep introducing more-and-more energy into the system, meaning that the method will not converge or turn to some extreme stable state.
The statistical equilibrium equation is given by finding valid set of energy level distribution \(n\) such that for all valid energy level combination of upper levels \(i\) and lower levels \(j\) the rate of change is zero for some \(n\) that satisfies the equation
\[\frac{d n_i}{dt} = \sum_{j > i} \left[ n_j A_{ji} - \left( n_i B_{ij} - n_j B_{ji} \right) J_{ij} \right] - \sum_{j < i} \left[ n_i A_{ij} - \left( n_j B_{ji} - n_i B_{ij} \right) J_{ij} \right] + \sum_{j} \left[ n_j C_{ji} - n_i C_{ij} \right],\]where \(A_{ij}\) is the spontaneous emission rate, \(B_{ij}\) is the stimulated emission rate, \(B_{ij}\) is the photon absorption rate, \(J_{ij}\) is the line-integrated flux, and \(C_{ij}\) is the collisional rate.
Generally, you need \(n\) to compute \(J_{ij}\), making the problem non-linear. Thus an iterative process is used to find the solution. The iteration is considered converged when the relative change in the energy level distribution is below the convergence criterion. Alternatively, the iteration is halted if the iteration count limit is breached.
Author: Richard Larsson
Used by wrapper method
- Parameters:
atmospheric_profile (ArrayOfAtmPoint, optional) – An atmospheric profile in ARTS. See
atmospheric_profile
, defaults toself.atmospheric_profile
[INOUT]absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[IN]propagation_matrix_agenda (Agenda, optional) – Compute the propagation matrix, the non-LTE source vector, and their derivatives. See
propagation_matrix_agenda
, defaults toself.propagation_matrix_agenda
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]altitude_grid (AscendingGrid, optional) – An ascending list of
altitude
. Often related to a field or a profile. Seealtitude_grid
, defaults toself.altitude_grid
[IN]latitude (Numeric, optional) – A single latitude. See
latitude
, defaults toself.latitude
[IN]longitude (Numeric, optional) – A single longitude. See
longitude
, defaults toself.longitude
[IN]collision_data (QuantumIdentifierGriddedField1Map) – Collision data for the transitions - for \(C_{ij}\) and \(C_{ji}\). [IN]
levels (ArrayOfQuantumLevelIdentifier) – The order of the energy levels. [IN]
pol (Stokvec, optional) – The polarization selection vector (use the default unless you know what you are doing). Defaults to
1 0 0 0
[IN]azimuth (Numeric, optional) – The azimuth of the radiation. Defaults to
0
[IN]dza (Numeric, optional) – The zenith angle limit for the internal call to
zenith_gridProfilePseudo2D()
. Defaults to5
[IN]convergence_limit (Numeric, optional) – Convergence criterion for the energy level distribution. Defaults to
1e-06
[IN]iteration_limit (Index, optional) – Maximum number of iterations. Defaults to
100
[IN]consider_limb (Index, optional) – Whether to add extra limb points in
zenith_gridProfilePseudo2D()
. Defaults to1
[IN]
- atmospheric_profileFromGrid(self, atmospheric_profile: pyarts3.arts.ArrayOfAtmPoint | None = None, altitude_grid: pyarts3.arts.AscendingGrid | None = None, latitude: pyarts3.arts.Numeric | None = None, longitude: pyarts3.arts.Numeric | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, key: pyarts3.arts.AtmKey | None = None) None
Extract an atmospheric profile and its grids.
The key is used to find a
GriddedField3
in the atmospheric field. Its grids must form a profile. The profile is extracted and returned. The grids are returned as well.Author: Richard Larsson
Used by wrapper method
- Parameters:
atmospheric_profile (ArrayOfAtmPoint, optional) – An atmospheric profile in ARTS. See
atmospheric_profile
, defaults toself.atmospheric_profile
[OUT]altitude_grid (AscendingGrid, optional) – An ascending list of
altitude
. Often related to a field or a profile. Seealtitude_grid
, defaults toself.altitude_grid
[OUT]latitude (Numeric, optional) – A single latitude. See
latitude
, defaults toself.latitude
[OUT]longitude (Numeric, optional) – A single longitude. See
longitude
, defaults toself.longitude
[OUT]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]key (AtmKey, optional) – Key to find the
GriddedField3
in the atmospheric field. Defaults tot
[IN]
- disort_settingsCosmicMicrowaveBackgroundRadiation(self, disort_settings: pyarts3.arts.DisortSettings | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None) None
Space radiation into Disort is isotropic cosmic background radiation.
Author: Richard Larsson
- Parameters:
disort_settings (DisortSettings, optional) – Contains the full settings of spectral Disort calculations. See
disort_settings
, defaults toself.disort_settings
[INOUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]
- disort_settingsInit(self, disort_settings: pyarts3.arts.DisortSettings | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, disort_quadrature_dimension: pyarts3.arts.Index | None = None, disort_legendre_polynomial_dimension: pyarts3.arts.Index | None = None, disort_fourier_mode_dimension: pyarts3.arts.Index | None = None) None
Perform Disort calculations for spectral flux.
Author: Richard Larsson
- Parameters:
disort_settings (DisortSettings, optional) – Contains the full settings of spectral Disort calculations. See
disort_settings
, defaults toself.disort_settings
[OUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[IN]disort_quadrature_dimension (Index, optional) – The quadrature size for Disort. See
disort_quadrature_dimension
, defaults toself.disort_quadrature_dimension
[IN]disort_legendre_polynomial_dimension (Index, optional) – The number of input Legendre polynimials for Disort. See
disort_legendre_polynomial_dimension
, defaults toself.disort_legendre_polynomial_dimension
[IN]disort_fourier_mode_dimension (Index, optional) – The number of Fourier modes for Disort. See
disort_fourier_mode_dimension
, defaults toself.disort_fourier_mode_dimension
[IN]
- disort_settingsLayerNonThermalEmissionLinearInTau(self, disort_settings: pyarts3.arts.DisortSettings | None = None, ray_path_atmospheric_point: pyarts3.arts.ArrayOfAtmPoint | None = None, ray_path_propagation_matrix: pyarts3.arts.ArrayOfPropmatVector | None = None, ray_path_propagation_matrix_source_vector_nonlte: pyarts3.arts.ArrayOfStokvecVector | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None) None
Same as
disort_settingsLayerThermalEmissionLinearInTau()
but considers non-LTEThis is WIP and should not be used.
Author: Richard Larsson
- Parameters:
disort_settings (DisortSettings, optional) – Contains the full settings of spectral Disort calculations. See
disort_settings
, defaults toself.disort_settings
[INOUT]ray_path_atmospheric_point (ArrayOfAtmPoint, optional) – Atmospheric points along the propagation path. See
ray_path_atmospheric_point
, defaults toself.ray_path_atmospheric_point
[IN]ray_path_propagation_matrix (ArrayOfPropmatVector, optional) – Propagation matrices along the propagation path. See
ray_path_propagation_matrix
, defaults toself.ray_path_propagation_matrix
[IN]ray_path_propagation_matrix_source_vector_nonlte (ArrayOfStokvecVector, optional) – Additional non-LTE along the propagation path. See
ray_path_propagation_matrix_source_vector_nonlte
, defaults toself.ray_path_propagation_matrix_source_vector_nonlte
[IN]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]
- disort_settingsLayerThermalEmissionLinearInTau(self, disort_settings: pyarts3.arts.DisortSettings | None = None, ray_path_atmospheric_point: pyarts3.arts.ArrayOfAtmPoint | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None) None
Use a source function that changes linearly in optical thickness.
Note that you must have set the optical thickness before calling this.
Author: Richard Larsson
- Parameters:
disort_settings (DisortSettings, optional) – Contains the full settings of spectral Disort calculations. See
disort_settings
, defaults toself.disort_settings
[INOUT]ray_path_atmospheric_point (ArrayOfAtmPoint, optional) – Atmospheric points along the propagation path. See
ray_path_atmospheric_point
, defaults toself.ray_path_atmospheric_point
[IN]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]
- disort_settingsLegendreCoefficientsFromPath(self, disort_settings: pyarts3.arts.DisortSettings | None = None, ray_path_phase_matrix_scattering_spectral: pyarts3.arts.ArrayOfSpecmatMatrix | None = None) None
Sets the legendre coefficients from the path-variable.
Author: Richard Larsson
- Parameters:
disort_settings (DisortSettings, optional) – Contains the full settings of spectral Disort calculations. See
disort_settings
, defaults toself.disort_settings
[INOUT]ray_path_phase_matrix_scattering_spectral (ArrayOfSpecmatMatrix, optional) – The spectral phase matrix of totally random orientation particles along the propagation path using spectral representation. See
ray_path_phase_matrix_scattering_spectral
, defaults toself.ray_path_phase_matrix_scattering_spectral
[IN]
- disort_settingsNoFractionalScattering(self, disort_settings: pyarts3.arts.DisortSettings | None = None) None
Turns off fractional scattering in Disort calculations.
Author: Richard Larsson
- Parameters:
disort_settings (DisortSettings, optional) – Contains the full settings of spectral Disort calculations. See
disort_settings
, defaults toself.disort_settings
[INOUT]
- disort_settingsNoLayerThermalEmission(self, disort_settings: pyarts3.arts.DisortSettings | None = None) None
Turns off source radiation in Disort calculations.
Author: Richard Larsson
- Parameters:
disort_settings (DisortSettings, optional) – Contains the full settings of spectral Disort calculations. See
disort_settings
, defaults toself.disort_settings
[INOUT]
- disort_settingsNoLegendre(self, disort_settings: pyarts3.arts.DisortSettings | None = None) None
Turns off Legendre coefficients in Disort calculations.
Author: Richard Larsson
- Parameters:
disort_settings (DisortSettings, optional) – Contains the full settings of spectral Disort calculations. See
disort_settings
, defaults toself.disort_settings
[INOUT]
- disort_settingsNoSingleScatteringAlbedo(self, disort_settings: pyarts3.arts.DisortSettings | None = None) None
Turns off single albedo scattering in Disort calculations.
Author: Richard Larsson
- Parameters:
disort_settings (DisortSettings, optional) – Contains the full settings of spectral Disort calculations. See
disort_settings
, defaults toself.disort_settings
[INOUT]
- disort_settingsNoSpaceEmission(self, disort_settings: pyarts3.arts.DisortSettings | None = None) None
Turns off boundary condition from space for Disort calculations.
Author: Richard Larsson
- Parameters:
disort_settings (DisortSettings, optional) – Contains the full settings of spectral Disort calculations. See
disort_settings
, defaults toself.disort_settings
[INOUT]
- disort_settingsNoSun(self, disort_settings: pyarts3.arts.DisortSettings | None = None) None
Turns off solar radiation in Disort calculations.
Author: Richard Larsson
- Parameters:
disort_settings (DisortSettings, optional) – Contains the full settings of spectral Disort calculations. See
disort_settings
, defaults toself.disort_settings
[INOUT]
- disort_settingsNoSurfaceEmission(self, disort_settings: pyarts3.arts.DisortSettings | None = None) None
Turns boundary condition from surface for Disort calculations.
Author: Richard Larsson
- Parameters:
disort_settings (DisortSettings, optional) – Contains the full settings of spectral Disort calculations. See
disort_settings
, defaults toself.disort_settings
[INOUT]
- disort_settingsNoSurfaceScattering(self, disort_settings: pyarts3.arts.DisortSettings | None = None) None
Turns off BDRF in Disort calculations.
Author: Richard Larsson
- Parameters:
disort_settings (DisortSettings, optional) – Contains the full settings of spectral Disort calculations. See
disort_settings
, defaults toself.disort_settings
[INOUT]
- disort_settingsOpticalThicknessFromPath(self, disort_settings: pyarts3.arts.DisortSettings | None = None, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, ray_path_propagation_matrix: pyarts3.arts.ArrayOfPropmatVector | None = None, min_optical_depth: pyarts3.arts.Numeric | None = None) None
Get optical thickness from path.
Author: Richard Larsson
- Parameters:
disort_settings (DisortSettings, optional) – Contains the full settings of spectral Disort calculations. See
disort_settings
, defaults toself.disort_settings
[INOUT]ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[IN]ray_path_propagation_matrix (ArrayOfPropmatVector, optional) – Propagation matrices along the propagation path. See
ray_path_propagation_matrix
, defaults toself.ray_path_propagation_matrix
[IN]min_optical_depth (Numeric, optional) – The minimum increase in optical thickness per level. The DISORT algorithm employed is numerically unstable if the change between levels is too small. Defaults to
1e-11
[IN]
- disort_settingsSetSun(self, disort_settings: pyarts3.arts.DisortSettings | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, sun: pyarts3.arts.Sun | None = None, ray_path_point: pyarts3.arts.PropagationPathPoint | None = None) None
Uses Set the FOV to the sun input for Disort calculations.
Author: Richard Larsson
- Parameters:
disort_settings (DisortSettings, optional) – Contains the full settings of spectral Disort calculations. See
disort_settings
, defaults toself.disort_settings
[INOUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]sun (Sun, optional) – A sun. See
sun
, defaults toself.sun
[IN]ray_path_point (PropagationPathPoint, optional) – A single path point. See
ray_path_point
, defaults toself.ray_path_point
[IN]
- disort_settingsSingleScatteringAlbedoFromPath(self, disort_settings: pyarts3.arts.DisortSettings | None = None, ray_path_propagation_matrix: pyarts3.arts.ArrayOfPropmatVector | None = None, ray_path_propagation_matrix_scattering: pyarts3.arts.ArrayOfPropmatVector | None = None, ray_path_absorption_vector_scattering: pyarts3.arts.ArrayOfStokvecVector | None = None) None
Sets the single scattering albedo from the path-variable.
Author: Richard Larsson
- Parameters:
disort_settings (DisortSettings, optional) – Contains the full settings of spectral Disort calculations. See
disort_settings
, defaults toself.disort_settings
[INOUT]ray_path_propagation_matrix (ArrayOfPropmatVector, optional) – Propagation matrices along the propagation path. See
ray_path_propagation_matrix
, defaults toself.ray_path_propagation_matrix
[IN]ray_path_propagation_matrix_scattering (ArrayOfPropmatVector, optional) – Propagation matrices along the propagation path for scattering. See
ray_path_propagation_matrix_scattering
, defaults toself.ray_path_propagation_matrix_scattering
[IN]ray_path_absorption_vector_scattering (ArrayOfStokvecVector, optional) – The absorption vector of totally random orientation particles along the propagation path using spectral representation. See
ray_path_absorption_vector_scattering
, defaults toself.ray_path_absorption_vector_scattering
[IN]
- disort_settingsSurfaceEmissionByTemperature(self, disort_settings: pyarts3.arts.DisortSettings | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, ray_path_point: pyarts3.arts.PropagationPathPoint | None = None, surface_field: pyarts3.arts.SurfaceField | None = None) None
Surface radiation into Disort is isotropic from surface temperature.
Author: Richard Larsson
- Parameters:
disort_settings (DisortSettings, optional) – Contains the full settings of spectral Disort calculations. See
disort_settings
, defaults toself.disort_settings
[INOUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]ray_path_point (PropagationPathPoint, optional) – A single path point. See
ray_path_point
, defaults toself.ray_path_point
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]
- disort_settingsSurfaceLambertian(self, disort_settings: pyarts3.arts.DisortSettings | None = None, value: pyarts3.arts.Numeric | pyarts3.arts.Vector | None = None) None
Sets the surface to Lambertian.
Author: Richard Larsson
- Parameters:
disort_settings (DisortSettings, optional) – Contains the full settings of spectral Disort calculations. See
disort_settings
, defaults toself.disort_settings
[INOUT]value (Numeric,Vector) – The value of the BDRF in all directions (Numeric for constant, Vector for spectral). [IN]
- disort_settings_agendaExecute(self, disort_settings: pyarts3.arts.DisortSettings | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, disort_quadrature_dimension: pyarts3.arts.Index | None = None, disort_fourier_mode_dimension: pyarts3.arts.Index | None = None, disort_legendre_polynomial_dimension: pyarts3.arts.Index | None = None, disort_settings_agenda: pyarts3.arts.Agenda | None = None) None
Executes
disort_settings_agenda
, see it for more detailsAuthor:
Automatically Generated
Used by wrapper methods
- Parameters:
disort_settings (DisortSettings, optional) – Contains the full settings of spectral Disort calculations. See
disort_settings
, defaults toself.disort_settings
[OUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[IN]disort_quadrature_dimension (Index, optional) – The quadrature size for Disort. See
disort_quadrature_dimension
, defaults toself.disort_quadrature_dimension
[IN]disort_fourier_mode_dimension (Index, optional) – The number of Fourier modes for Disort. See
disort_fourier_mode_dimension
, defaults toself.disort_fourier_mode_dimension
[IN]disort_legendre_polynomial_dimension (Index, optional) – The number of input Legendre polynimials for Disort. See
disort_legendre_polynomial_dimension
, defaults toself.disort_legendre_polynomial_dimension
[IN]disort_settings_agenda (Agenda, optional) – An agenda for setting up Disort. See
disort_settings_agenda
, defaults toself.disort_settings_agenda
[IN]
- disort_settings_agendaExecuteOperator(self, disort_settings: pyarts3.arts.DisortSettings | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, disort_quadrature_dimension: pyarts3.arts.Index | None = None, disort_fourier_mode_dimension: pyarts3.arts.Index | None = None, disort_legendre_polynomial_dimension: pyarts3.arts.Index | None = None, disort_settings_agenda_operator: pyarts3.arts.disort_settings_agendaOperator | None = None) None
Executes an operator emulating
disort_settings_agenda
, see it, and alsodisort_settings_agendaOperator
, for more detailsAuthor:
Automatically Generated
- Parameters:
disort_settings (DisortSettings, optional) – Contains the full settings of spectral Disort calculations. See
disort_settings
, defaults toself.disort_settings
[OUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[IN]disort_quadrature_dimension (Index, optional) – The quadrature size for Disort. See
disort_quadrature_dimension
, defaults toself.disort_quadrature_dimension
[IN]disort_fourier_mode_dimension (Index, optional) – The number of Fourier modes for Disort. See
disort_fourier_mode_dimension
, defaults toself.disort_fourier_mode_dimension
[IN]disort_legendre_polynomial_dimension (Index, optional) – The number of input Legendre polynimials for Disort. See
disort_legendre_polynomial_dimension
, defaults toself.disort_legendre_polynomial_dimension
[IN]disort_settings_agenda_operator (disort_settings_agendaOperator) – Operator for
disort_settings_agenda
. [IN]
- disort_settings_agendaSetOperator(self, disort_settings_agenda: pyarts3.arts.Agenda | None = None, f: pyarts3.arts.disort_settings_agendaOperator | None = None) None
Set
disort_settings_agenda
to exclusively use provided external operator. Seedisort_settings_agendaOperator
for more details.Author:
Automatically Generated
- Parameters:
disort_settings_agenda (Agenda, optional) – An agenda for setting up Disort. See
disort_settings_agenda
, defaults toself.disort_settings_agenda
[OUT]f (disort_settings_agendaOperator) – Operator for
disort_settings_agenda
. [IN]
- disort_settings_agendaSetup(self, disort_settings_agenda: pyarts3.arts.Agenda | None = None, layer_emission_setting: pyarts3.arts.String | None = None, scattering_setting: pyarts3.arts.String | None = None, space_setting: pyarts3.arts.String | None = None, sun_setting: pyarts3.arts.String | None = None, surface_setting: pyarts3.arts.String | None = None, surface_lambertian_value: pyarts3.arts.Vector | None = None, min_optical_depth: pyarts3.arts.Numeric | None = None) None
Setup for Disort standard calculations.
This method allows setting up
disort_settings_agenda
by named options. A description of the options is given below.Author: Richard Larsson
- Parameters:
disort_settings_agenda (Agenda, optional) – An agenda for setting up Disort. See
disort_settings_agenda
, defaults toself.disort_settings_agenda
[OUT]layer_emission_setting (String, optional) – Layer emission settings. Defaults to
"LinearInTau"
[IN]scattering_setting (String, optional) – Scattering settings. Defaults to
"None"
[IN]space_setting (String, optional) – Space settings. Defaults to
"CosmicMicrowaveBackgroundRadiation"
[IN]sun_setting (String, optional) – Sun settings. Defaults to
"None"
[IN]surface_setting (String, optional) – Surface settings. Defaults to
"Thermal"
[IN]surface_lambertian_value (Vector, optional) – Surface lambertian value (must be the size of the frequency grid; used only when surface is set to a Lambertian variant). Defaults to
[]
[IN]min_optical_depth (Numeric, optional) – The minimum increase in optical thickness per level. The DISORT algorithm employed is numerically unstable if the change between levels is too small. Defaults to
1e-11
[IN]
Extra
There are 96 possible combinations for calling the
disort_settings_agendaSetup
method.Below, these are all listed with the generated agenda-call order for each combination in full.
Before that, a concise overview of what each option do is available by the types in this table:
Input variable
pyarts class
layer_emission_setting
scattering_setting
space_setting
sun_setting
surface_setting
disort_settings_agendaSetup(layer_emission_setting="None", scattering_setting="None", space_setting="None", sun_setting="None", surface_setting="None", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="None", scattering_setting="None", space_setting="None", sun_setting="None", surface_setting="Thermal", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="None", scattering_setting="None", space_setting="None", sun_setting="None", surface_setting="ThermalLambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="None", scattering_setting="None", space_setting="None", sun_setting="None", surface_setting="Lambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="None", scattering_setting="None", space_setting="None", sun_setting="Sun", surface_setting="None", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="None", scattering_setting="None", space_setting="None", sun_setting="Sun", surface_setting="Thermal", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="None", scattering_setting="None", space_setting="None", sun_setting="Sun", surface_setting="ThermalLambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="None", scattering_setting="None", space_setting="None", sun_setting="Sun", surface_setting="Lambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="None", scattering_setting="None", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="None", surface_setting="None", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="None", scattering_setting="None", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="None", surface_setting="Thermal", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="None", scattering_setting="None", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="None", surface_setting="ThermalLambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="None", scattering_setting="None", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="None", surface_setting="Lambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="None", scattering_setting="None", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="Sun", surface_setting="None", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="None", scattering_setting="None", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="Sun", surface_setting="Thermal", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="None", scattering_setting="None", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="Sun", surface_setting="ThermalLambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="None", scattering_setting="None", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="Sun", surface_setting="Lambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="None", scattering_setting="ScatteringSpecies", space_setting="None", sun_setting="None", surface_setting="None", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="None", scattering_setting="ScatteringSpecies", space_setting="None", sun_setting="None", surface_setting="Thermal", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="None", scattering_setting="ScatteringSpecies", space_setting="None", sun_setting="None", surface_setting="ThermalLambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="None", scattering_setting="ScatteringSpecies", space_setting="None", sun_setting="None", surface_setting="Lambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="None", scattering_setting="ScatteringSpecies", space_setting="None", sun_setting="Sun", surface_setting="None", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="None", scattering_setting="ScatteringSpecies", space_setting="None", sun_setting="Sun", surface_setting="Thermal", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="None", scattering_setting="ScatteringSpecies", space_setting="None", sun_setting="Sun", surface_setting="ThermalLambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="None", scattering_setting="ScatteringSpecies", space_setting="None", sun_setting="Sun", surface_setting="Lambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="None", scattering_setting="ScatteringSpecies", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="None", surface_setting="None", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="None", scattering_setting="ScatteringSpecies", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="None", surface_setting="Thermal", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="None", scattering_setting="ScatteringSpecies", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="None", surface_setting="ThermalLambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="None", scattering_setting="ScatteringSpecies", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="None", surface_setting="Lambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="None", scattering_setting="ScatteringSpecies", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="Sun", surface_setting="None", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="None", scattering_setting="ScatteringSpecies", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="Sun", surface_setting="Thermal", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="None", scattering_setting="ScatteringSpecies", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="Sun", surface_setting="ThermalLambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="None", scattering_setting="ScatteringSpecies", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="Sun", surface_setting="Lambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="LinearInTau", scattering_setting="None", space_setting="None", sun_setting="None", surface_setting="None", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="LinearInTau", scattering_setting="None", space_setting="None", sun_setting="None", surface_setting="Thermal", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="LinearInTau", scattering_setting="None", space_setting="None", sun_setting="None", surface_setting="ThermalLambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="LinearInTau", scattering_setting="None", space_setting="None", sun_setting="None", surface_setting="Lambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="LinearInTau", scattering_setting="None", space_setting="None", sun_setting="Sun", surface_setting="None", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="LinearInTau", scattering_setting="None", space_setting="None", sun_setting="Sun", surface_setting="Thermal", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="LinearInTau", scattering_setting="None", space_setting="None", sun_setting="Sun", surface_setting="ThermalLambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="LinearInTau", scattering_setting="None", space_setting="None", sun_setting="Sun", surface_setting="Lambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="LinearInTau", scattering_setting="None", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="None", surface_setting="None", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="LinearInTau", scattering_setting="None", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="None", surface_setting="Thermal", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="LinearInTau", scattering_setting="None", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="None", surface_setting="ThermalLambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="LinearInTau", scattering_setting="None", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="None", surface_setting="Lambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="LinearInTau", scattering_setting="None", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="Sun", surface_setting="None", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="LinearInTau", scattering_setting="None", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="Sun", surface_setting="Thermal", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="LinearInTau", scattering_setting="None", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="Sun", surface_setting="ThermalLambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="LinearInTau", scattering_setting="None", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="Sun", surface_setting="Lambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="LinearInTau", scattering_setting="ScatteringSpecies", space_setting="None", sun_setting="None", surface_setting="None", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="LinearInTau", scattering_setting="ScatteringSpecies", space_setting="None", sun_setting="None", surface_setting="Thermal", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="LinearInTau", scattering_setting="ScatteringSpecies", space_setting="None", sun_setting="None", surface_setting="ThermalLambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="LinearInTau", scattering_setting="ScatteringSpecies", space_setting="None", sun_setting="None", surface_setting="Lambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="LinearInTau", scattering_setting="ScatteringSpecies", space_setting="None", sun_setting="Sun", surface_setting="None", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="LinearInTau", scattering_setting="ScatteringSpecies", space_setting="None", sun_setting="Sun", surface_setting="Thermal", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="LinearInTau", scattering_setting="ScatteringSpecies", space_setting="None", sun_setting="Sun", surface_setting="ThermalLambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="LinearInTau", scattering_setting="ScatteringSpecies", space_setting="None", sun_setting="Sun", surface_setting="Lambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="LinearInTau", scattering_setting="ScatteringSpecies", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="None", surface_setting="None", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="LinearInTau", scattering_setting="ScatteringSpecies", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="None", surface_setting="Thermal", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="LinearInTau", scattering_setting="ScatteringSpecies", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="None", surface_setting="ThermalLambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="LinearInTau", scattering_setting="ScatteringSpecies", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="None", surface_setting="Lambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="LinearInTau", scattering_setting="ScatteringSpecies", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="Sun", surface_setting="None", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="LinearInTau", scattering_setting="ScatteringSpecies", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="Sun", surface_setting="Thermal", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="LinearInTau", scattering_setting="ScatteringSpecies", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="Sun", surface_setting="ThermalLambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="LinearInTau", scattering_setting="ScatteringSpecies", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="Sun", surface_setting="Lambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="LinearInTauNonLTE", scattering_setting="None", space_setting="None", sun_setting="None", surface_setting="None", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="LinearInTauNonLTE", scattering_setting="None", space_setting="None", sun_setting="None", surface_setting="Thermal", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="LinearInTauNonLTE", scattering_setting="None", space_setting="None", sun_setting="None", surface_setting="ThermalLambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="LinearInTauNonLTE", scattering_setting="None", space_setting="None", sun_setting="None", surface_setting="Lambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="LinearInTauNonLTE", scattering_setting="None", space_setting="None", sun_setting="Sun", surface_setting="None", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="LinearInTauNonLTE", scattering_setting="None", space_setting="None", sun_setting="Sun", surface_setting="Thermal", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="LinearInTauNonLTE", scattering_setting="None", space_setting="None", sun_setting="Sun", surface_setting="ThermalLambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="LinearInTauNonLTE", scattering_setting="None", space_setting="None", sun_setting="Sun", surface_setting="Lambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="LinearInTauNonLTE", scattering_setting="None", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="None", surface_setting="None", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="LinearInTauNonLTE", scattering_setting="None", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="None", surface_setting="Thermal", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="LinearInTauNonLTE", scattering_setting="None", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="None", surface_setting="ThermalLambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="LinearInTauNonLTE", scattering_setting="None", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="None", surface_setting="Lambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="LinearInTauNonLTE", scattering_setting="None", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="Sun", surface_setting="None", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="LinearInTauNonLTE", scattering_setting="None", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="Sun", surface_setting="Thermal", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="LinearInTauNonLTE", scattering_setting="None", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="Sun", surface_setting="ThermalLambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="LinearInTauNonLTE", scattering_setting="None", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="Sun", surface_setting="Lambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="LinearInTauNonLTE", scattering_setting="ScatteringSpecies", space_setting="None", sun_setting="None", surface_setting="None", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="LinearInTauNonLTE", scattering_setting="ScatteringSpecies", space_setting="None", sun_setting="None", surface_setting="Thermal", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="LinearInTauNonLTE", scattering_setting="ScatteringSpecies", space_setting="None", sun_setting="None", surface_setting="ThermalLambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="LinearInTauNonLTE", scattering_setting="ScatteringSpecies", space_setting="None", sun_setting="None", surface_setting="Lambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="LinearInTauNonLTE", scattering_setting="ScatteringSpecies", space_setting="None", sun_setting="Sun", surface_setting="None", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="LinearInTauNonLTE", scattering_setting="ScatteringSpecies", space_setting="None", sun_setting="Sun", surface_setting="Thermal", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="LinearInTauNonLTE", scattering_setting="ScatteringSpecies", space_setting="None", sun_setting="Sun", surface_setting="ThermalLambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="LinearInTauNonLTE", scattering_setting="ScatteringSpecies", space_setting="None", sun_setting="Sun", surface_setting="Lambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="LinearInTauNonLTE", scattering_setting="ScatteringSpecies", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="None", surface_setting="None", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="LinearInTauNonLTE", scattering_setting="ScatteringSpecies", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="None", surface_setting="Thermal", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="LinearInTauNonLTE", scattering_setting="ScatteringSpecies", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="None", surface_setting="ThermalLambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="LinearInTauNonLTE", scattering_setting="ScatteringSpecies", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="None", surface_setting="Lambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="LinearInTauNonLTE", scattering_setting="ScatteringSpecies", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="Sun", surface_setting="None", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="LinearInTauNonLTE", scattering_setting="ScatteringSpecies", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="Sun", surface_setting="Thermal", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
disort_settings_agendaSetup(layer_emission_setting="LinearInTauNonLTE", scattering_setting="ScatteringSpecies", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="Sun", surface_setting="ThermalLambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
disort_settings_agendaSetup(layer_emission_setting="LinearInTauNonLTE", scattering_setting="ScatteringSpecies", space_setting="CosmicMicrowaveBackgroundRadiation", sun_setting="Sun", surface_setting="Lambertian", surface_lambertian_value=lambertian_reflection, min_optical_depth=min_optical_depth)
min_optical_depth = min_optical_depth
value = lambertian_reflection
- disort_spectral_flux_fieldCalc(self, disort_spectral_flux_field: pyarts3.arts.DisortFlux | None = None, disort_settings: pyarts3.arts.DisortSettings | None = None) None
Perform Disort calculations for spectral flux.
Author: Richard Larsson
Used by wrapper method
- Parameters:
disort_spectral_flux_field (DisortFlux, optional) – The spectral flux field from Disort. See
disort_spectral_flux_field
, defaults toself.disort_spectral_flux_field
[OUT]disort_settings (DisortSettings, optional) – Contains the full settings of spectral Disort calculations. See
disort_settings
, defaults toself.disort_settings
[IN]
- disort_spectral_flux_fieldFromAgenda(self, disort_spectral_flux_field: pyarts3.arts.DisortFlux | None = None, disort_fourier_mode_dimension: pyarts3.arts.Index | None = None, disort_legendre_polynomial_dimension: pyarts3.arts.Index | None = None, disort_quadrature_dimension: pyarts3.arts.Index | None = None, disort_settings_agenda: pyarts3.arts.Agenda | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None) None
Use Disort for clearsky calculations of spectral flux field
Wrapper calling Methods (in order):
Equivalent (mostly) Python code:
1ws = pyarts.Workspace() 2 3# ... 4 5 ws.disort_settings_agendaExecute() 6 ws.disort_spectral_flux_fieldCalc()
Authors: Richard Larsson,
Automatically Generated
Used by wrapper method
- Parameters:
disort_spectral_flux_field (DisortFlux, optional) – The spectral flux field from Disort. See
disort_spectral_flux_field
, defaults toself.disort_spectral_flux_field
[OUT]disort_fourier_mode_dimension (Index, optional) – The number of Fourier modes for Disort. See
disort_fourier_mode_dimension
, defaults toself.disort_fourier_mode_dimension
[IN]disort_legendre_polynomial_dimension (Index, optional) – The number of input Legendre polynimials for Disort. See
disort_legendre_polynomial_dimension
, defaults toself.disort_legendre_polynomial_dimension
[IN]disort_quadrature_dimension (Index, optional) – The quadrature size for Disort. See
disort_quadrature_dimension
, defaults toself.disort_quadrature_dimension
[IN]disort_settings_agenda (Agenda, optional) – An agenda for setting up Disort. See
disort_settings_agenda
, defaults toself.disort_settings_agenda
[IN]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[IN]
- disort_spectral_flux_fieldProfile(self, disort_spectral_flux_field: pyarts3.arts.DisortFlux | None = None, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, disort_fourier_mode_dimension: pyarts3.arts.Index | None = None, disort_legendre_polynomial_dimension: pyarts3.arts.Index | None = None, disort_quadrature_dimension: pyarts3.arts.Index | None = None, disort_settings_agenda: pyarts3.arts.Agenda | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, latitude: pyarts3.arts.Numeric | None = None, longitude: pyarts3.arts.Numeric | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, max_step: pyarts3.arts.Numeric | None = None) None
Extract a 1D path through the atmospheric field and calculate spectral flux using Disort
Wrapper calling Methods (in order):
Equivalent (mostly) Python code:
1ws = pyarts.Workspace() 2 3# ... 4 5 ws.ray_pathGeometricDownlooking() 6 ws.disort_spectral_flux_fieldFromAgenda()
Authors: Richard Larsson,
Automatically Generated
- Parameters:
disort_spectral_flux_field (DisortFlux, optional) – The spectral flux field from Disort. See
disort_spectral_flux_field
, defaults toself.disort_spectral_flux_field
[OUT]ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[OUT]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]disort_fourier_mode_dimension (Index, optional) – The number of Fourier modes for Disort. See
disort_fourier_mode_dimension
, defaults toself.disort_fourier_mode_dimension
[IN]disort_legendre_polynomial_dimension (Index, optional) – The number of input Legendre polynimials for Disort. See
disort_legendre_polynomial_dimension
, defaults toself.disort_legendre_polynomial_dimension
[IN]disort_quadrature_dimension (Index, optional) – The quadrature size for Disort. See
disort_quadrature_dimension
, defaults toself.disort_quadrature_dimension
[IN]disort_settings_agenda (Agenda, optional) – An agenda for setting up Disort. See
disort_settings_agenda
, defaults toself.disort_settings_agenda
[IN]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]latitude (Numeric, optional) – A single latitude. See
latitude
, defaults toself.latitude
[IN]longitude (Numeric, optional) – A single longitude. See
longitude
, defaults toself.longitude
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]max_step (Numeric, optional) – The maximum step length. Defaults to
1000
[IN]
- disort_spectral_radiance_fieldCalc(self, disort_spectral_radiance_field: pyarts3.arts.DisortRadiance | None = None, disort_quadrature: pyarts3.arts.ZenithGriddedField1 | None = None, disort_settings: pyarts3.arts.DisortSettings | None = None, phis: pyarts3.arts.AzimuthGrid | None = None) None
Perform Disort calculations for spectral radiance.
Author: Richard Larsson
Used by wrapper method
- Parameters:
disort_spectral_radiance_field (DisortRadiance, optional) – The spectral radiance field from Disort. See
disort_spectral_radiance_field
, defaults toself.disort_spectral_radiance_field
[OUT]disort_quadrature (ZenithGriddedField1, optional) – The quadrature angles for Disort with accompying weights. See
disort_quadrature
, defaults toself.disort_quadrature
[OUT]disort_settings (DisortSettings, optional) – Contains the full settings of spectral Disort calculations. See
disort_settings
, defaults toself.disort_settings
[IN]phis (AzimuthGrid, optional) – The azimuthal angles. Defaults to
0
[IN]
- disort_spectral_radiance_fieldCalcCdisort(self, disort_spectral_radiance_field: pyarts3.arts.DisortRadiance | None = None, disort_quadrature: pyarts3.arts.ZenithGriddedField1 | None = None, disort_settings: pyarts3.arts.DisortSettings | None = None, ray_path_atmospheric_point: pyarts3.arts.ArrayOfAtmPoint | None = None, ray_path_frequency_grid: pyarts3.arts.ArrayOfAscendingGrid | None = None, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, phis: pyarts3.arts.AzimuthGrid | None = None) None
Perform CDisort calculations for spectral radiance.
CDisort is only included for testing and comparisons with our own disort implementation.
Author: Oliver Lemke
Used by wrapper method
- Parameters:
disort_spectral_radiance_field (DisortRadiance, optional) – The spectral radiance field from Disort. See
disort_spectral_radiance_field
, defaults toself.disort_spectral_radiance_field
[OUT]disort_quadrature (ZenithGriddedField1, optional) – The quadrature angles for Disort with accompying weights. See
disort_quadrature
, defaults toself.disort_quadrature
[OUT]disort_settings (DisortSettings, optional) – Contains the full settings of spectral Disort calculations. See
disort_settings
, defaults toself.disort_settings
[IN]ray_path_atmospheric_point (ArrayOfAtmPoint, optional) – Atmospheric points along the propagation path. See
ray_path_atmospheric_point
, defaults toself.ray_path_atmospheric_point
[IN]ray_path_frequency_grid (ArrayOfAscendingGrid, optional) – All
frequency_grid
along the propagation path. Seeray_path_frequency_grid
, defaults toself.ray_path_frequency_grid
[IN]ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]phis (AzimuthGrid, optional) – The azimuthal angles. Defaults to
0
[IN]
- disort_spectral_radiance_fieldFromAgenda(self, disort_spectral_radiance_field: pyarts3.arts.DisortRadiance | None = None, disort_quadrature: pyarts3.arts.ZenithGriddedField1 | None = None, disort_fourier_mode_dimension: pyarts3.arts.Index | None = None, disort_legendre_polynomial_dimension: pyarts3.arts.Index | None = None, disort_quadrature_dimension: pyarts3.arts.Index | None = None, disort_settings_agenda: pyarts3.arts.Agenda | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, phis: pyarts3.arts.AzimuthGrid | None = None) None
Use the disort settings agenda to calculate spectral radiance
Wrapper calling Methods (in order):
Equivalent (mostly) Python code:
1ws = pyarts.Workspace() 2 3# ... 4 5 ws.disort_settings_agendaExecute() 6 ws.disort_spectral_radiance_fieldCalc()
Authors: Richard Larsson,
Automatically Generated
Used by wrapper method
- Parameters:
disort_spectral_radiance_field (DisortRadiance, optional) – The spectral radiance field from Disort. See
disort_spectral_radiance_field
, defaults toself.disort_spectral_radiance_field
[OUT]disort_quadrature (ZenithGriddedField1, optional) – The quadrature angles for Disort with accompying weights. See
disort_quadrature
, defaults toself.disort_quadrature
[OUT]disort_fourier_mode_dimension (Index, optional) – The number of Fourier modes for Disort. See
disort_fourier_mode_dimension
, defaults toself.disort_fourier_mode_dimension
[IN]disort_legendre_polynomial_dimension (Index, optional) – The number of input Legendre polynimials for Disort. See
disort_legendre_polynomial_dimension
, defaults toself.disort_legendre_polynomial_dimension
[IN]disort_quadrature_dimension (Index, optional) – The quadrature size for Disort. See
disort_quadrature_dimension
, defaults toself.disort_quadrature_dimension
[IN]disort_settings_agenda (Agenda, optional) – An agenda for setting up Disort. See
disort_settings_agenda
, defaults toself.disort_settings_agenda
[IN]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[IN]phis (AzimuthGrid, optional) – The azimuthal angles. Defaults to
0
[IN]
- disort_spectral_radiance_fieldFromAgendaCdisort(self, disort_spectral_radiance_field: pyarts3.arts.DisortRadiance | None = None, disort_quadrature: pyarts3.arts.ZenithGriddedField1 | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, disort_fourier_mode_dimension: pyarts3.arts.Index | None = None, disort_legendre_polynomial_dimension: pyarts3.arts.Index | None = None, disort_quadrature_dimension: pyarts3.arts.Index | None = None, disort_settings_agenda: pyarts3.arts.Agenda | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, phis: pyarts3.arts.AzimuthGrid | None = None) None
Use the disort settings agenda to calculate spectral radiance
Wrapper calling Methods (in order):
Equivalent (mostly) Python code:
1ws = pyarts.Workspace() 2 3# ... 4 5 ws.disort_settings_agendaExecute() 6 ws.ray_path_atmospheric_pointFromPath() 7 ws.ray_path_frequency_gridFromPath() 8 ws.disort_spectral_radiance_fieldCalcCdisort()
Authors: Oliver Lemke, Richard Larsson,
Automatically Generated
Used by wrapper method
- Parameters:
disort_spectral_radiance_field (DisortRadiance, optional) – The spectral radiance field from Disort. See
disort_spectral_radiance_field
, defaults toself.disort_spectral_radiance_field
[OUT]disort_quadrature (ZenithGriddedField1, optional) – The quadrature angles for Disort with accompying weights. See
disort_quadrature
, defaults toself.disort_quadrature
[OUT]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]disort_fourier_mode_dimension (Index, optional) – The number of Fourier modes for Disort. See
disort_fourier_mode_dimension
, defaults toself.disort_fourier_mode_dimension
[IN]disort_legendre_polynomial_dimension (Index, optional) – The number of input Legendre polynimials for Disort. See
disort_legendre_polynomial_dimension
, defaults toself.disort_legendre_polynomial_dimension
[IN]disort_quadrature_dimension (Index, optional) – The quadrature size for Disort. See
disort_quadrature_dimension
, defaults toself.disort_quadrature_dimension
[IN]disort_settings_agenda (Agenda, optional) – An agenda for setting up Disort. See
disort_settings_agenda
, defaults toself.disort_settings_agenda
[IN]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]phis (AzimuthGrid, optional) – The azimuthal angles. Defaults to
0
[IN]
- disort_spectral_radiance_fieldProfile(self, disort_spectral_radiance_field: pyarts3.arts.DisortRadiance | None = None, disort_quadrature: pyarts3.arts.ZenithGriddedField1 | None = None, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, disort_fourier_mode_dimension: pyarts3.arts.Index | None = None, disort_legendre_polynomial_dimension: pyarts3.arts.Index | None = None, disort_quadrature_dimension: pyarts3.arts.Index | None = None, disort_settings_agenda: pyarts3.arts.Agenda | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, latitude: pyarts3.arts.Numeric | None = None, longitude: pyarts3.arts.Numeric | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, phis: pyarts3.arts.AzimuthGrid | None = None, max_step: pyarts3.arts.Numeric | None = None) None
Extract a 1D path through the atmospheric field and calculate spectral radiance using Disort
Wrapper calling Methods (in order):
Equivalent (mostly) Python code:
1ws = pyarts.Workspace() 2 3# ... 4 5 ws.ray_pathGeometricDownlooking() 6 ws.disort_spectral_radiance_fieldFromAgenda()
Authors: Richard Larsson,
Automatically Generated
- Parameters:
disort_spectral_radiance_field (DisortRadiance, optional) – The spectral radiance field from Disort. See
disort_spectral_radiance_field
, defaults toself.disort_spectral_radiance_field
[OUT]disort_quadrature (ZenithGriddedField1, optional) – The quadrature angles for Disort with accompying weights. See
disort_quadrature
, defaults toself.disort_quadrature
[OUT]ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[OUT]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]disort_fourier_mode_dimension (Index, optional) – The number of Fourier modes for Disort. See
disort_fourier_mode_dimension
, defaults toself.disort_fourier_mode_dimension
[IN]disort_legendre_polynomial_dimension (Index, optional) – The number of input Legendre polynimials for Disort. See
disort_legendre_polynomial_dimension
, defaults toself.disort_legendre_polynomial_dimension
[IN]disort_quadrature_dimension (Index, optional) – The quadrature size for Disort. See
disort_quadrature_dimension
, defaults toself.disort_quadrature_dimension
[IN]disort_settings_agenda (Agenda, optional) – An agenda for setting up Disort. See
disort_settings_agenda
, defaults toself.disort_settings_agenda
[IN]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]latitude (Numeric, optional) – A single latitude. See
latitude
, defaults toself.latitude
[IN]longitude (Numeric, optional) – A single longitude. See
longitude
, defaults toself.longitude
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]phis (AzimuthGrid, optional) – The azimuthal angles. Defaults to
0
[IN]max_step (Numeric, optional) – The maximum step length. Defaults to
1000
[IN]
- disort_spectral_radiance_fieldProfileCdisort(self, disort_spectral_radiance_field: pyarts3.arts.DisortRadiance | None = None, disort_quadrature: pyarts3.arts.ZenithGriddedField1 | None = None, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, disort_fourier_mode_dimension: pyarts3.arts.Index | None = None, disort_legendre_polynomial_dimension: pyarts3.arts.Index | None = None, disort_quadrature_dimension: pyarts3.arts.Index | None = None, disort_settings_agenda: pyarts3.arts.Agenda | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, latitude: pyarts3.arts.Numeric | None = None, longitude: pyarts3.arts.Numeric | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, phis: pyarts3.arts.AzimuthGrid | None = None, max_step: pyarts3.arts.Numeric | None = None) None
Extract a 1D path through the atmospheric field and calculate spectral radiance using Disort
Wrapper calling Methods (in order):
Equivalent (mostly) Python code:
1ws = pyarts.Workspace() 2 3# ... 4 5 ws.ray_pathGeometricDownlooking() 6 ws.disort_spectral_radiance_fieldFromAgendaCdisort()
Authors: Oliver Lemke, Richard Larsson,
Automatically Generated
- Parameters:
disort_spectral_radiance_field (DisortRadiance, optional) – The spectral radiance field from Disort. See
disort_spectral_radiance_field
, defaults toself.disort_spectral_radiance_field
[OUT]disort_quadrature (ZenithGriddedField1, optional) – The quadrature angles for Disort with accompying weights. See
disort_quadrature
, defaults toself.disort_quadrature
[OUT]ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[OUT]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]disort_fourier_mode_dimension (Index, optional) – The number of Fourier modes for Disort. See
disort_fourier_mode_dimension
, defaults toself.disort_fourier_mode_dimension
[IN]disort_legendre_polynomial_dimension (Index, optional) – The number of input Legendre polynimials for Disort. See
disort_legendre_polynomial_dimension
, defaults toself.disort_legendre_polynomial_dimension
[IN]disort_quadrature_dimension (Index, optional) – The quadrature size for Disort. See
disort_quadrature_dimension
, defaults toself.disort_quadrature_dimension
[IN]disort_settings_agenda (Agenda, optional) – An agenda for setting up Disort. See
disort_settings_agenda
, defaults toself.disort_settings_agenda
[IN]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]latitude (Numeric, optional) – A single latitude. See
latitude
, defaults toself.latitude
[IN]longitude (Numeric, optional) – A single longitude. See
longitude
, defaults toself.longitude
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]phis (AzimuthGrid, optional) – The azimuthal angles. Defaults to
0
[IN]max_step (Numeric, optional) – The maximum step length. Defaults to
1000
[IN]
- ecs_dataAddMakarov2020(self, ecs_data: pyarts3.arts.LinemixingEcsData | None = None) None
Sets the O2-66 microwave band data for ECS.
This is based on the work of:
Dmitriy S. Makarov, Mikhail Yu. Tretyakov, Philip W. Rosenkranz, Revision of the 60-GHz atmospheric oxygen absorption band models for practical use, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 243, 2020, 106798, ISSN 0022-4073, https://doi.org/10.1016/j.jqsrt.2019.106798. (https://www.sciencedirect.com/science/article/pii/S002240731930576X)
Author: Richard Larsson
- Parameters:
ecs_data (LinemixingEcsData, optional) – Error corrected sudden data. See
ecs_data
, defaults toself.ecs_data
[INOUT]
- ecs_dataAddMeanAir(self, ecs_data: pyarts3.arts.LinemixingEcsData | None = None, vmrs: pyarts3.arts.Vector | None = None, species: pyarts3.arts.ArrayOfSpeciesEnum | None = None) None
Sets ECS data for air from other data if available.
Author: Richard Larsson
- Parameters:
ecs_data (LinemixingEcsData, optional) – Error corrected sudden data. See
ecs_data
, defaults toself.ecs_data
[INOUT]vmrs (Vector) – VMRs of air species. [IN]
species (ArrayOfSpeciesEnum) – Air species. [IN]
- ecs_dataAddRodrigues1997(self, ecs_data: pyarts3.arts.LinemixingEcsData | None = None) None
Sets the CO2-626, CO2-628, and CO2-636 band data for ECS.
Sets N2 and O2 species.
This is based on the work of:
R. Rodrigues, Gh. Blanquet, J. Walrand, B. Khalil, R.Le Doucen, F. Thibault, J.-M. Hartmann, Line-Mixing Effects inQBranches of CO2, Journal of Molecular Spectroscopy, Volume 186, Issue 2, 1997, Pages 256-268, ISSN 0022-2852, https://doi.org/10.1006/jmsp.1997.7453. (https://www.sciencedirect.com/science/article/pii/S0022285297974531)
Author: Richard Larsson
- Parameters:
ecs_data (LinemixingEcsData, optional) – Error corrected sudden data. See
ecs_data
, defaults toself.ecs_data
[INOUT]
- ecs_dataAddTran2011(self, ecs_data: pyarts3.arts.LinemixingEcsData | None = None) None
Sets the CO2-626, CO2-628, and CO2-636 band data for ECS.
Sets CO2 species.
This is based on the work of:
H. Tran, C. Boulet, S. Stefani, M. Snels, G. Piccioni, Measurements and modelling of high pressure pure CO2 spectra from 750 to 8500cm−1. I—central and wing regions of the allowed vibrational bands, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 112, Issue 6, 2011, Pages 925-936, ISSN 0022-4073, https://doi.org/10.1016/j.jqsrt.2010.11.021. (https://www.sciencedirect.com/science/article/pii/S0022407310004449)
Author: Richard Larsson
- Parameters:
ecs_data (LinemixingEcsData, optional) – Error corrected sudden data. See
ecs_data
, defaults toself.ecs_data
[INOUT]
- ecs_dataInit(self, ecs_data: pyarts3.arts.LinemixingEcsData | None = None) None
Resets/initializes the ECS data.
Author: Richard Larsson
- Parameters:
ecs_data (LinemixingEcsData, optional) – Error corrected sudden data. See
ecs_data
, defaults toself.ecs_data
[OUT]
- flux_profileIntegrate(self, flux_profile: pyarts3.arts.Vector | None = None, spectral_flux_profile: pyarts3.arts.Matrix | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None) None
Computes the spectral flux
Author: Richard Larsson
- Parameters:
flux_profile (Vector) – The spectral flux profile. Defaults to create and/or use
self.flux_profile
:Vector
. [OUT]spectral_flux_profile (Matrix, optional) – An altitude profile of spectral flux. See
spectral_flux_profile
, defaults toself.spectral_flux_profile
[IN]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]
- frequency_gridFitNonLTE(self, frequency_grid: pyarts3.arts.AscendingGrid | None = None, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, df: pyarts3.arts.Numeric | None = None, nf: pyarts3.arts.Index | None = None) None
Frequency grid useful for
atmospheric_profileFitNonLTE()
.This method creates a frequency grid around the line-center of each absorption line in the
absorption_bands
variable.Note
For all sorted absorption line centers \(f_i\), the following should be true:
\[f_{i -1} + \delta f < f_i < f_{i + 1} - \delta f\]That is, the frequency ranges are not allowed to overlap.
Author: Richard Larsson
- Parameters:
frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[OUT]absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[IN]df (Numeric) – Frequency grid around the line-center. The range will cover \(f_i\) pm left(1-delta fright)forall i` of each absorption line \(i\), where this variable is \(\delta f\). [IN]
nf (Index, optional) – Number of frequency points per line. The step between frequency grid points will be \(2\frac{\delta f}{N - 1}\), where this is \(N\). Defaults to
401
[IN]
- frequency_gridWindShift(self, frequency_grid: pyarts3.arts.AscendingGrid | None = None, frequency_grid_wind_shift_jacobian: pyarts3.arts.Vector3 | None = None, atmospheric_point: pyarts3.arts.AtmPoint | None = None, ray_path_point: pyarts3.arts.PropagationPathPoint | None = None) None
Applies wind shift to the
frequency_grid
for the local frequency grid.Also sets
frequency_grid_wind_shift_jacobian
.If the wind is 0 or nan, the
frequency_grid
remains unchanged.Author: Richard Larsson
- Parameters:
frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[INOUT]frequency_grid_wind_shift_jacobian (Vector3, optional) – The frequency grid wind shift Jacobian. See
frequency_grid_wind_shift_jacobian
, defaults toself.frequency_grid_wind_shift_jacobian
[OUT]atmospheric_point (AtmPoint, optional) – An atmospheric point in ARTS. See
atmospheric_point
, defaults toself.atmospheric_point
[IN]ray_path_point (PropagationPathPoint, optional) – A single path point. See
ray_path_point
, defaults toself.ray_path_point
[IN]
- gravity_operatorCentralMass(self, gravity_operator: pyarts3.arts.NumericTernaryOperator | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, mass: pyarts3.arts.Numeric | None = None) None
Sets a gravity operator from the gravitational constant and the mass of the planet
Gets the ellispoid from
surface_field
Author: Richard Larsson
- Parameters:
gravity_operator (NumericTernaryOperator, optional) – The gravity operator. See
gravity_operator
, defaults toself.gravity_operator
[OUT]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]mass (Numeric) – Gravitation constant so that the gravity at radius
r
isGM / r^2
. [IN]
- init(self, arg: str, /) None
- init(self, name: str, typename: str) None
Overloaded function.
init(self, arg: str, /) -> None
init(self, name: str, typename: str) -> None
Initiate the variable to the named type.
- inversion_iterate_agendaExecute(self, atmospheric_field: pyarts3.arts.AtmField | None = None, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, measurement_sensor: pyarts3.arts.ArrayOfSensorObsel | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, subsurface_field: pyarts3.arts.SubsurfaceField | None = None, measurement_vector_fitted: pyarts3.arts.Vector | None = None, measurement_jacobian: pyarts3.arts.Matrix | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, model_state_vector: pyarts3.arts.Vector | None = None, do_jacobian: pyarts3.arts.Index | None = None, inversion_iterate_agenda_counter: pyarts3.arts.Index | None = None, inversion_iterate_agenda: pyarts3.arts.Agenda | None = None) None
Executes
inversion_iterate_agenda
, see it for more detailsAuthor:
Automatically Generated
- Parameters:
atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[INOUT]absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[INOUT]measurement_sensor (ArrayOfSensorObsel, optional) – A list of sensor elements. See
measurement_sensor
, defaults toself.measurement_sensor
[INOUT]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[INOUT]subsurface_field (SubsurfaceField, optional) – The sub0surface field describes the sub-surface properties. See
subsurface_field
, defaults toself.subsurface_field
[INOUT]measurement_vector_fitted (Vector, optional) – As
measurement_vector
, but fitted to the model. Seemeasurement_vector_fitted
, defaults toself.measurement_vector_fitted
[OUT]measurement_jacobian (Matrix, optional) – The first order partial derivatives of the
measurement_vector
. Seemeasurement_jacobian
, defaults toself.measurement_jacobian
[OUT]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]model_state_vector (Vector, optional) – A state vector of the model. See
model_state_vector
, defaults toself.model_state_vector
[IN]do_jacobian (Index, optional) – A boolean calculations related to the
measurement_jacobian
should be ignored. Seedo_jacobian
, defaults toself.do_jacobian
[IN]inversion_iterate_agenda_counter (Index, optional) – A counter for the inversion iterate agenda. See
inversion_iterate_agenda_counter
, defaults toself.inversion_iterate_agenda_counter
[IN]inversion_iterate_agenda (Agenda, optional) – Work in progress … See
inversion_iterate_agenda
, defaults toself.inversion_iterate_agenda
[IN]
- inversion_iterate_agendaExecuteOperator(self, atmospheric_field: pyarts3.arts.AtmField | None = None, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, measurement_sensor: pyarts3.arts.ArrayOfSensorObsel | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, subsurface_field: pyarts3.arts.SubsurfaceField | None = None, measurement_vector_fitted: pyarts3.arts.Vector | None = None, measurement_jacobian: pyarts3.arts.Matrix | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, model_state_vector: pyarts3.arts.Vector | None = None, do_jacobian: pyarts3.arts.Index | None = None, inversion_iterate_agenda_counter: pyarts3.arts.Index | None = None, inversion_iterate_agenda_operator: pyarts3.arts.inversion_iterate_agendaOperator | None = None) None
Executes an operator emulating
inversion_iterate_agenda
, see it, and alsoinversion_iterate_agendaOperator
, for more detailsAuthor:
Automatically Generated
- Parameters:
atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[INOUT]absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[INOUT]measurement_sensor (ArrayOfSensorObsel, optional) – A list of sensor elements. See
measurement_sensor
, defaults toself.measurement_sensor
[INOUT]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[INOUT]subsurface_field (SubsurfaceField, optional) – The sub0surface field describes the sub-surface properties. See
subsurface_field
, defaults toself.subsurface_field
[INOUT]measurement_vector_fitted (Vector, optional) – As
measurement_vector
, but fitted to the model. Seemeasurement_vector_fitted
, defaults toself.measurement_vector_fitted
[OUT]measurement_jacobian (Matrix, optional) – The first order partial derivatives of the
measurement_vector
. Seemeasurement_jacobian
, defaults toself.measurement_jacobian
[OUT]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]model_state_vector (Vector, optional) – A state vector of the model. See
model_state_vector
, defaults toself.model_state_vector
[IN]do_jacobian (Index, optional) – A boolean calculations related to the
measurement_jacobian
should be ignored. Seedo_jacobian
, defaults toself.do_jacobian
[IN]inversion_iterate_agenda_counter (Index, optional) – A counter for the inversion iterate agenda. See
inversion_iterate_agenda_counter
, defaults toself.inversion_iterate_agenda_counter
[IN]inversion_iterate_agenda_operator (inversion_iterate_agendaOperator) – Operator for
inversion_iterate_agenda
. [IN]
- inversion_iterate_agendaSet(self, inversion_iterate_agenda: pyarts3.arts.Agenda | None = None, option: pyarts3.arts.String | None = None) None
Set
inversion_iterate_agenda
to a specific predefined optionAuthor:
Automatically Generated
- Parameters:
inversion_iterate_agenda (Agenda, optional) – Work in progress … See
inversion_iterate_agenda
, defaults toself.inversion_iterate_agenda
[OUT]option (String, optional) – Choice of generated agenda. Defaults to
"Full"
[IN]
Valid options
These are the valid options for the
inversion_iterate_agendaSet
method. The listed method calls describe the order of the agenda calls for eachoption
.
inversion_iterate_agendaSet(option="Full")
Ignore()
, using: input =inversion_iterate_agenda_counter
Touch()
, using: input =atmospheric_field
Touch()
, using: input =absorption_bands
Touch()
, using: input =measurement_sensor
Touch()
, using: input =surface_field
Touch()
, using: input =subsurface_field
- inversion_iterate_agendaSetOperator(self, inversion_iterate_agenda: pyarts3.arts.Agenda | None = None, f: pyarts3.arts.inversion_iterate_agendaOperator | None = None) None
Set
inversion_iterate_agenda
to exclusively use provided external operator. Seeinversion_iterate_agendaOperator
for more details.Author:
Automatically Generated
- Parameters:
inversion_iterate_agenda (Agenda, optional) – Work in progress … See
inversion_iterate_agenda
, defaults toself.inversion_iterate_agenda
[OUT]f (inversion_iterate_agendaOperator) – Operator for
inversion_iterate_agenda
. [IN]
- jacobian_targetsAddAtmosphere(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, target: pyarts3.arts.AtmKey | pyarts3.arts.SpeciesEnum | pyarts3.arts.SpeciesIsotope | pyarts3.arts.QuantumLevelIdentifier | None = None, d: pyarts3.arts.Numeric | None = None) None
Sets an atmospheric target.
Author: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[INOUT]target (AtmKey,SpeciesEnum,SpeciesIsotope,QuantumLevelIdentifier) – The target of interest. [IN]
d (Numeric, optional) – The perturbation used in methods that cannot compute derivatives analytically. Defaults to
0.1
[IN]
- jacobian_targetsAddErrorPolyFit(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, measurement_sensor: pyarts3.arts.ArrayOfSensorObsel | None = None, t: pyarts3.arts.Vector | None = None, sensor_elem: pyarts3.arts.Index | None = None, polyorder: pyarts3.arts.Index | None = None) None
Set a measurement error to polynomial fit.
This is a generic error that is simply added to
measurement_vector
as if\[y = y_0 + \epsilon(p_0,\; p_1,\; \cdots,\; p_n),\]where \(y\) represents
measurement_vector
and \(y_0\) is the measurement vector without any errors)Order 0 means constant: \(y = y_0 + a\)
Order 1 means linear: \(y = y_0 + a + b t\)
and so on. The derivatives that are added to the
model_state_vector
are those with regards to a, b, etc..Note
The rule for the
sensor_elem
GIN is a bit complex. Generally, methods such asmeasurement_sensorAddSimple()
will simply add a single unique frequency grid to all the differentSensorObsel
that they add to themeasurement_sensor
. The GINsensor_elem
is 0 for the first unique frequency grid, 1 for the second, and so on. SeeArrayOfSensorObsel
member methods in python for help identifying and manipulating how many unique frequency grids are available inmeasurement_sensor
.Author: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[INOUT]measurement_sensor (ArrayOfSensorObsel, optional) – A list of sensor elements. See
measurement_sensor
, defaults toself.measurement_sensor
[IN]t (Vector) – The grid of \(y\). As \(t\) above. [IN]
sensor_elem (Index) – The sensor element whose frequency grid to use. [IN]
polyorder (Index, optional) – The order of the polynomial fit. Maximum \(n\) above. Defaults to
0
[IN]
- jacobian_targetsAddMagneticField(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, component: pyarts3.arts.String | None = None, d: pyarts3.arts.Numeric | None = None) None
Set magnetic field derivative.
See
FieldComponent
for validcomponent
.Author: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[INOUT]component (String) – The component to use [u, v, w]. [IN]
d (Numeric, optional) – The perturbation used in methods that cannot compute derivatives analytically. Defaults to
0.1
[IN]
- jacobian_targetsAddOverlappingMagneticField(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None) None
Set magnetic field derivative for overlapping fields.
An overlapping field means that the derivative is computed but that the x-component of the jacobian is at the same position as another Jacobian target.
To call this method, you first have added 1 component of the magnetic field derivative, and then you call this method to add the second and third component.
Author: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[INOUT]
- jacobian_targetsAddOverlappingWindField(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None) None
Set wind field derivative for overlapping fields.
An overlapping field means that the derivative is computed but that the x-component of the jacobian is at the same position as another Jacobian target.
To call this method, you first have added 1 component of the wind field derivative, and then you call this method to add the second and third component.
Author: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[INOUT]
- jacobian_targetsAddPressure(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, d: pyarts3.arts.Numeric | None = None) None
Set pressure derivative.
Author: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[INOUT]d (Numeric, optional) – The perturbation used in methods that cannot compute derivatives analytically. Defaults to
0.1
[IN]
- jacobian_targetsAddSensorFrequencyPolyOffset(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, measurement_sensor: pyarts3.arts.ArrayOfSensorObsel | None = None, d: pyarts3.arts.Numeric | None = None, sensor_elem: pyarts3.arts.Index | None = None, polyorder: pyarts3.arts.Index | None = None) None
Set sensor frequency derivative to use polynomial fitting offset
Order 0 means constant: \(f := f_0 + a\)
Order 1 means linear: \(f := f_0 + a + b f_0\)
and so on. The derivatives that are added to the
model_state_vector
are those with regards to a, b, etc..Note
The rule for the
sensor_elem
GIN is a bit complex. Generally, methods such asmeasurement_sensorAddSimple()
will simply add a single unique frequency grid to all the differentSensorObsel
that they add to themeasurement_sensor
. The GINsensor_elem
is 0 for the first unique frequency grid, 1 for the second, and so on. SeeArrayOfSensorObsel
member methods in python for help identifying and manipulating how many unique frequency grids are available inmeasurement_sensor
.Author: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[INOUT]measurement_sensor (ArrayOfSensorObsel, optional) – A list of sensor elements. See
measurement_sensor
, defaults toself.measurement_sensor
[IN]d (Numeric, optional) – The perturbation used in methods that cannot compute derivatives analytically. Defaults to
0.1
[IN]sensor_elem (Index) – The sensor element whose frequency grid to use. [IN]
polyorder (Index, optional) – The order of the polynomial fit. Defaults to
0
[IN]
- jacobian_targetsAddSpeciesIsotopologueRatio(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, species: pyarts3.arts.SpeciesIsotope | None = None, d: pyarts3.arts.Numeric | None = None) None
Set isotopologue ratio derivative
See
SpeciesIsotope
for validspecies
Author: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[INOUT]species (SpeciesIsotope) – The species isotopologue of interest. [IN]
d (Numeric, optional) – The perturbation used in methods that cannot compute derivatives analytically. Defaults to
0.1
[IN]
- jacobian_targetsAddSpeciesVMR(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, species: pyarts3.arts.SpeciesEnum | None = None, d: pyarts3.arts.Numeric | None = None) None
Set volume mixing ratio derivative.
See
SpeciesEnum
for validspecies
Author: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[INOUT]species (SpeciesEnum) – The species of interest. [IN]
d (Numeric, optional) – The perturbation used in methods that cannot compute derivatives analytically. Defaults to
0.1
[IN]
- jacobian_targetsAddSubsurface(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, target: pyarts3.arts.SubsurfaceKey | None = None, d: pyarts3.arts.Numeric | None = None) None
Sets a subsurface target
Author: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[INOUT]target (SubsurfaceKey) – The target of interest. [IN]
d (Numeric, optional) – The perturbation used in methods that cannot compute derivatives analytically. Defaults to
0.1
[IN]
- jacobian_targetsAddSurface(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, target: pyarts3.arts.SurfaceKey | pyarts3.arts.SurfacePropertyTag | None = None, d: pyarts3.arts.Numeric | None = None) None
Sets a surface target
Author: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[INOUT]target (SurfaceKey,SurfacePropertyTag) – The target of interest. [IN]
d (Numeric, optional) – The perturbation used in methods that cannot compute derivatives analytically. Defaults to
0.1
[IN]
- jacobian_targetsAddTemperature(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, d: pyarts3.arts.Numeric | None = None) None
Set temperature derivative.
Author: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[INOUT]d (Numeric, optional) – The perturbation used in methods that cannot compute derivatives analytically. Defaults to
0.1
[IN]
- jacobian_targetsAddWindField(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, component: pyarts3.arts.String | None = None, d: pyarts3.arts.Numeric | None = None) None
Set wind field derivative.
Note that the derivatives from methods that takes the freqeuncy will return their derivatives as if these were frequency derivatives.
See
FieldComponent
for validcomponent
Author: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[INOUT]component (String) – The component to use [u, v, w]. [IN]
d (Numeric, optional) – The perturbation used in methods that cannot compute derivatives analytically. Defaults to
0.1
[IN]
- jacobian_targetsConditionalClear(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, do_jacobian: pyarts3.arts.Index | None = None) None
Clears
jacobian_targets
ifdo_jacobian
evaluates false.Author: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[INOUT]do_jacobian (Index, optional) – A boolean calculations related to the
measurement_jacobian
should be ignored. Seedo_jacobian
, defaults toself.do_jacobian
[IN]
- jacobian_targetsFinalize(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, subsurface_field: pyarts3.arts.SubsurfaceField | None = None, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, measurement_sensor: pyarts3.arts.ArrayOfSensorObsel | None = None) None
Finalize
jacobian_targets
.The finalization computes the size of the required
model_state_vector
. It is thus necessary if anyOEM()
or other functionality that requires the building of an actual Jacobian matrix.Author: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[INOUT]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]subsurface_field (SubsurfaceField, optional) – The sub0surface field describes the sub-surface properties. See
subsurface_field
, defaults toself.subsurface_field
[IN]absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[IN]measurement_sensor (ArrayOfSensorObsel, optional) – A list of sensor elements. See
measurement_sensor
, defaults toself.measurement_sensor
[IN]
- jacobian_targetsInit(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None) None
Initialize or reset the
jacobian_targets
.Author: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[OUT]
- jacobian_targetsOff(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None) None
Turns off
jacobian_targets
Author: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[OUT]
- jacobian_targetsToggleLogRelAtmTarget(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, key: pyarts3.arts.AtmKey | pyarts3.arts.SpeciesEnum | pyarts3.arts.SpeciesIsotope | pyarts3.arts.QuantumLevelIdentifier | pyarts3.arts.ScatteringSpeciesProperty | None = None) None
Toggles logarithmic/relative or absolute retrievals.
This means to take the logarithm of the relative value.
If the target is in logarithmic/relative mode, it becomes absolute. If the target is not in logarithmic/relative mode, it becomes logarithmic/relative.
Overwrites all other functional toggles.
Author: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[INOUT]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]key (AtmKey,SpeciesEnum,SpeciesIsotope,QuantumLevelIdentifier,ScatteringSpeciesProperty) – Key to toggle. [IN]
- jacobian_targetsToggleLogRelSubsurfaceTarget(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, subsurface_field: pyarts3.arts.SubsurfaceField | None = None, key: pyarts3.arts.SubsurfaceKey | None = None) None
Toggles logarithmic/relative or absolute retrievals.
This means to take the logarithm of the relative value.
If the target is in logarithmic/relative mode, it becomes absolute. If the target is not in logarithmic/relative mode, it becomes logarithmic/relative.
Overwrites all other functional toggles.
Author: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[INOUT]subsurface_field (SubsurfaceField, optional) – The sub0surface field describes the sub-surface properties. See
subsurface_field
, defaults toself.subsurface_field
[IN]key (SubsurfaceKey) – Key to toggle. [IN]
- jacobian_targetsToggleLogRelSurfaceTarget(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, key: pyarts3.arts.SurfaceKey | pyarts3.arts.SurfacePropertyTag | None = None) None
Toggles logarithmic/relative or absolute retrievals.
This means to take the logarithm of the relative value.
If the target is in logarithmic/relative mode, it becomes absolute. If the target is not in logarithmic/relative mode, it becomes logarithmic/relative.
Overwrites all other functional toggles.
Author: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[INOUT]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]key (SurfaceKey,SurfacePropertyTag) – Key to toggle. [IN]
- jacobian_targetsToggleLogarithmicAtmTarget(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, key: pyarts3.arts.AtmKey | pyarts3.arts.SpeciesEnum | pyarts3.arts.SpeciesIsotope | pyarts3.arts.QuantumLevelIdentifier | pyarts3.arts.ScatteringSpeciesProperty | None = None) None
Toggles logarithmic or absolute retrievals.
If the target is in logarithmic mode, it becomes absolute. If the target is not in logarithmic mode, it becomes logarithmic.
Overwrites all other functional toggles.
Author: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[INOUT]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]key (AtmKey,SpeciesEnum,SpeciesIsotope,QuantumLevelIdentifier,ScatteringSpeciesProperty) – Key to toggle. [IN]
- jacobian_targetsToggleLogarithmicSubsurfaceTarget(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, subsurface_field: pyarts3.arts.SubsurfaceField | None = None, key: pyarts3.arts.SubsurfaceKey | None = None) None
Toggles logarithmic or absolute retrievals.
If the target is in logarithmic mode, it becomes absolute. If the target is not in logarithmic mode, it becomes logarithmic.
Overwrites all other functional toggles.
Author: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[INOUT]subsurface_field (SubsurfaceField, optional) – The sub0surface field describes the sub-surface properties. See
subsurface_field
, defaults toself.subsurface_field
[IN]key (SubsurfaceKey) – Key to toggle. [IN]
- jacobian_targetsToggleLogarithmicSurfaceTarget(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, key: pyarts3.arts.SurfaceKey | pyarts3.arts.SurfacePropertyTag | None = None) None
Toggles logarithmic or absolute retrievals.
If the target is in logarithmic mode, it becomes absolute. If the target is not in logarithmic mode, it becomes logarithmic.
Overwrites all other functional toggles.
Author: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[INOUT]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]key (SurfaceKey,SurfacePropertyTag) – Key to toggle. [IN]
- jacobian_targetsToggleRelativeAtmTarget(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, key: pyarts3.arts.AtmKey | pyarts3.arts.SpeciesEnum | pyarts3.arts.SpeciesIsotope | pyarts3.arts.QuantumLevelIdentifier | pyarts3.arts.ScatteringSpeciesProperty | None = None) None
Toggles relative or absolute retrievals.
If the target is in relative mode, it becomes absolute. If the target is not in relative mode, it becomes relative.
Overwrites all other functional toggles.
Author: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[INOUT]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]key (AtmKey,SpeciesEnum,SpeciesIsotope,QuantumLevelIdentifier,ScatteringSpeciesProperty) – Key to toggle. [IN]
- jacobian_targetsToggleRelativeHumidityAtmTarget(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, water_equivalent_pressure_operator: pyarts3.arts.NumericUnaryOperator | None = None, key: pyarts3.arts.AtmKey | pyarts3.arts.SpeciesEnum | pyarts3.arts.SpeciesIsotope | pyarts3.arts.QuantumLevelIdentifier | pyarts3.arts.ScatteringSpeciesProperty | None = None, nonnegative: pyarts3.arts.Index | None = None) None
Toggles relative humidity or absolute retrievals.
If the target is in relative humidity mode, it becomes absolute. If the target is not in relative humidity mode, it becomes relative humidity.
Overwrites all other functional toggles.
Author: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[INOUT]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]water_equivalent_pressure_operator (NumericUnaryOperator, optional) – The water equivalent pressure operator. See
water_equivalent_pressure_operator
, defaults toself.water_equivalent_pressure_operator
[IN]key (AtmKey,SpeciesEnum,SpeciesIsotope,QuantumLevelIdentifier,ScatteringSpeciesProperty) – Key to toggle. [IN]
nonnegative (Index, optional) – Whether or not to zero-out negative values. Defaults to
1
[IN]
- jacobian_targetsToggleRelativeSubsurfaceTarget(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, subsurface_field: pyarts3.arts.SubsurfaceField | None = None, key: pyarts3.arts.SubsurfaceKey | None = None) None
Toggles relative or absolute retrievals.
If the target is in relative mode, it becomes absolute. If the target is not in relative mode, it becomes relative.
Overwrites all other functional toggles.
Author: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[INOUT]subsurface_field (SubsurfaceField, optional) – The sub0surface field describes the sub-surface properties. See
subsurface_field
, defaults toself.subsurface_field
[IN]key (SubsurfaceKey) – Key to toggle. [IN]
- jacobian_targetsToggleRelativeSurfaceTarget(self, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, key: pyarts3.arts.SurfaceKey | pyarts3.arts.SurfacePropertyTag | None = None) None
Toggles relative or absolute retrievals.
If the target is in relative mode, it becomes absolute. If the target is not in relative mode, it becomes relative.
Overwrites all other functional toggles.
Author: Richard Larsson
- Parameters:
jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[INOUT]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]key (SurfaceKey,SurfacePropertyTag) – Key to toggle. [IN]
- legendre_degreeFromDisortSettings(self, legendre_degree: pyarts3.arts.Index | None = None, disort_settings: pyarts3.arts.DisortSettings | None = None) None
Sets
legendre_degree
todisort_settings
legendre_polynomial_dimension
Method is purely for convenience and composition.
Author: Richard Larsson
- Parameters:
legendre_degree (Index, optional) – The degree of a Legendre polynimial. See
legendre_degree
, defaults toself.legendre_degree
[OUT]disort_settings (DisortSettings, optional) – Contains the full settings of spectral Disort calculations. See
disort_settings
, defaults toself.disort_settings
[IN]
- measurement_averaging_kernelCalc(self, measurement_averaging_kernel: pyarts3.arts.Matrix | None = None, measurement_gain_matrix: pyarts3.arts.Matrix | None = None, measurement_jacobian: pyarts3.arts.Matrix | None = None) None
Calculate the averaging kernel matrix.
This is done by describing the sensitivity of the
OEM()
retrieval with respect to the true state of the system. A prerequisite for the calculation of the averaging kernel matrix is a successfulOEM()
calculation in which themeasurement_jacobian
and the gain matrixmeasurement_gain_matrix
have been calculated.Author: Simon Pfreundschuh
- Parameters:
measurement_averaging_kernel (Matrix, optional) – Averaging kernel matrix. See
measurement_averaging_kernel
, defaults toself.measurement_averaging_kernel
[OUT]measurement_gain_matrix (Matrix, optional) – Contribution function (or gain) matrix. See
measurement_gain_matrix
, defaults toself.measurement_gain_matrix
[IN]measurement_jacobian (Matrix, optional) – The first order partial derivatives of the
measurement_vector
. Seemeasurement_jacobian
, defaults toself.measurement_jacobian
[IN]
- measurement_inversion_agendaExecute(self, measurement_vector_fitted: pyarts3.arts.Vector | None = None, measurement_jacobian: pyarts3.arts.Matrix | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, do_jacobian: pyarts3.arts.Index | None = None, measurement_inversion_agenda: pyarts3.arts.Agenda | None = None) None
Executes
measurement_inversion_agenda
, see it for more detailsAuthor:
Automatically Generated
- Parameters:
measurement_vector_fitted (Vector, optional) – As
measurement_vector
, but fitted to the model. Seemeasurement_vector_fitted
, defaults toself.measurement_vector_fitted
[OUT]measurement_jacobian (Matrix, optional) – The first order partial derivatives of the
measurement_vector
. Seemeasurement_jacobian
, defaults toself.measurement_jacobian
[OUT]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]do_jacobian (Index, optional) – A boolean calculations related to the
measurement_jacobian
should be ignored. Seedo_jacobian
, defaults toself.do_jacobian
[IN]measurement_inversion_agenda (Agenda, optional) – This is a helper
Agenda
intended for use withininversion_iterate_agenda
. Seemeasurement_inversion_agenda
, defaults toself.measurement_inversion_agenda
[IN]
- measurement_inversion_agendaExecuteOperator(self, measurement_vector_fitted: pyarts3.arts.Vector | None = None, measurement_jacobian: pyarts3.arts.Matrix | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, do_jacobian: pyarts3.arts.Index | None = None, measurement_inversion_agenda_operator: pyarts3.arts.measurement_inversion_agendaOperator | None = None) None
Executes an operator emulating
measurement_inversion_agenda
, see it, and alsomeasurement_inversion_agendaOperator
, for more detailsAuthor:
Automatically Generated
- Parameters:
measurement_vector_fitted (Vector, optional) – As
measurement_vector
, but fitted to the model. Seemeasurement_vector_fitted
, defaults toself.measurement_vector_fitted
[OUT]measurement_jacobian (Matrix, optional) – The first order partial derivatives of the
measurement_vector
. Seemeasurement_jacobian
, defaults toself.measurement_jacobian
[OUT]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]do_jacobian (Index, optional) – A boolean calculations related to the
measurement_jacobian
should be ignored. Seedo_jacobian
, defaults toself.do_jacobian
[IN]measurement_inversion_agenda_operator (measurement_inversion_agendaOperator) – Operator for
measurement_inversion_agenda
. [IN]
- measurement_inversion_agendaSet(self, measurement_inversion_agenda: pyarts3.arts.Agenda | None = None, option: pyarts3.arts.String | None = None) None
Set
measurement_inversion_agenda
to a specific predefined optionAuthor:
Automatically Generated
- Parameters:
measurement_inversion_agenda (Agenda, optional) – This is a helper
Agenda
intended for use withininversion_iterate_agenda
. Seemeasurement_inversion_agenda
, defaults toself.measurement_inversion_agenda
[OUT]option (String, optional) – Choice of generated agenda. Defaults to
"Standard"
[IN]
Valid options
These are the valid options for the
measurement_inversion_agendaSet
method. The listed method calls describe the order of the agenda calls for eachoption
.
measurement_inversion_agendaSet(option="Standard")
- measurement_inversion_agendaSetOperator(self, measurement_inversion_agenda: pyarts3.arts.Agenda | None = None, f: pyarts3.arts.measurement_inversion_agendaOperator | None = None) None
Set
measurement_inversion_agenda
to exclusively use provided external operator. Seemeasurement_inversion_agendaOperator
for more details.Author:
Automatically Generated
- Parameters:
measurement_inversion_agenda (Agenda, optional) – This is a helper
Agenda
intended for use withininversion_iterate_agenda
. Seemeasurement_inversion_agenda
, defaults toself.measurement_inversion_agenda
[OUT]f (measurement_inversion_agendaOperator) – Operator for
measurement_inversion_agenda
. [IN]
- measurement_jacobianAtmosphereTransformation(self, measurement_jacobian: pyarts3.arts.Matrix | None = None, model_state_vector: pyarts3.arts.Vector | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None) None
Applies transformations to the atmospheric state Jacobian
Author: Richard Larsson
Used by wrapper method
- Parameters:
measurement_jacobian (Matrix, optional) – The first order partial derivatives of the
measurement_vector
. Seemeasurement_jacobian
, defaults toself.measurement_jacobian
[INOUT]model_state_vector (Vector, optional) – A state vector of the model. See
model_state_vector
, defaults toself.model_state_vector
[IN]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]
- measurement_jacobianBandTransformation(self, measurement_jacobian: pyarts3.arts.Matrix | None = None, model_state_vector: pyarts3.arts.Vector | None = None, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None) None
Applies transformations to the line-by-line state Jacobian
Author: Richard Larsson
Used by wrapper method
- Parameters:
measurement_jacobian (Matrix, optional) – The first order partial derivatives of the
measurement_vector
. Seemeasurement_jacobian
, defaults toself.measurement_jacobian
[INOUT]model_state_vector (Vector, optional) – A state vector of the model. See
model_state_vector
, defaults toself.model_state_vector
[IN]absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]
- measurement_jacobianSensorTransformation(self, measurement_jacobian: pyarts3.arts.Matrix | None = None, model_state_vector: pyarts3.arts.Vector | None = None, measurement_sensor: pyarts3.arts.ArrayOfSensorObsel | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None) None
Applies transformations to the measurement sensor state Jacobian
Author: Richard Larsson
Used by wrapper method
- Parameters:
measurement_jacobian (Matrix, optional) – The first order partial derivatives of the
measurement_vector
. Seemeasurement_jacobian
, defaults toself.measurement_jacobian
[INOUT]model_state_vector (Vector, optional) – A state vector of the model. See
model_state_vector
, defaults toself.model_state_vector
[IN]measurement_sensor (ArrayOfSensorObsel, optional) – A list of sensor elements. See
measurement_sensor
, defaults toself.measurement_sensor
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]
- measurement_jacobianSubsurfaceTransformation(self, measurement_jacobian: pyarts3.arts.Matrix | None = None, model_state_vector: pyarts3.arts.Vector | None = None, subsurface_field: pyarts3.arts.SubsurfaceField | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None) None
Applies transformations to the subsurface state Jacobian
Author: Richard Larsson
Used by wrapper method
- Parameters:
measurement_jacobian (Matrix, optional) – The first order partial derivatives of the
measurement_vector
. Seemeasurement_jacobian
, defaults toself.measurement_jacobian
[INOUT]model_state_vector (Vector, optional) – A state vector of the model. See
model_state_vector
, defaults toself.model_state_vector
[IN]subsurface_field (SubsurfaceField, optional) – The sub0surface field describes the sub-surface properties. See
subsurface_field
, defaults toself.subsurface_field
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]
- measurement_jacobianSurfaceTransformation(self, measurement_jacobian: pyarts3.arts.Matrix | None = None, model_state_vector: pyarts3.arts.Vector | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None) None
Applies transformations to the surface state Jacobian
Author: Richard Larsson
Used by wrapper method
- Parameters:
measurement_jacobian (Matrix, optional) – The first order partial derivatives of the
measurement_vector
. Seemeasurement_jacobian
, defaults toself.measurement_jacobian
[INOUT]model_state_vector (Vector, optional) – A state vector of the model. See
model_state_vector
, defaults toself.model_state_vector
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]
- measurement_jacobianTransformations(self, measurement_jacobian: pyarts3.arts.Matrix | None = None, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, measurement_sensor: pyarts3.arts.ArrayOfSensorObsel | None = None, model_state_vector: pyarts3.arts.Vector | None = None, subsurface_field: pyarts3.arts.SubsurfaceField | None = None, surface_field: pyarts3.arts.SurfaceField | None = None) None
Apply all transformations to the Jacobian related to states in
model_state_vectorFromData()
Wrapper calling Methods (in order):
Equivalent (mostly) Python code:
1ws = pyarts.Workspace() 2 3# ... 4 5 ws.measurement_jacobianAtmosphereTransformation() 6 ws.measurement_jacobianSurfaceTransformation() 7 ws.measurement_jacobianSubsurfaceTransformation() 8 ws.measurement_jacobianBandTransformation() 9 ws.measurement_jacobianSensorTransformation()
Author: Richard Larsson
- Parameters:
measurement_jacobian (Matrix, optional) – The first order partial derivatives of the
measurement_vector
. Seemeasurement_jacobian
, defaults toself.measurement_jacobian
[INOUT]absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[IN]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]measurement_sensor (ArrayOfSensorObsel, optional) – A list of sensor elements. See
measurement_sensor
, defaults toself.measurement_sensor
[IN]model_state_vector (Vector, optional) – A state vector of the model. See
model_state_vector
, defaults toself.model_state_vector
[IN]subsurface_field (SubsurfaceField, optional) – The sub0surface field describes the sub-surface properties. See
subsurface_field
, defaults toself.subsurface_field
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]
- measurement_sensorAddRawSensor(self, measurement_sensor: pyarts3.arts.ArrayOfSensorObsel | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, pos: pyarts3.arts.Vector3 | None = None, los: pyarts3.arts.Vector2 | None = None, raw_sensor_perturbation: pyarts3.arts.StokvecSortedGriddedField1 | pyarts3.arts.StokvecSortedGriddedField2 | pyarts3.arts.StokvecSortedGriddedField3 | pyarts3.arts.StokvecSortedGriddedField4 | pyarts3.arts.StokvecSortedGriddedField5 | pyarts3.arts.StokvecSortedGriddedField6 | pyarts3.arts.SortedGriddedField1 | pyarts3.arts.SortedGriddedField2 | pyarts3.arts.SortedGriddedField3 | pyarts3.arts.SortedGriddedField4 | pyarts3.arts.SortedGriddedField5 | pyarts3.arts.SortedGriddedField6 | None = None, normalize: pyarts3.arts.Index | None = None) None
Adds sensor elements from a raw perturbation of the sensor
The perturbation is a gridded field of up to 6-dimensions. The input frequency grid determines how many elements are added to the sensor. The cartesian perturbation is added to the sensor’s position, line of sight, and frequency grid.
The order of the dimensions are:
Frequency (
"df"
)Zenith angle (
"dza"
)Azimuth angle (
"daa"
)Altitude (
"dalt"
)Latitude (
"dlat"
)Longitude (
"dlon"
)
The quoted strings must be used as the grid names of the gridded field.
Note
It is OK to have fewer than 6 dimensions, the missing dimensions will be assumed to have a size of 1. Since the data is exhaustive, the missing dimensions will not affect the output. What does matter is that the order of the dimensions do not change from the one above.
Author: Richard Larsson
- Parameters:
measurement_sensor (ArrayOfSensorObsel, optional) – A list of sensor elements. See
measurement_sensor
, defaults toself.measurement_sensor
[INOUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]pos (Vector3) – A position [alt, lat, lon]. [IN]
los (Vector2) – A line of sight [zenith, azimuth]. [IN]
raw_sensor_perturbation (StokvecSortedGriddedField1,StokvecSortedGriddedField2,StokvecSortedGriddedField3,StokvecSortedGriddedField4,StokvecSortedGriddedField5,StokvecSortedGriddedField6,SortedGriddedField1,SortedGriddedField2,SortedGriddedField3,SortedGriddedField4,SortedGriddedField5,SortedGriddedField6) – The sensor perturbation grid. [IN]
normalize (Index, optional) – Whether or not to normalize the perturbation to 1.0 for each element. Defaults to
0
[IN]
- measurement_sensorAddSimple(self, measurement_sensor: pyarts3.arts.ArrayOfSensorObsel | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, pos: pyarts3.arts.Vector3 | None = None, los: pyarts3.arts.Vector2 | None = None, pol: pyarts3.arts.Stokvec | None = None) None
Adds a sensor with a dirac channel opening around the frequency grid.
All elements share position, line-of-sight, and frequency grid.
Author: Richard Larsson
Used by wrapper method
- Parameters:
measurement_sensor (ArrayOfSensorObsel, optional) – A list of sensor elements. See
measurement_sensor
, defaults toself.measurement_sensor
[INOUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]pos (Vector3) – A position [alt, lat, lon]. [IN]
los (Vector2) – A line of sight [zenith, azimuth]. [IN]
pol (Stokvec, optional) – The polarization whos dot-product with the spectral radiance becomes the measurement. Defaults to
1 0 0 0
[IN]
- measurement_sensorAddSimpleGaussian(self, measurement_sensor: pyarts3.arts.ArrayOfSensorObsel | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, std: pyarts3.arts.Numeric | None = None, pos: pyarts3.arts.Vector3 | None = None, los: pyarts3.arts.Vector2 | None = None, pol: pyarts3.arts.Stokvec | None = None) None
Adds a sensor with a Gaussian channel opening around the frequency grid.
All elements share position, line-of-sight, and frequency grid.
Note that this means you only get “half” a Gaussian channel for the outermost channels.
The I component’s distribution is normalized to 1 or 0 by itself, while the Q, U, and V components’ hypotenuse are normalized to 1 or 0 together.
Author: Richard Larsson
Used by wrapper method
- Parameters:
measurement_sensor (ArrayOfSensorObsel, optional) – A list of sensor elements. See
measurement_sensor
, defaults toself.measurement_sensor
[INOUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]std (Numeric) – The standard deviations of the channels. [IN]
pos (Vector3) – A position [alt, lat, lon]. [IN]
los (Vector2) – A line of sight [zenith, azimuth]. [IN]
pol (Stokvec, optional) – The polarization whos dot-product with the spectral radiance becomes the measurement. Defaults to
1 0 0 0
[IN]
- measurement_sensorAddVectorGaussian(self, measurement_sensor: pyarts3.arts.ArrayOfSensorObsel | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, std: pyarts3.arts.Vector | None = None, pos: pyarts3.arts.Vector3 | None = None, los: pyarts3.arts.Vector2 | None = None, pol: pyarts3.arts.Stokvec | None = None) None
Adds a sensor with a Gaussian channel opening around the frequency grid.
All elements share position, line-of-sight, and frequency grid.
Note that this means you only get “half” a Gaussian channel for the outermost channels.
The I component’s distribution is normalized to 1 or 0 by itself, while the Q, U, and V components’ hypotenuse are normalized to 1 or 0 together.
Author: Richard Larsson
Used by wrapper method
- Parameters:
measurement_sensor (ArrayOfSensorObsel, optional) – A list of sensor elements. See
measurement_sensor
, defaults toself.measurement_sensor
[INOUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]std (Vector) – The standard deviations of the channels. [IN]
pos (Vector3) – A position [alt, lat, lon]. [IN]
los (Vector2) – A line of sight [zenith, azimuth]. [IN]
pol (Stokvec, optional) – The polarization whos dot-product with the spectral radiance becomes the measurement. Defaults to
1 0 0 0
[IN]
- measurement_sensorFromModelState(self, measurement_sensor: pyarts3.arts.ArrayOfSensorObsel | None = None, model_state_vector: pyarts3.arts.Vector | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None) None
Update
measurement_sensor
frommodel_state_vector
.Author: Richard Larsson
Used by wrapper method
- Parameters:
measurement_sensor (ArrayOfSensorObsel, optional) – A list of sensor elements. See
measurement_sensor
, defaults toself.measurement_sensor
[INOUT]model_state_vector (Vector, optional) – A state vector of the model. See
model_state_vector
, defaults toself.model_state_vector
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]
- measurement_sensorInit(self, measurement_sensor: pyarts3.arts.ArrayOfSensorObsel | None = None) None
Initialize
measurement_sensor
to empty.Author: Richard Larsson
Used by wrapper methods
- Parameters:
measurement_sensor (ArrayOfSensorObsel, optional) – A list of sensor elements. See
measurement_sensor
, defaults toself.measurement_sensor
[OUT]
- measurement_sensorMakeExclusive(self, measurement_sensor: pyarts3.arts.ArrayOfSensorObsel | None = None, start: pyarts3.arts.Index | None = None, end: pyarts3.arts.Index | None = None) None
Make the
measurement_sensor
excluive.This means that there will no overlapping frequency grids for any observation geometries.
Author: Richard Larsson
- Parameters:
measurement_sensor (ArrayOfSensorObsel, optional) – A list of sensor elements. See
measurement_sensor
, defaults toself.measurement_sensor
[INOUT]start (Index, optional) – The start index for
measurement_sensor
elements to exclude, negative means first element. Defaults to-1
[IN]end (Index, optional) – The end index for
measurement_sensor
elements to exclude, negative means all element. Defaults to-1
[IN]
- measurement_sensorSimple(self, measurement_sensor: pyarts3.arts.ArrayOfSensorObsel | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, pos: pyarts3.arts.Vector3 | None = None, pol: pyarts3.arts.Stokvec | None = None, los: pyarts3.arts.Vector2 | None = None) None
Creates a single simple dirac-opening sensor
Wrapper calling Methods (in order):
Equivalent (mostly) Python code:
1ws = pyarts.Workspace() 2 3# ... 4 5 ws.measurement_sensorInit() 6 ws.measurement_sensorAddSimple()
Author: Richard Larsson
- Parameters:
measurement_sensor (ArrayOfSensorObsel, optional) – A list of sensor elements. See
measurement_sensor
, defaults toself.measurement_sensor
[OUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]pos (Vector3) – A position [alt, lat, lon]. [IN]
pol (Stokvec, optional) – The polarization whos dot-product with the spectral radiance becomes the measurement. Defaults to
1 0 0 0
[IN]los (Vector2) – A line of sight [zenith, azimuth]. [IN]
- measurement_sensorSimpleGaussian(self, measurement_sensor: pyarts3.arts.ArrayOfSensorObsel | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, std: pyarts3.arts.Numeric | None = None, pos: pyarts3.arts.Vector3 | None = None, pol: pyarts3.arts.Stokvec | None = None, los: pyarts3.arts.Vector2 | None = None) None
Creates a single simple Gaussian-opening sensor
Wrapper calling Methods (in order):
Equivalent (mostly) Python code:
1ws = pyarts.Workspace() 2 3# ... 4 5 ws.measurement_sensorInit() 6 ws.measurement_sensorAddSimpleGaussian()
Author: Richard Larsson
- Parameters:
measurement_sensor (ArrayOfSensorObsel, optional) – A list of sensor elements. See
measurement_sensor
, defaults toself.measurement_sensor
[OUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]std (Numeric) – The standard deviations of the channels. [IN]
pos (Vector3) – A position [alt, lat, lon]. [IN]
pol (Stokvec, optional) – The polarization whos dot-product with the spectral radiance becomes the measurement. Defaults to
1 0 0 0
[IN]los (Vector2) – A line of sight [zenith, azimuth]. [IN]
- measurement_sensorVectorGaussian(self, measurement_sensor: pyarts3.arts.ArrayOfSensorObsel | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, std: pyarts3.arts.Vector | None = None, pos: pyarts3.arts.Vector3 | None = None, pol: pyarts3.arts.Stokvec | None = None, los: pyarts3.arts.Vector2 | None = None) None
Creates a single simple Gaussian-opening sensor
Wrapper calling Methods (in order):
Equivalent (mostly) Python code:
1ws = pyarts.Workspace() 2 3# ... 4 5 ws.measurement_sensorInit() 6 ws.measurement_sensorAddVectorGaussian()
Author: Richard Larsson
- Parameters:
measurement_sensor (ArrayOfSensorObsel, optional) – A list of sensor elements. See
measurement_sensor
, defaults toself.measurement_sensor
[OUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]std (Vector) – The standard deviations of the channels. [IN]
pos (Vector3) – A position [alt, lat, lon]. [IN]
pol (Stokvec, optional) – The polarization whos dot-product with the spectral radiance becomes the measurement. Defaults to
1 0 0 0
[IN]los (Vector2) – A line of sight [zenith, azimuth]. [IN]
- measurement_vectorConditionalAddError(self, measurement_vector: pyarts3.arts.Vector | None = None, measurement_jacobian: pyarts3.arts.Matrix | None = None, measurement_vector_error: pyarts3.arts.Vector | None = None, measurement_jacobian_error: pyarts3.arts.Matrix | None = None, do_jacobian: pyarts3.arts.Index | None = None) None
Add the measurement error to the measurement. Conditionally, also to the Jacobian.
Author: Richard Larsson
- Parameters:
measurement_vector (Vector, optional) – The measurment vector for, e.g., a sensor. See
measurement_vector
, defaults toself.measurement_vector
[INOUT]measurement_jacobian (Matrix, optional) – The first order partial derivatives of the
measurement_vector
. Seemeasurement_jacobian
, defaults toself.measurement_jacobian
[INOUT]measurement_vector_error (Vector, optional) – The model measurment vector error for, e.g., a sensor. See
measurement_vector_error
, defaults toself.measurement_vector_error
[IN]measurement_jacobian_error (Matrix, optional) – The partial derivatives of the
measurement_vector_error
. Seemeasurement_jacobian_error
, defaults toself.measurement_jacobian_error
[IN]do_jacobian (Index, optional) – A boolean calculations related to the
measurement_jacobian
should be ignored. Seedo_jacobian
, defaults toself.do_jacobian
[IN]
- measurement_vectorFromOperatorPath(self, measurement_vector: pyarts3.arts.Vector | None = None, measurement_sensor: pyarts3.arts.ArrayOfSensorObsel | None = None, spectral_radiance_operator: pyarts3.arts.SpectralRadianceOperator | None = None, ray_path_observer_agenda: pyarts3.arts.Agenda | None = None) None
Sets measurement vector by looping over all sensor elements
The core calculations happens inside the
spectral_radiance_operator
.Author: Richard Larsson
- Parameters:
measurement_vector (Vector, optional) – The measurment vector for, e.g., a sensor. See
measurement_vector
, defaults toself.measurement_vector
[OUT]measurement_sensor (ArrayOfSensorObsel, optional) – A list of sensor elements. See
measurement_sensor
, defaults toself.measurement_sensor
[IN]spectral_radiance_operator (SpectralRadianceOperator, optional) – The spectral radiance operator. See
spectral_radiance_operator
, defaults toself.spectral_radiance_operator
[IN]ray_path_observer_agenda (Agenda, optional) – Get the propagation path as it is obeserved. See
ray_path_observer_agenda
, defaults toself.ray_path_observer_agenda
[IN]
- measurement_vectorFromSensor(self, measurement_vector: pyarts3.arts.Vector | None = None, measurement_jacobian: pyarts3.arts.Matrix | None = None, measurement_sensor: pyarts3.arts.ArrayOfSensorObsel | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, subsurface_field: pyarts3.arts.SubsurfaceField | None = None, spectral_radiance_transform_operator: pyarts3.arts.SpectralRadianceTransformOperator | None = None, spectral_radiance_observer_agenda: pyarts3.arts.Agenda | None = None) None
Sets measurement vector by looping over all sensor elements
The core calculations happens inside the
spectral_radiance_observer_agenda
.Note
If you want to convert from radiance units to other units as part of your sensor setup, please set the GIN. It can be constructed from strings or from
SpectralRadianceUnitType
. The latter’s documentation shows the type of transformations that are applied. By default, no transformations are applied.Author: Richard Larsson
- Parameters:
measurement_vector (Vector, optional) – The measurment vector for, e.g., a sensor. See
measurement_vector
, defaults toself.measurement_vector
[OUT]measurement_jacobian (Matrix, optional) – The first order partial derivatives of the
measurement_vector
. Seemeasurement_jacobian
, defaults toself.measurement_jacobian
[OUT]measurement_sensor (ArrayOfSensorObsel, optional) – A list of sensor elements. See
measurement_sensor
, defaults toself.measurement_sensor
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]subsurface_field (SubsurfaceField, optional) – The sub0surface field describes the sub-surface properties. See
subsurface_field
, defaults toself.subsurface_field
[IN]spectral_radiance_transform_operator (SpectralRadianceTransformOperator, optional) – The spectral radiance transform operator. See
spectral_radiance_transform_operator
, defaults toself.spectral_radiance_transform_operator
[IN]spectral_radiance_observer_agenda (Agenda, optional) – Spectral radiance as seen from the input position and environment. See
spectral_radiance_observer_agenda
, defaults toself.spectral_radiance_observer_agenda
[IN]
- measurement_vector_errorFromModelState(self, measurement_vector_error: pyarts3.arts.Vector | None = None, measurement_jacobian_error: pyarts3.arts.Matrix | None = None, measurement_sensor: pyarts3.arts.ArrayOfSensorObsel | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, model_state_vector: pyarts3.arts.Vector | None = None) None
Set the error and its Jacobian from the state of the model.
Author: Richard Larsson
- Parameters:
measurement_vector_error (Vector, optional) – The model measurment vector error for, e.g., a sensor. See
measurement_vector_error
, defaults toself.measurement_vector_error
[OUT]measurement_jacobian_error (Matrix, optional) – The partial derivatives of the
measurement_vector_error
. Seemeasurement_jacobian_error
, defaults toself.measurement_jacobian_error
[OUT]measurement_sensor (ArrayOfSensorObsel, optional) – A list of sensor elements. See
measurement_sensor
, defaults toself.measurement_sensor
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]model_state_vector (Vector, optional) – A state vector of the model. See
model_state_vector
, defaults toself.model_state_vector
[IN]
- measurement_vector_error_covariance_matrixConstant(self, measurement_vector_error_covariance_matrix: pyarts3.arts.CovarianceMatrix | None = None, measurement_sensor: pyarts3.arts.ArrayOfSensorObsel | None = None, value: pyarts3.arts.Numeric | None = None) None
Sets a constant measurement vector error covariance matrix.
Author: Richard Larsson
- Parameters:
measurement_vector_error_covariance_matrix (CovarianceMatrix, optional) – Covariance matrix for observation uncertainties. See
measurement_vector_error_covariance_matrix
, defaults toself.measurement_vector_error_covariance_matrix
[OUT]measurement_sensor (ArrayOfSensorObsel, optional) – A list of sensor elements. See
measurement_sensor
, defaults toself.measurement_sensor
[IN]value (Numeric) – The value of the covariance matrix diagonal. [IN]
- measurement_vector_error_covariance_matrix_observation_systemCalc(self, measurement_vector_error_covariance_matrix_observation_system: pyarts3.arts.Matrix | None = None, measurement_gain_matrix: pyarts3.arts.Matrix | None = None, measurement_vector_error_covariance_matrix: pyarts3.arts.CovarianceMatrix | None = None) None
Calculates the covariance matrix describing the error due to uncertainties in the observation system.
The uncertainties of the observation system are described by
measurement_vector_error_covariance_matrix
, which must be set by the user to include the relevant contributions from the measurement and the forward model.Prerequisite for the calculation of
measurement_vector_error_covariance_matrix_observation_system
is a successfulOEM()
computation where also the gain matrix has been computed.Author: Simon Pfreundschuh
- Parameters:
measurement_vector_error_covariance_matrix_observation_system (Matrix) – Covariance matrix describing the retrieval error due to uncertainties of the observation system. Defaults to create and/or use
self.measurement_vector_error_covariance_matrix_observation_system
:Matrix
. [OUT]measurement_gain_matrix (Matrix, optional) – Contribution function (or gain) matrix. See
measurement_gain_matrix
, defaults toself.measurement_gain_matrix
[IN]measurement_vector_error_covariance_matrix (CovarianceMatrix, optional) – Covariance matrix for observation uncertainties. See
measurement_vector_error_covariance_matrix
, defaults toself.measurement_vector_error_covariance_matrix
[IN]
- measurement_vector_fittedFromMeasurement(self, measurement_vector_fitted: pyarts3.arts.Vector | None = None, measurement_vector: pyarts3.arts.Vector | None = None) None
Sets the fitted measurement vector to the current measurement vector.
Author: Richard Larsson
- Parameters:
measurement_vector_fitted (Vector, optional) – As
measurement_vector
, but fitted to the model. Seemeasurement_vector_fitted
, defaults toself.measurement_vector_fitted
[OUT]measurement_vector (Vector, optional) – The measurment vector for, e.g., a sensor. See
measurement_vector
, defaults toself.measurement_vector
[IN]
- model_state_covariance_matrixAddSpeciesVMR(self, model_state_covariance_matrix: pyarts3.arts.CovarianceMatrix | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, species: pyarts3.arts.SpeciesEnum | None = None, matrix: pyarts3.arts.BlockMatrix | None = None, inverse: pyarts3.arts.BlockMatrix | None = None) None
Set a species model state covariance matrix element.
Author: Richard Larsson
- Parameters:
model_state_covariance_matrix (CovarianceMatrix, optional) – Covariance matrix of a priori distribution. See
model_state_covariance_matrix
, defaults toself.model_state_covariance_matrix
[INOUT]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]species (SpeciesEnum) – The species to set the covariance matrix for. [IN]
matrix (BlockMatrix) – The covariance diagoinal block matrix. [IN]
inverse (BlockMatrix, optional) – The inverse covariance diagoinal block matrix. Defaults to
pyarts.arts.BlockMatrix()
[IN]
- model_state_covariance_matrixInit(self, model_state_covariance_matrix: pyarts3.arts.CovarianceMatrix | None = None) None
Initialises the model state covariance matrix to the identity matrix.
Author: Richard Larsson
- Parameters:
model_state_covariance_matrix (CovarianceMatrix, optional) – Covariance matrix of a priori distribution. See
model_state_covariance_matrix
, defaults toself.model_state_covariance_matrix
[OUT]
- model_state_covariance_matrix_smoothing_errorCalc(self, model_state_covariance_matrix_smoothing_error: pyarts3.arts.Matrix | None = None, measurement_averaging_kernel: pyarts3.arts.Matrix | None = None, model_state_covariance_matrix: pyarts3.arts.CovarianceMatrix | None = None) None
Calculates the covariance matrix describing the error due to smoothing.
The calculation of
model_state_covariance_matrix_smoothing_error
also requires the averaging kernel matrixmeasurement_averaging_kernel
to be computed after a successful OEM calculation.Author: Simon Pfreundschuh
- Parameters:
model_state_covariance_matrix_smoothing_error (Matrix) – Covariance matrix describing the retrieval error due to smoothing. Defaults to create and/or use
self.model_state_covariance_matrix_smoothing_error
:Matrix
. [OUT]measurement_averaging_kernel (Matrix, optional) – Averaging kernel matrix. See
measurement_averaging_kernel
, defaults toself.measurement_averaging_kernel
[IN]model_state_covariance_matrix (CovarianceMatrix, optional) – Covariance matrix of a priori distribution. See
model_state_covariance_matrix
, defaults toself.model_state_covariance_matrix
[IN]
- model_state_vectorFromAtmosphere(self, model_state_vector: pyarts3.arts.Vector | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None) None
Sets
model_state_vector
’s atmospheric part.Author: Richard Larsson
Used by wrapper method
- Parameters:
model_state_vector (Vector, optional) – A state vector of the model. See
model_state_vector
, defaults toself.model_state_vector
[INOUT]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]
- model_state_vectorFromBands(self, model_state_vector: pyarts3.arts.Vector | None = None, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None) None
Sets
model_state_vector
’s absorption line part.Author: Richard Larsson
Used by wrapper method
- Parameters:
model_state_vector (Vector, optional) – A state vector of the model. See
model_state_vector
, defaults toself.model_state_vector
[INOUT]absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]
- model_state_vectorFromData(self, model_state_vector: pyarts3.arts.Vector | None = None, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, measurement_sensor: pyarts3.arts.ArrayOfSensorObsel | None = None, subsurface_field: pyarts3.arts.SubsurfaceField | None = None, surface_field: pyarts3.arts.SurfaceField | None = None) None
Get
model_state_vector
from available dataWrapper calling Methods (in order):
Equivalent (mostly) Python code:
1ws = pyarts.Workspace() 2 3# ... 4 5 ws.model_state_vectorInit() 6 ws.model_state_vectorFromAtmosphere() 7 ws.model_state_vectorFromSurface() 8 ws.model_state_vectorFromSubsurface() 9 ws.model_state_vectorFromBands() 10 ws.model_state_vectorFromSensor()
Author: Richard Larsson
Used by wrapper method
- Parameters:
model_state_vector (Vector, optional) – A state vector of the model. See
model_state_vector
, defaults toself.model_state_vector
[OUT]absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[IN]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]measurement_sensor (ArrayOfSensorObsel, optional) – A list of sensor elements. See
measurement_sensor
, defaults toself.measurement_sensor
[IN]subsurface_field (SubsurfaceField, optional) – The sub0surface field describes the sub-surface properties. See
subsurface_field
, defaults toself.subsurface_field
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]
- model_state_vectorFromSensor(self, model_state_vector: pyarts3.arts.Vector | None = None, measurement_sensor: pyarts3.arts.ArrayOfSensorObsel | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None) None
Sets
model_state_vector
’s sensor part.Author: Richard Larsson
Used by wrapper method
- Parameters:
model_state_vector (Vector, optional) – A state vector of the model. See
model_state_vector
, defaults toself.model_state_vector
[INOUT]measurement_sensor (ArrayOfSensorObsel, optional) – A list of sensor elements. See
measurement_sensor
, defaults toself.measurement_sensor
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]
- model_state_vectorFromSubsurface(self, model_state_vector: pyarts3.arts.Vector | None = None, subsurface_field: pyarts3.arts.SubsurfaceField | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None) None
Sets
model_state_vector
’s subsurface part.Author: Richard Larsson
Used by wrapper method
- Parameters:
model_state_vector (Vector, optional) – A state vector of the model. See
model_state_vector
, defaults toself.model_state_vector
[INOUT]subsurface_field (SubsurfaceField, optional) – The sub0surface field describes the sub-surface properties. See
subsurface_field
, defaults toself.subsurface_field
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]
- model_state_vectorFromSurface(self, model_state_vector: pyarts3.arts.Vector | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None) None
Sets
model_state_vector
’s surface part.Author: Richard Larsson
Used by wrapper method
- Parameters:
model_state_vector (Vector, optional) – A state vector of the model. See
model_state_vector
, defaults toself.model_state_vector
[INOUT]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]
- model_state_vectorInit(self, model_state_vector: pyarts3.arts.Vector | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None) None
Sets
model_state_vector
to the sizejacobian_targets
demand.Author: Richard Larsson
Used by wrapper method
- Parameters:
model_state_vector (Vector, optional) – A state vector of the model. See
model_state_vector
, defaults toself.model_state_vector
[OUT]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]
- model_state_vector_aprioriFromData(self, model_state_vector_apriori: pyarts3.arts.Vector | None = None, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, measurement_sensor: pyarts3.arts.ArrayOfSensorObsel | None = None, subsurface_field: pyarts3.arts.SubsurfaceField | None = None, surface_field: pyarts3.arts.SurfaceField | None = None) None
Get
model_state_vector_apriori
from available dataWrapper calling Methods (in order):
Equivalent (mostly) Python code:
1ws = pyarts.Workspace() 2 3# ... 4 5 ws.model_state_vectorFromData() 6 ws.model_state_vector_aprioriFromState()
Author: Richard Larsson
- Parameters:
model_state_vector_apriori (Vector, optional) – An apriori state vector of the model. See
model_state_vector_apriori
, defaults toself.model_state_vector_apriori
[OUT]absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[IN]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]measurement_sensor (ArrayOfSensorObsel, optional) – A list of sensor elements. See
measurement_sensor
, defaults toself.measurement_sensor
[IN]subsurface_field (SubsurfaceField, optional) – The sub0surface field describes the sub-surface properties. See
subsurface_field
, defaults toself.subsurface_field
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]
- model_state_vector_aprioriFromState(self, model_state_vector_apriori: pyarts3.arts.Vector | None = None, model_state_vector: pyarts3.arts.Vector | None = None) None
Sets the a priori state of the model state vector to the current state.
Author: Richard Larsson
Used by wrapper method
- Parameters:
model_state_vector_apriori (Vector, optional) – An apriori state vector of the model. See
model_state_vector_apriori
, defaults toself.model_state_vector_apriori
[OUT]model_state_vector (Vector, optional) – A state vector of the model. See
model_state_vector
, defaults toself.model_state_vector
[IN]
- nlte_line_flux_profileIntegrate(self, nlte_line_flux_profile: pyarts3.arts.QuantumIdentifierVectorMap | None = None, spectral_flux_profile: pyarts3.arts.Matrix | None = None, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, atmospheric_profile: pyarts3.arts.ArrayOfAtmPoint | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None) None
Integrate the spectral flux profile to get the line non-LTE flux
Author: Richard Larsson
- Parameters:
nlte_line_flux_profile (QuantumIdentifierVectorMap, optional) – A per-line flux profile. See
nlte_line_flux_profile
, defaults toself.nlte_line_flux_profile
[OUT]spectral_flux_profile (Matrix, optional) – An altitude profile of spectral flux. See
spectral_flux_profile
, defaults toself.spectral_flux_profile
[IN]absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[IN]atmospheric_profile (ArrayOfAtmPoint, optional) – An atmospheric profile in ARTS. See
atmospheric_profile
, defaults toself.atmospheric_profile
[IN]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]
- propagation_matrixAddCIA(self, propagation_matrix: pyarts3.arts.PropmatVector | None = None, propagation_matrix_jacobian: pyarts3.arts.PropmatMatrix | None = None, select_species: pyarts3.arts.SpeciesEnum | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, atmospheric_point: pyarts3.arts.AtmPoint | None = None, absorption_cia_data: pyarts3.arts.ArrayOfCIARecord | None = None, T_extrapolfac: pyarts3.arts.Numeric | None = None, ignore_errors: pyarts3.arts.Index | None = None) None
Add absorption coefficients for HITRAN collision induced absorption (CIA).
This interpolates the cross sections from
absorption_cia_data
. If too few temperature grid-points are available, its polynomial order of interpolation decreases to the maximum allowed. Otherwise, both frequency and temperature are interpolated using third order polynomials.Given that the interpolation is \(\vec{x}_{ij} = f\left(T, \vec{f}\right)\), where the
atmospheric_point
temperature is \(T\) and \(f\) is thefrequency_grid
, \(i\) is an index into theabsorption_cia_data
and \(j\) is an index into the underlyingCIARecord
data structure, the absorption coefficient from CIA is given by\[vec{\alpha}_\mathbf{CIA} = \sum_i n_{i,0} n_{i,1} \sum_j vec{x}_{ij}\]where \(n_{i,0}\) and \(n_{i,1}\) are number densities of the two species involved in the CIA.
The input
T_extrapolfac
sets a limit on the interpolation along the temperature grid of the data. If the temperature grid is \([T_0, T_1, \cdots, T_{n-1}, T_n]\), then this method throws an error if\[T < T_0 - \Delta T_e \left(T_1 - T_0\right)\]or
\[T > T_n + \Delta T_e \left(T_n - T_{n-1}\right)\]where \(\Delta T_e\) is the extrapolation factor given by
T_extrapolfac
. If this happens to you and you believe you can use the computations anyways, setT_extrapolfac
to a very large or infinite value.The frequnecy grid interpolation is limited to within the range of the available data. Any point in
frequency_grid
outside this range will simply be ignored. The frequency interpolation can thus not fail.Note
ignore_errors
can be set to 1 to suppress runtime errors, but any error will result in NaN values in the output. This is useful if you want to debug your results, but not if you want to use them.Author: Stefan Buehler, Oliver Lemke
- Parameters:
propagation_matrix (PropmatVector, optional) – This contains the fully polarized propagation matrix for the current path point. See
propagation_matrix
, defaults toself.propagation_matrix
[INOUT]propagation_matrix_jacobian (PropmatMatrix, optional) – Partial derivative of the
propagation_matrix
with regards tojacobian_targets
. Seepropagation_matrix_jacobian
, defaults toself.propagation_matrix_jacobian
[INOUT]select_species (SpeciesEnum, optional) – Species selection. See
select_species
, defaults toself.select_species
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]atmospheric_point (AtmPoint, optional) – An atmospheric point in ARTS. See
atmospheric_point
, defaults toself.atmospheric_point
[IN]absorption_cia_data (ArrayOfCIARecord, optional) – HITRAN Collision-Induced Absorption (CIA) Data. See
absorption_cia_data
, defaults toself.absorption_cia_data
[IN]T_extrapolfac (Numeric, optional) – Temperature extrapolation factor (relative to grid spacing). \(\Delta T_e\) in text above. Defaults to
0.5
[IN]ignore_errors (Index, optional) – Set to 1 to suppress runtime errors (and return NAN values instead). Defaults to
0
[IN]
- propagation_matrixAddFaraday(self, propagation_matrix: pyarts3.arts.PropmatVector | None = None, propagation_matrix_jacobian: pyarts3.arts.PropmatMatrix | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, select_species: pyarts3.arts.SpeciesEnum | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, atmospheric_point: pyarts3.arts.AtmPoint | None = None, ray_path_point: pyarts3.arts.PropagationPathPoint | None = None) None
Calculates absorption matrix describing Faraday rotation.
Faraday rotation is a change of polarization state of an electromagnetic wave propagating through charged matter by interaction with a magnetic field. Hence, this method requires that the magnetic field is non-zero and that the electron density is held by
atmospheric_point
(SpeciesEnum
:free_electrons
).Faraday rotation affects Stokes parameters 2 and 3 (but not intensity!).
Like all
propagation_matrix
-modifying methods, the method is additive, i.e., does not overwrite the propagation matrixpropagation_matrix
, but adds further contributions.Author: Patrick Eriksson
- Parameters:
propagation_matrix (PropmatVector, optional) – This contains the fully polarized propagation matrix for the current path point. See
propagation_matrix
, defaults toself.propagation_matrix
[INOUT]propagation_matrix_jacobian (PropmatMatrix, optional) – Partial derivative of the
propagation_matrix
with regards tojacobian_targets
. Seepropagation_matrix_jacobian
, defaults toself.propagation_matrix_jacobian
[INOUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]select_species (SpeciesEnum, optional) – Species selection. See
select_species
, defaults toself.select_species
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]atmospheric_point (AtmPoint, optional) – An atmospheric point in ARTS. See
atmospheric_point
, defaults toself.atmospheric_point
[IN]ray_path_point (PropagationPathPoint, optional) – A single path point. See
ray_path_point
, defaults toself.ray_path_point
[IN]
- propagation_matrixAddLines(self, propagation_matrix: pyarts3.arts.PropmatVector | None = None, propagation_matrix_source_vector_nonlte: pyarts3.arts.StokvecVector | None = None, propagation_matrix_jacobian: pyarts3.arts.PropmatMatrix | None = None, propagation_matrix_source_vector_nonlte_jacobian: pyarts3.arts.StokvecMatrix | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, select_species: pyarts3.arts.SpeciesEnum | None = None, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, ecs_data: pyarts3.arts.LinemixingEcsData | None = None, atmospheric_point: pyarts3.arts.AtmPoint | None = None, ray_path_point: pyarts3.arts.PropagationPathPoint | None = None, no_negative_absorption: pyarts3.arts.Index | None = None) None
Line-by-line calculations.
Author: Richard Larsson
- Parameters:
propagation_matrix (PropmatVector, optional) – This contains the fully polarized propagation matrix for the current path point. See
propagation_matrix
, defaults toself.propagation_matrix
[INOUT]propagation_matrix_source_vector_nonlte (StokvecVector, optional) – The part of the source vector that is due to non-LTE. See
propagation_matrix_source_vector_nonlte
, defaults toself.propagation_matrix_source_vector_nonlte
[INOUT]propagation_matrix_jacobian (PropmatMatrix, optional) – Partial derivative of the
propagation_matrix
with regards tojacobian_targets
. Seepropagation_matrix_jacobian
, defaults toself.propagation_matrix_jacobian
[INOUT]propagation_matrix_source_vector_nonlte_jacobian (StokvecMatrix, optional) – Partial derivative of the
propagation_matrix_source_vector_nonlte
with regards tojacobian_targets
. Seepropagation_matrix_source_vector_nonlte_jacobian
, defaults toself.propagation_matrix_source_vector_nonlte_jacobian
[INOUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]select_species (SpeciesEnum, optional) – Species selection. See
select_species
, defaults toself.select_species
[IN]absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[IN]ecs_data (LinemixingEcsData, optional) – Error corrected sudden data. See
ecs_data
, defaults toself.ecs_data
[IN]atmospheric_point (AtmPoint, optional) – An atmospheric point in ARTS. See
atmospheric_point
, defaults toself.atmospheric_point
[IN]ray_path_point (PropagationPathPoint, optional) – A single path point. See
ray_path_point
, defaults toself.ray_path_point
[IN]no_negative_absorption (Index, optional) – Turn off to allow individual absorbers to have negative absorption. Defaults to
1
[IN]
- propagation_matrixAddLookup(self, propagation_matrix: pyarts3.arts.PropmatVector | None = None, propagation_matrix_jacobian: pyarts3.arts.PropmatMatrix | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, select_species: pyarts3.arts.SpeciesEnum | None = None, absorption_lookup_table: pyarts3.arts.AbsorptionLookupTables | None = None, atmospheric_point: pyarts3.arts.AtmPoint | None = None, no_negative_absorption: pyarts3.arts.Index | None = None, p_interp_order: pyarts3.arts.Index | None = None, t_interp_order: pyarts3.arts.Index | None = None, water_interp_order: pyarts3.arts.Index | None = None, f_interp_order: pyarts3.arts.Index | None = None, extpolfac: pyarts3.arts.Numeric | None = None) None
Lookup calculations.
Author: Richard Larsson
- Parameters:
propagation_matrix (PropmatVector, optional) – This contains the fully polarized propagation matrix for the current path point. See
propagation_matrix
, defaults toself.propagation_matrix
[INOUT]propagation_matrix_jacobian (PropmatMatrix, optional) – Partial derivative of the
propagation_matrix
with regards tojacobian_targets
. Seepropagation_matrix_jacobian
, defaults toself.propagation_matrix_jacobian
[INOUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]select_species (SpeciesEnum, optional) – Species selection. See
select_species
, defaults toself.select_species
[IN]absorption_lookup_table (AbsorptionLookupTables, optional) – Absorption lookup table for scalar gas absorption coefficients. See
absorption_lookup_table
, defaults toself.absorption_lookup_table
[IN]atmospheric_point (AtmPoint, optional) – An atmospheric point in ARTS. See
atmospheric_point
, defaults toself.atmospheric_point
[IN]no_negative_absorption (Index, optional) – Turn off to allow individual absorbers to have negative absorption. Defaults to
1
[IN]p_interp_order (Index, optional) – Interpolation order for pressure. Defaults to
7
[IN]t_interp_order (Index, optional) – Interpolation order for temperature. Defaults to
7
[IN]water_interp_order (Index, optional) – Interpolation order for water vapor. Defaults to
7
[IN]f_interp_order (Index, optional) – Interpolation order for frequency. Defaults to
7
[IN]extpolfac (Numeric, optional) – Extrapolation factor. Defaults to
0.5
[IN]
- propagation_matrixAddPredefined(self, propagation_matrix: pyarts3.arts.PropmatVector | None = None, propagation_matrix_jacobian: pyarts3.arts.PropmatMatrix | None = None, absorption_predefined_model_data: pyarts3.arts.PredefinedModelData | None = None, select_species: pyarts3.arts.SpeciesEnum | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, atmospheric_point: pyarts3.arts.AtmPoint | None = None) None
Adds all of the predefined models in
absorption_species
to the propagation_matrixOnly supports temperature and wind speed derivatives
Available models:
O2-MPM2020: 60 GHz and 118 GHz lines only (no continua, no higher Hz line centers)
Dmitriy S. Makarov, Mikhail Yu. Tretyakov, Philip W. Rosenkranz, JQSRT 243, 2020, Revision of the 60-GHz atmospheric oxygen absorption band models for practical use, https://doi.org/10.1016/j.jqsrt.2019.106798
H2O-ForeignContCKDMT350: Foreign continua. Expects H2O line center cutoff at 25 cm-1
CKD_MTv3.50 H2O foreign continuum from the FORTRAN77 code written by Atmospheric and Environmental Research Inc. (AER), Radiation and Climate Group 131 Hartwell Avenue Lexington, MA 02421, USA http://www.rtweb.aer.com/continuum_frame.html
H2O-SelfContCKDMT350: Self continua. Expects H2O line center cutoff at 25 cm-1
CKD_MTv3.50 H2O self continuum from the FORTRAN77 code written by Atmospheric and Environmental Research Inc. (AER), Radiation and Climate Group 131 Hartwell Avenue Lexington, MA 02421, USA http://www.rtweb.aer.com/continuum_frame.html
H2O-ForeignContCKDMT320: Foreign continua. Expects H2O line center cutoff at 25 cm-1
CKD_MTv3.20 H2O foreign continuum from the FORTRAN77 code written by Atmospheric and Environmental Research Inc. (AER), Radiation and Climate Group 131 Hartwell Avenue Lexington, MA 02421, USA http://www.rtweb.aer.com/continuum_frame.html
H2O-SelfContCKDMT320: Self continua. Expects H2O line center cutoff at 25 cm-1
CKD_MTv3.20 H2O self continuum from the FORTRAN77 code written by Atmospheric and Environmental Research Inc. (AER), Radiation and Climate Group 131 Hartwell Avenue Lexington, MA 02421, USA http://www.rtweb.aer.com/continuum_frame.html
H2O-SelfContCKDMT400: Self continuum for water. General reference: Mlawer et al. (2012), doi:10.1098/rsta.2011.0295
Our code is reimplemented based on original Fortran90 code that is/was/will-be-made available via hitran.org
Note that this model comes with the copyright statement [1].
Note also that this model requires
absorption_predefined_model_data
to contain relevant data set either usingabsorption_predefined_model_dataAddWaterMTCKD400()
or via some file reading routine.H2O-ForeignContCKDMT400: Foreign continuum for water. General reference: Mlawer et al. (2012), doi:10.1098/rsta.2011.0295
Our code is reimplemented based on original Fortran90 code that is/was/will-be-made available via hitran.org
Note that this model comes with the copyright statement [1].
Note also that this model requires
absorption_predefined_model_data
to contain relevant data set either usingabsorption_predefined_model_dataAddWaterMTCKD400()
or via some file reading routine.H2O-ForeignContStandardType: Water microwave continua
P. W. Rosenkranz., Radio Science, 33(4), 919, 1998 and Radio Science, Vol. 34(4), 1025, 1999.
H2O-SelfContStandardType: Water microwave continua
P. W. Rosenkranz., Radio Science, 33(4), 919, 1998 and Radio Science, Vol. 34(4), 1025, 1999.
H2O-MPM89: Microwave water absorption model
Liebe, Int. J. Infrared and Millimeter Waves, 10(6), 1989, 631.
H2O-PWR98: Microwave water absorption model
P. W. Rosenkranz., Radio Science, 33(4), 919, 1998 and Radio Science, Vol. 34(4), 1025, 1999.
H2O-PWR2021: Microwave water absorption model developed by P.W. Rosenkranz.
Our code is reimplemented based on the Fortran code available at http://cetemps.aquila.infn.it/mwrnet/lblmrt_ns.html
H2O-PWR2022: Microwave water absorption model developed by P.W. Rosenkranz.
Our code is reimplemented based on the Fortran code available at http://cetemps.aquila.infn.it/mwrnet/lblmrt_ns.html
CO2-CKDMT252: MT CKD absorption for CO2
This absorption model is taken from the FORTRAN77 code of CKD_MT version 2.50 written by<br> Atmospheric and Environmental Research Inc. (AER),<br> Radiation and Climate Group<br> 131 Hartwell Avenue<br> Lexington, MA 02421, USA<br> http://www.rtweb.aer.com/continuum_frame.html
O2-CIAfunCKDMT100: CIA for oxygen from MT CKD
F. Thibault, V. Menoux, R. Le Doucen, L. Rosenman, J.-M. Hartmann, Ch. Boulet,<br> Infrared collision-induced absorption by O2 near 6.4 microns for atmospheric applications: measurements and emprirical modeling,<br> Appl. Optics, 35, 5911-5917, (1996).
This absorption model is taken from the FORTRAN77 code of CKD_MT version 1.00 written by<br> Atmospheric and Environmental Research Inc. (AER),<br> Radiation and Climate Group<br> 131 Hartwell Avenue<br> Lexington, MA 02421, USA<br> http://www.rtweb.aer.com/continuum_frame.html
O2-MPM89: Oxygen microwave absorption model
Reference: H. J. Liebe and G. A. Hufford and M. G. Cotton,<br> <i>Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz</i>,<br> AGARD 52nd Specialists Meeting of the Electromagnetic Wave Propagation Panel,<br> Palma de Mallorca, Spain, 1993, May 17-21
O2-PWR98: Oxygen microwave absorption model
P.W. Rosenkranz, CHAP. 2 and appendix, in ATMOSPHERIC REMOTE SENSING BY MICROWAVE RADIOMETRY (M.A. Janssen, ed., 1993). H.J. Liebe et al, JQSRT V.48, PP.629-643 (1992). M.J. Schwartz, Ph.D. thesis, M.I.T. (1997). SUBMILLIMETER LINE INTENSITIES FROM HITRAN96.
O2-PWR2021: Oxygen microwave absorption model developed by P.W. Rosenkranz.
Our code is reimplemented based on the Fortran code available at http://cetemps.aquila.infn.it/mwrnet/lblmrt_ns.html
O2-PWR2022: Oxygen microwave absorption model developed by P.W. Rosenkranz.
Our code is reimplemented based on the Fortran code available at http://cetemps.aquila.infn.it/mwrnet/lblmrt_ns.html
O2-SelfContStandardType: Microwave continua term
Reference: P. W. Rosenkranz, Chapter 2, in M. A. Janssen, <br> <I>Atmospheric Remote Sensing by Microwave Radiometry</i>,<br> John Wiley & Sons, Inc., 1993.<br> <br> Reference: H. J. Liebe and G. A. Hufford and M. G. Cotton,<br> <i>Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz</i>,<br> AGARD 52nd Specialists Meeting of the Electromagnetic Wave Propagation Panel,<br> Palma de Mallorca, Spain, 1993, May 17-21
O2-TRE05: Oxygen microwave absorption model
References: H. J. Liebe and G. A. Hufford and M. G. Cotton,<br> <i>Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz</i>,<br> AGARD 52nd Specialists Meeting of the Electromagnetic Wave Propagation Panel,<br> Palma de Mallorca, Spain, 1993, May 17-21
M.Yu. Tretyakov, M.A. Koshelev, V.V. Dorovskikh, D.S. Makarov, P.W. Rosenkranz; 60-GHz oxygen band: precise broadening and central frequencies of fine-structure lines, absolute absorption profile at atmospheric pressure, and revision of mixing coefficients doi:10.1016/j.jms.2004.11.011
O2-v0v0CKDMT100: MT CKD
CKD_MT 1.00 implementation of oxygen collision induced fundamental model of O2 continuum formulated by Mate et al. over the spectral region 7550-8486 cm-1: B. Mate, C. Lugez, G.T. Fraser, W.J. Lafferty, “Absolute Intensities for the O2 1.27 micron continuum absorption”, J. Geophys. Res., 104, 30,585-30,590, 1999.
Also, refer to the paper “Observed Atmospheric Collision Induced Absorption in Near Infrared Oxygen Bands”, Mlawer, Clough, Brown, Stephen, Landry, Goldman, & Murcray, Journal of Geophysical Research (1997).
This absorption model is taken from the FORTRAN77 code of CKD_MT version 1.00 written by<br> Atmospheric and Environmental Research Inc. (AER),<br> Radiation and Climate Group<br> 131 Hartwell Avenue<br> Lexington, MA 02421, USA<br> http://www.rtweb.aer.com/continuum_frame.html<br> <br>
O2-v1v0CKDMT100: MT CKD
Mlawer, Clough, Brown, Stephen, Landry, Goldman, Murcray,<br> Observed Atmospheric Collision Induced Absorption in Near Infrared Oxygen Bands,<br> J. Geophys. Res., 103, D4, 3859-3863, 1998.
This absorption model is taken from the FORTRAN77 code of CKD_MT version 1.00 written by<br> Atmospheric and Environmental Research Inc. (AER),<br> Radiation and Climate Group<br> 131 Hartwell Avenue<br> Lexington, MA 02421, USA<br> http://www.rtweb.aer.com/continuum_frame.html<br>
O2-visCKDMT252: MT CKD
O2 continuum formulated by Greenblatt et al. over the spectral region 8797-29870 cm-1: “Absorption Coefficients of Oxygen Between 330 and 1140 nm, G.D. Green blatt, J.J. Orlando, J.B. Burkholder, and A.R. Ravishabkara, J. Geophys. Res., 95, 18577-18582, 1990.
This absorption model is taken from the FORTRAN77 code of CKD_MT version 2.50 written by<br> Atmospheric and Environmental Research Inc. (AER),<br> Radiation and Climate Group<br> 131 Hartwell Avenue<br> Lexington, MA 02421, USA<br> http://www.rtweb.aer.com/continuum_frame.html<br>
N2-CIAfunCKDMT252: MT CKD
Lafferty, W.J., A.M. Solodov,A. Weber, W.B. Olson and J._M. Hartmann,<br> Infrared collision-induced absorption by N2 near 4.3 microns for atmospheric applications: Measurements and emprirical modeling, <br> Appl. Optics, 35, 5911-5917, (1996)
This absorption model is taken from the FORTRAN77 code of CKD_MT version 1.00 written by<br> Atmospheric and Environmental Research Inc. (AER),<br> Radiation and Climate Group<br> 131 Hartwell Avenue<br> Lexington, MA 02421, USA<br> http://www.rtweb.aer.com/continuum_frame.html
N2-CIArotCKDMT252: MT CKD
Borysow, A, and L. Frommhold,<br> Collision-induced rototranslational absorption spectra of N2-N2 pairs for temperatures from 50 to 300 K,<br> The Astrophysical Journal, 311, 1043-1057, 1986.
This absorption model is taken from the FORTRAN77 code of CKD_MT version 1.00 written by<br> Atmospheric and Environmental Research Inc. (AER),<br> Radiation and Climate Group<br> 131 Hartwell Avenue<br> Lexington, MA 02421, USA<br> http://www.rtweb.aer.com/continuum_frame.html
N2-SelfContStandardType: Microwave nitrogen absorption continua
Reference: P. W. Rosenkranz, Chapter 2, in M. A. Janssen, <br> <I>Atmospheric Remote Sensing by Microwave Radiometry</i>,<br> John Wiley & Sons, Inc., 1993.
N2-SelfContMPM93: Microwave nitrogen absorption continua from MPM93 model
Reference: H. J. Liebe and G. A. Hufford and M. G. Cotton,<br> <i>Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz</i>,<br> AGARD 52nd Specialists Meeting of the Electromagnetic Wave Propagation Panel,<br> Palma de Mallorca, Spain, 1993, May 17-21
N2-SelfContPWR2021: Microwave nitrogen absorption continua developed by P.W. Rosenkranz.
Note that this also includes O2-N2 and O2-O2 collision-induced absorption and is only applicable to Earth
Our code is reimplemented based on the Fortran code available at http://cetemps.aquila.infn.it/mwrnet/lblmrt_ns.html
liquidcloud-ELL07: Water droplet absorption
W. J. Ellison, <br> <i>Permittivity of Pure Water, at Standard Atmospheric Pressure, over the Frequency Range 0-25 THz and Temperature Range 0-100C</i>,<br> J. Phys. Chem. Ref. Data, Vol. 36, No. 1, 2007
Author: Richard Larsson
- Parameters:
propagation_matrix (PropmatVector, optional) – This contains the fully polarized propagation matrix for the current path point. See
propagation_matrix
, defaults toself.propagation_matrix
[INOUT]propagation_matrix_jacobian (PropmatMatrix, optional) – Partial derivative of the
propagation_matrix
with regards tojacobian_targets
. Seepropagation_matrix_jacobian
, defaults toself.propagation_matrix_jacobian
[INOUT]absorption_predefined_model_data (PredefinedModelData, optional) – This contains predefined model data. See
absorption_predefined_model_data
, defaults toself.absorption_predefined_model_data
[IN]select_species (SpeciesEnum, optional) – Species selection. See
select_species
, defaults toself.select_species
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]atmospheric_point (AtmPoint, optional) – An atmospheric point in ARTS. See
atmospheric_point
, defaults toself.atmospheric_point
[IN]
- propagation_matrixAddXsecFit(self, propagation_matrix: pyarts3.arts.PropmatVector | None = None, propagation_matrix_jacobian: pyarts3.arts.PropmatMatrix | None = None, select_species: pyarts3.arts.SpeciesEnum | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, atmospheric_point: pyarts3.arts.AtmPoint | None = None, absorption_xsec_fit_data: pyarts3.arts.ArrayOfXsecRecord | None = None, force_p: pyarts3.arts.Numeric | None = None, force_t: pyarts3.arts.Numeric | None = None) None
Calculate absorption cross sections per tag group for HITRAN xsec species.
This broadens the cross section data from
absorption_xsec_fit_data
and interpolates it onto the currentfrequency_grid
.Model data needs to be read in with
absorption_xsec_fit_dataReadSpeciesSplitCatalog()
before calling this method.Author: Oliver Lemke
- Parameters:
propagation_matrix (PropmatVector, optional) – This contains the fully polarized propagation matrix for the current path point. See
propagation_matrix
, defaults toself.propagation_matrix
[INOUT]propagation_matrix_jacobian (PropmatMatrix, optional) – Partial derivative of the
propagation_matrix
with regards tojacobian_targets
. Seepropagation_matrix_jacobian
, defaults toself.propagation_matrix_jacobian
[INOUT]select_species (SpeciesEnum, optional) – Species selection. See
select_species
, defaults toself.select_species
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]atmospheric_point (AtmPoint, optional) – An atmospheric point in ARTS. See
atmospheric_point
, defaults toself.atmospheric_point
[IN]absorption_xsec_fit_data (ArrayOfXsecRecord, optional) – Fitting model coefficients for cross section species. See
absorption_xsec_fit_data
, defaults toself.absorption_xsec_fit_data
[IN]force_p (Numeric, optional) – Positive value forces constant pressure [Pa]. Defaults to
-1
[IN]force_t (Numeric, optional) – Positive value forces constant temperature [K]. Defaults to
-1
[IN]
- propagation_matrixInit(self, propagation_matrix: pyarts3.arts.PropmatVector | None = None, propagation_matrix_source_vector_nonlte: pyarts3.arts.StokvecVector | None = None, propagation_matrix_jacobian: pyarts3.arts.PropmatMatrix | None = None, propagation_matrix_source_vector_nonlte_jacobian: pyarts3.arts.StokvecMatrix | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None) None
Initialize
propagation_matrix
,propagation_matrix_source_vector_nonlte
, and their derivatives to zeroes.This method must be used inside
propagation_matrix_agenda
and then be called first.Authors: Oliver Lemke, Richard Larsson
- Parameters:
propagation_matrix (PropmatVector, optional) – This contains the fully polarized propagation matrix for the current path point. See
propagation_matrix
, defaults toself.propagation_matrix
[OUT]propagation_matrix_source_vector_nonlte (StokvecVector, optional) – The part of the source vector that is due to non-LTE. See
propagation_matrix_source_vector_nonlte
, defaults toself.propagation_matrix_source_vector_nonlte
[OUT]propagation_matrix_jacobian (PropmatMatrix, optional) – Partial derivative of the
propagation_matrix
with regards tojacobian_targets
. Seepropagation_matrix_jacobian
, defaults toself.propagation_matrix_jacobian
[OUT]propagation_matrix_source_vector_nonlte_jacobian (StokvecMatrix, optional) – Partial derivative of the
propagation_matrix_source_vector_nonlte
with regards tojacobian_targets
. Seepropagation_matrix_source_vector_nonlte_jacobian
, defaults toself.propagation_matrix_source_vector_nonlte_jacobian
[OUT]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]
- propagation_matrix_agendaAuto(self, propagation_matrix_agenda: pyarts3.arts.Agenda | None = None, absorption_species: pyarts3.arts.ArrayOfArrayOfSpeciesTag | None = None, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, use_absorption_lookup_table: pyarts3.arts.Index | None = None, T_extrapolfac: pyarts3.arts.Numeric | None = None, ignore_errors: pyarts3.arts.Index | None = None, no_negative_absorption: pyarts3.arts.Index | None = None, force_p: pyarts3.arts.Numeric | None = None, force_t: pyarts3.arts.Numeric | None = None, p_interp_order: pyarts3.arts.Index | None = None, t_interp_order: pyarts3.arts.Index | None = None, water_interp_order: pyarts3.arts.Index | None = None, f_interp_order: pyarts3.arts.Index | None = None, extpolfac: pyarts3.arts.Numeric | None = None) None
Sets the
propagation_matrix_agenda
automatically from absorption data and species tag meta information.The following methods are considered for addition to the agenda:
If
use_absorption_lookup_table
evaluates to true, lookup table calculations, viapropagation_matrixAddLookup()
, are used instead ofpropagation_matrixAddLines()
.Note that the signature of this method changes depending on the input methods. This is important because several generic input parameters are used in the methods. Please see the individual methods for more information.
Author: Richard Larsson
- Parameters:
propagation_matrix_agenda (Agenda, optional) – Compute the propagation matrix, the non-LTE source vector, and their derivatives. See
propagation_matrix_agenda
, defaults toself.propagation_matrix_agenda
[OUT]absorption_species (ArrayOfArrayOfSpeciesTag, optional) – Tag groups for gas absorption. See
absorption_species
, defaults toself.absorption_species
[IN]absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[IN]use_absorption_lookup_table (Index, optional) – Whether or not to use the lookup table instead of pure line-by-line calculations. Defaults to
0
[IN]T_extrapolfac (Numeric, optional) – See
propagation_matrixAddCIA()
. Defaults to0.5
[IN]ignore_errors (Index, optional) – See
propagation_matrixAddCIA()
. Defaults to0
[IN]no_negative_absorption (Index, optional) – See
propagation_matrixAddLines()
,propagation_matrixAddLookup()
. Defaults to1
[IN]force_p (Numeric, optional) – See
propagation_matrixAddXsecFit()
. Defaults to-1
[IN]force_t (Numeric, optional) – See
propagation_matrixAddXsecFit()
. Defaults to-1
[IN]p_interp_order (Index, optional) – See
propagation_matrixAddLookup()
. Defaults to7
[IN]t_interp_order (Index, optional) – See
propagation_matrixAddLookup()
. Defaults to7
[IN]water_interp_order (Index, optional) – See
propagation_matrixAddLookup()
. Defaults to7
[IN]f_interp_order (Index, optional) – See
propagation_matrixAddLookup()
. Defaults to7
[IN]extpolfac (Numeric, optional) – See
propagation_matrixAddLookup()
. Defaults to0.5
[IN]
- propagation_matrix_agendaExecute(self, propagation_matrix: pyarts3.arts.PropmatVector | None = None, propagation_matrix_source_vector_nonlte: pyarts3.arts.StokvecVector | None = None, propagation_matrix_jacobian: pyarts3.arts.PropmatMatrix | None = None, propagation_matrix_source_vector_nonlte_jacobian: pyarts3.arts.StokvecMatrix | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, frequency_grid_wind_shift_jacobian: pyarts3.arts.Vector3 | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, select_species: pyarts3.arts.SpeciesEnum | None = None, ray_path_point: pyarts3.arts.PropagationPathPoint | None = None, atmospheric_point: pyarts3.arts.AtmPoint | None = None, propagation_matrix_agenda: pyarts3.arts.Agenda | None = None) None
Executes
propagation_matrix_agenda
, see it for more detailsAuthor:
Automatically Generated
- Parameters:
propagation_matrix (PropmatVector, optional) – This contains the fully polarized propagation matrix for the current path point. See
propagation_matrix
, defaults toself.propagation_matrix
[OUT]propagation_matrix_source_vector_nonlte (StokvecVector, optional) – The part of the source vector that is due to non-LTE. See
propagation_matrix_source_vector_nonlte
, defaults toself.propagation_matrix_source_vector_nonlte
[OUT]propagation_matrix_jacobian (PropmatMatrix, optional) – Partial derivative of the
propagation_matrix
with regards tojacobian_targets
. Seepropagation_matrix_jacobian
, defaults toself.propagation_matrix_jacobian
[OUT]propagation_matrix_source_vector_nonlte_jacobian (StokvecMatrix, optional) – Partial derivative of the
propagation_matrix_source_vector_nonlte
with regards tojacobian_targets
. Seepropagation_matrix_source_vector_nonlte_jacobian
, defaults toself.propagation_matrix_source_vector_nonlte_jacobian
[OUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]frequency_grid_wind_shift_jacobian (Vector3, optional) – The frequency grid wind shift Jacobian. See
frequency_grid_wind_shift_jacobian
, defaults toself.frequency_grid_wind_shift_jacobian
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]select_species (SpeciesEnum, optional) – Species selection. See
select_species
, defaults toself.select_species
[IN]ray_path_point (PropagationPathPoint, optional) – A single path point. See
ray_path_point
, defaults toself.ray_path_point
[IN]atmospheric_point (AtmPoint, optional) – An atmospheric point in ARTS. See
atmospheric_point
, defaults toself.atmospheric_point
[IN]propagation_matrix_agenda (Agenda, optional) – Compute the propagation matrix, the non-LTE source vector, and their derivatives. See
propagation_matrix_agenda
, defaults toself.propagation_matrix_agenda
[IN]
- propagation_matrix_agendaExecuteOperator(self, propagation_matrix: pyarts3.arts.PropmatVector | None = None, propagation_matrix_source_vector_nonlte: pyarts3.arts.StokvecVector | None = None, propagation_matrix_jacobian: pyarts3.arts.PropmatMatrix | None = None, propagation_matrix_source_vector_nonlte_jacobian: pyarts3.arts.StokvecMatrix | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, frequency_grid_wind_shift_jacobian: pyarts3.arts.Vector3 | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, select_species: pyarts3.arts.SpeciesEnum | None = None, ray_path_point: pyarts3.arts.PropagationPathPoint | None = None, atmospheric_point: pyarts3.arts.AtmPoint | None = None, propagation_matrix_agenda_operator: pyarts3.arts.propagation_matrix_agendaOperator | None = None) None
Executes an operator emulating
propagation_matrix_agenda
, see it, and alsopropagation_matrix_agendaOperator
, for more detailsAuthor:
Automatically Generated
- Parameters:
propagation_matrix (PropmatVector, optional) – This contains the fully polarized propagation matrix for the current path point. See
propagation_matrix
, defaults toself.propagation_matrix
[OUT]propagation_matrix_source_vector_nonlte (StokvecVector, optional) – The part of the source vector that is due to non-LTE. See
propagation_matrix_source_vector_nonlte
, defaults toself.propagation_matrix_source_vector_nonlte
[OUT]propagation_matrix_jacobian (PropmatMatrix, optional) – Partial derivative of the
propagation_matrix
with regards tojacobian_targets
. Seepropagation_matrix_jacobian
, defaults toself.propagation_matrix_jacobian
[OUT]propagation_matrix_source_vector_nonlte_jacobian (StokvecMatrix, optional) – Partial derivative of the
propagation_matrix_source_vector_nonlte
with regards tojacobian_targets
. Seepropagation_matrix_source_vector_nonlte_jacobian
, defaults toself.propagation_matrix_source_vector_nonlte_jacobian
[OUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]frequency_grid_wind_shift_jacobian (Vector3, optional) – The frequency grid wind shift Jacobian. See
frequency_grid_wind_shift_jacobian
, defaults toself.frequency_grid_wind_shift_jacobian
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]select_species (SpeciesEnum, optional) – Species selection. See
select_species
, defaults toself.select_species
[IN]ray_path_point (PropagationPathPoint, optional) – A single path point. See
ray_path_point
, defaults toself.ray_path_point
[IN]atmospheric_point (AtmPoint, optional) – An atmospheric point in ARTS. See
atmospheric_point
, defaults toself.atmospheric_point
[IN]propagation_matrix_agenda_operator (propagation_matrix_agendaOperator) – Operator for
propagation_matrix_agenda
. [IN]
- propagation_matrix_agendaSet(self, propagation_matrix_agenda: pyarts3.arts.Agenda | None = None, option: pyarts3.arts.String | None = None) None
Set
propagation_matrix_agenda
to a specific predefined optionAuthor:
Automatically Generated
- Parameters:
propagation_matrix_agenda (Agenda, optional) – Compute the propagation matrix, the non-LTE source vector, and their derivatives. See
propagation_matrix_agenda
, defaults toself.propagation_matrix_agenda
[OUT]option (String) – Choice of generated agenda. [IN]
Valid options
These are the valid options for the
propagation_matrix_agendaSet
method. The listed method calls describe the order of the agenda calls for eachoption
.
propagation_matrix_agendaSet(option="Empty")
Ignore()
, using: input =frequency_grid_wind_shift_jacobian
Ignore()
, using: input =select_species
Ignore()
, using: input =ray_path_point
Ignore()
, using: input =atmospheric_point
- propagation_matrix_agendaSetOperator(self, propagation_matrix_agenda: pyarts3.arts.Agenda | None = None, f: pyarts3.arts.propagation_matrix_agendaOperator | None = None) None
Set
propagation_matrix_agenda
to exclusively use provided external operator. Seepropagation_matrix_agendaOperator
for more details.Author:
Automatically Generated
- Parameters:
propagation_matrix_agenda (Agenda, optional) – Compute the propagation matrix, the non-LTE source vector, and their derivatives. See
propagation_matrix_agenda
, defaults toself.propagation_matrix_agenda
[OUT]f (propagation_matrix_agendaOperator) – Operator for
propagation_matrix_agenda
. [IN]
- propagation_matrix_jacobianWindFix(self, propagation_matrix_jacobian: pyarts3.arts.PropmatMatrix | None = None, propagation_matrix_source_vector_nonlte_jacobian: pyarts3.arts.StokvecMatrix | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, frequency_grid_wind_shift_jacobian: pyarts3.arts.Vector3 | None = None) None
Fix for the wind field derivative.
The
propagation_matrix_agenda
will set the wind derivatives to those of the frequency derivative if this method is not used. This will cause the wind field to be treated as a frequency derivative, meaning noOEM()
or other functionality that requires the Jacobian matrix to be calculated will work.Author: Richard Larsson
- Parameters:
propagation_matrix_jacobian (PropmatMatrix, optional) – Partial derivative of the
propagation_matrix
with regards tojacobian_targets
. Seepropagation_matrix_jacobian
, defaults toself.propagation_matrix_jacobian
[INOUT]propagation_matrix_source_vector_nonlte_jacobian (StokvecMatrix, optional) – Partial derivative of the
propagation_matrix_source_vector_nonlte
with regards tojacobian_targets
. Seepropagation_matrix_source_vector_nonlte_jacobian
, defaults toself.propagation_matrix_source_vector_nonlte_jacobian
[INOUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]frequency_grid_wind_shift_jacobian (Vector3, optional) – The frequency grid wind shift Jacobian. See
frequency_grid_wind_shift_jacobian
, defaults toself.frequency_grid_wind_shift_jacobian
[IN]
- propagation_matrix_scatteringAddSpectralScatteringSpeciesTRO(self, propagation_matrix_scattering: pyarts3.arts.PropmatVector | None = None, absorption_vector_scattering: pyarts3.arts.StokvecVector | None = None, phase_matrix_scattering_spectral: pyarts3.arts.SpecmatMatrix | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, atmospheric_point: pyarts3.arts.AtmPoint | None = None, scattering_species: pyarts3.arts.ArrayOfScatteringSpecies | None = None) None
Adds
scattering_species
results for totally random oriented spectral calculations topropagation_matrix_scattering
and co.Author: Richard Larsson
- Parameters:
propagation_matrix_scattering (PropmatVector, optional) – The propgation matrix of totally random orientation particles at a single point along a path using spectral representation. See
propagation_matrix_scattering
, defaults toself.propagation_matrix_scattering
[INOUT]absorption_vector_scattering (StokvecVector, optional) – The absorption vector of totally random orientation particles at a single point along a path using spectral representation. See
absorption_vector_scattering
, defaults toself.absorption_vector_scattering
[INOUT]phase_matrix_scattering_spectral (SpecmatMatrix, optional) – The spectral phase matrix of totally random orientation particles at a single point along a path using spectral representation. See
phase_matrix_scattering_spectral
, defaults toself.phase_matrix_scattering_spectral
[INOUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]atmospheric_point (AtmPoint, optional) – An atmospheric point in ARTS. See
atmospheric_point
, defaults toself.atmospheric_point
[IN]scattering_species (ArrayOfScatteringSpecies, optional) – The scattering species. See
scattering_species
, defaults toself.scattering_species
[IN]
- propagation_matrix_scatteringAirSimple(self, propagation_matrix_scattering: pyarts3.arts.PropmatVector | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, atmospheric_point: pyarts3.arts.AtmPoint | None = None) None
Add simple air to
propagation_matrix_scattering
.Authors: Jon Petersen, Richard Larsson
- Parameters:
propagation_matrix_scattering (PropmatVector, optional) – The propgation matrix of totally random orientation particles at a single point along a path using spectral representation. See
propagation_matrix_scattering
, defaults toself.propagation_matrix_scattering
[INOUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]atmospheric_point (AtmPoint, optional) – An atmospheric point in ARTS. See
atmospheric_point
, defaults toself.atmospheric_point
[IN]
- propagation_matrix_scatteringInit(self, propagation_matrix_scattering: pyarts3.arts.PropmatVector | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None) None
Initialize
propagation_matrix_scattering
to zeroes.This method must be used inside
propagation_matrix_scattering_agenda
and then be called first.Author: Richard Larsson
- Parameters:
propagation_matrix_scattering (PropmatVector, optional) – The propgation matrix of totally random orientation particles at a single point along a path using spectral representation. See
propagation_matrix_scattering
, defaults toself.propagation_matrix_scattering
[OUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]
- propagation_matrix_scatteringSpectralInit(self, propagation_matrix_scattering: pyarts3.arts.PropmatVector | None = None, absorption_vector_scattering: pyarts3.arts.StokvecVector | None = None, phase_matrix_scattering_spectral: pyarts3.arts.SpecmatMatrix | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, legendre_degree: pyarts3.arts.Index | None = None) None
Initialize
propagation_matrix_scattering
and co to zeroes.This method must be used inside
propagation_matrix_scattering_spectral_agenda
and then be called first.Author: Richard Larsson
- Parameters:
propagation_matrix_scattering (PropmatVector, optional) – The propgation matrix of totally random orientation particles at a single point along a path using spectral representation. See
propagation_matrix_scattering
, defaults toself.propagation_matrix_scattering
[OUT]absorption_vector_scattering (StokvecVector, optional) – The absorption vector of totally random orientation particles at a single point along a path using spectral representation. See
absorption_vector_scattering
, defaults toself.absorption_vector_scattering
[OUT]phase_matrix_scattering_spectral (SpecmatMatrix, optional) – The spectral phase matrix of totally random orientation particles at a single point along a path using spectral representation. See
phase_matrix_scattering_spectral
, defaults toself.phase_matrix_scattering_spectral
[OUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]legendre_degree (Index, optional) – The degree of a Legendre polynimial. See
legendre_degree
, defaults toself.legendre_degree
[IN]
- propagation_matrix_scattering_agendaExecute(self, propagation_matrix_scattering: pyarts3.arts.PropmatVector | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, atmospheric_point: pyarts3.arts.AtmPoint | None = None, propagation_matrix_scattering_agenda: pyarts3.arts.Agenda | None = None) None
Executes
propagation_matrix_scattering_agenda
, see it for more detailsAuthor:
Automatically Generated
- Parameters:
propagation_matrix_scattering (PropmatVector, optional) – The propgation matrix of totally random orientation particles at a single point along a path using spectral representation. See
propagation_matrix_scattering
, defaults toself.propagation_matrix_scattering
[OUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]atmospheric_point (AtmPoint, optional) – An atmospheric point in ARTS. See
atmospheric_point
, defaults toself.atmospheric_point
[IN]propagation_matrix_scattering_agenda (Agenda, optional) – Compute the part of the propagation matrix that relates to scattering. See
propagation_matrix_scattering_agenda
, defaults toself.propagation_matrix_scattering_agenda
[IN]
- propagation_matrix_scattering_agendaExecuteOperator(self, propagation_matrix_scattering: pyarts3.arts.PropmatVector | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, atmospheric_point: pyarts3.arts.AtmPoint | None = None, propagation_matrix_scattering_agenda_operator: pyarts3.arts.propagation_matrix_scattering_agendaOperator | None = None) None
Executes an operator emulating
propagation_matrix_scattering_agenda
, see it, and alsopropagation_matrix_scattering_agendaOperator
, for more detailsAuthor:
Automatically Generated
- Parameters:
propagation_matrix_scattering (PropmatVector, optional) – The propgation matrix of totally random orientation particles at a single point along a path using spectral representation. See
propagation_matrix_scattering
, defaults toself.propagation_matrix_scattering
[OUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]atmospheric_point (AtmPoint, optional) – An atmospheric point in ARTS. See
atmospheric_point
, defaults toself.atmospheric_point
[IN]propagation_matrix_scattering_agenda_operator (propagation_matrix_scattering_agendaOperator) – Operator for
propagation_matrix_scattering_agenda
. [IN]
- propagation_matrix_scattering_agendaSet(self, propagation_matrix_scattering_agenda: pyarts3.arts.Agenda | None = None, option: pyarts3.arts.String | None = None) None
Set
propagation_matrix_scattering_agenda
to a specific predefined optionAuthor:
Automatically Generated
- Parameters:
propagation_matrix_scattering_agenda (Agenda, optional) – Compute the part of the propagation matrix that relates to scattering. See
propagation_matrix_scattering_agenda
, defaults toself.propagation_matrix_scattering_agenda
[OUT]option (String, optional) – Choice of generated agenda. Defaults to
"AirSimple"
[IN]
Valid options
These are the valid options for the
propagation_matrix_scattering_agendaSet
method. The listed method calls describe the order of the agenda calls for eachoption
.
propagation_matrix_scattering_agendaSet(option="AirSimple")
- propagation_matrix_scattering_agendaSetOperator(self, propagation_matrix_scattering_agenda: pyarts3.arts.Agenda | None = None, f: pyarts3.arts.propagation_matrix_scattering_agendaOperator | None = None) None
Set
propagation_matrix_scattering_agenda
to exclusively use provided external operator. Seepropagation_matrix_scattering_agendaOperator
for more details.Author:
Automatically Generated
- Parameters:
propagation_matrix_scattering_agenda (Agenda, optional) – Compute the part of the propagation matrix that relates to scattering. See
propagation_matrix_scattering_agenda
, defaults toself.propagation_matrix_scattering_agenda
[OUT]f (propagation_matrix_scattering_agendaOperator) – Operator for
propagation_matrix_scattering_agenda
. [IN]
- propagation_matrix_scattering_spectral_agendaExecute(self, propagation_matrix_scattering: pyarts3.arts.PropmatVector | None = None, absorption_vector_scattering: pyarts3.arts.StokvecVector | None = None, phase_matrix_scattering_spectral: pyarts3.arts.SpecmatMatrix | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, atmospheric_point: pyarts3.arts.AtmPoint | None = None, legendre_degree: pyarts3.arts.Index | None = None, propagation_matrix_scattering_spectral_agenda: pyarts3.arts.Agenda | None = None) None
Executes
propagation_matrix_scattering_spectral_agenda
, see it for more detailsAuthor:
Automatically Generated
- Parameters:
propagation_matrix_scattering (PropmatVector, optional) – The propgation matrix of totally random orientation particles at a single point along a path using spectral representation. See
propagation_matrix_scattering
, defaults toself.propagation_matrix_scattering
[OUT]absorption_vector_scattering (StokvecVector, optional) – The absorption vector of totally random orientation particles at a single point along a path using spectral representation. See
absorption_vector_scattering
, defaults toself.absorption_vector_scattering
[OUT]phase_matrix_scattering_spectral (SpecmatMatrix, optional) – The spectral phase matrix of totally random orientation particles at a single point along a path using spectral representation. See
phase_matrix_scattering_spectral
, defaults toself.phase_matrix_scattering_spectral
[OUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]atmospheric_point (AtmPoint, optional) – An atmospheric point in ARTS. See
atmospheric_point
, defaults toself.atmospheric_point
[IN]legendre_degree (Index, optional) – The degree of a Legendre polynimial. See
legendre_degree
, defaults toself.legendre_degree
[IN]propagation_matrix_scattering_spectral_agenda (Agenda, optional) – Get the scattering propagation matrix, the scattering absorption vector, and the scattering spectral phase matrix. See
propagation_matrix_scattering_spectral_agenda
, defaults toself.propagation_matrix_scattering_spectral_agenda
[IN]
- propagation_matrix_scattering_spectral_agendaExecuteOperator(self, propagation_matrix_scattering: pyarts3.arts.PropmatVector | None = None, absorption_vector_scattering: pyarts3.arts.StokvecVector | None = None, phase_matrix_scattering_spectral: pyarts3.arts.SpecmatMatrix | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, atmospheric_point: pyarts3.arts.AtmPoint | None = None, legendre_degree: pyarts3.arts.Index | None = None, propagation_matrix_scattering_spectral_agenda_operator: pyarts3.arts.propagation_matrix_scattering_spectral_agendaOperator | None = None) None
Executes an operator emulating
propagation_matrix_scattering_spectral_agenda
, see it, and alsopropagation_matrix_scattering_spectral_agendaOperator
, for more detailsAuthor:
Automatically Generated
- Parameters:
propagation_matrix_scattering (PropmatVector, optional) – The propgation matrix of totally random orientation particles at a single point along a path using spectral representation. See
propagation_matrix_scattering
, defaults toself.propagation_matrix_scattering
[OUT]absorption_vector_scattering (StokvecVector, optional) – The absorption vector of totally random orientation particles at a single point along a path using spectral representation. See
absorption_vector_scattering
, defaults toself.absorption_vector_scattering
[OUT]phase_matrix_scattering_spectral (SpecmatMatrix, optional) – The spectral phase matrix of totally random orientation particles at a single point along a path using spectral representation. See
phase_matrix_scattering_spectral
, defaults toself.phase_matrix_scattering_spectral
[OUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]atmospheric_point (AtmPoint, optional) – An atmospheric point in ARTS. See
atmospheric_point
, defaults toself.atmospheric_point
[IN]legendre_degree (Index, optional) – The degree of a Legendre polynimial. See
legendre_degree
, defaults toself.legendre_degree
[IN]propagation_matrix_scattering_spectral_agenda_operator (propagation_matrix_scattering_spectral_agendaOperator) – Operator for
propagation_matrix_scattering_spectral_agenda
. [IN]
- propagation_matrix_scattering_spectral_agendaSet(self, propagation_matrix_scattering_spectral_agenda: pyarts3.arts.Agenda | None = None, option: pyarts3.arts.String | None = None) None
Set
propagation_matrix_scattering_spectral_agenda
to a specific predefined optionAuthor:
Automatically Generated
- Parameters:
propagation_matrix_scattering_spectral_agenda (Agenda, optional) – Get the scattering propagation matrix, the scattering absorption vector, and the scattering spectral phase matrix. See
propagation_matrix_scattering_spectral_agenda
, defaults toself.propagation_matrix_scattering_spectral_agenda
[OUT]option (String, optional) – Choice of generated agenda. Defaults to
"FromSpeciesTRO"
[IN]
Valid options
These are the valid options for the
propagation_matrix_scattering_spectral_agendaSet
method. The listed method calls describe the order of the agenda calls for eachoption
.
propagation_matrix_scattering_spectral_agendaSet(option="FromSpeciesTRO")
- propagation_matrix_scattering_spectral_agendaSetOperator(self, propagation_matrix_scattering_spectral_agenda: pyarts3.arts.Agenda | None = None, f: pyarts3.arts.propagation_matrix_scattering_spectral_agendaOperator | None = None) None
Set
propagation_matrix_scattering_spectral_agenda
to exclusively use provided external operator. Seepropagation_matrix_scattering_spectral_agendaOperator
for more details.Author:
Automatically Generated
- Parameters:
propagation_matrix_scattering_spectral_agenda (Agenda, optional) – Get the scattering propagation matrix, the scattering absorption vector, and the scattering spectral phase matrix. See
propagation_matrix_scattering_spectral_agenda
, defaults toself.propagation_matrix_scattering_spectral_agenda
[OUT]f (propagation_matrix_scattering_spectral_agendaOperator) – Operator for
propagation_matrix_scattering_spectral_agenda
. [IN]
- ray_pathAddGeometricGridCrossings(self, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, atm_key: pyarts3.arts.AtmKey | None = None) None
Fill the path with with points that crosses the grid of the atmspheric field.
The atmospheric field parameter must be gridded. Only grids with size() > 1 are considered.
Author: Richard Larsson
- Parameters:
ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[INOUT]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]atm_key (AtmKey, optional) – The atmospheric field key for which the grid is expected if adding grid crossings is desired. Defaults to
t
[IN]
- ray_pathAddLimbPoint(self, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, surface_field: pyarts3.arts.SurfaceField | None = None) None
Add the limb point to the ray path
Author: Richard Larsson
- Parameters:
ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[INOUT]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]
- ray_pathFillGeometricHalfStep(self, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, max_step: pyarts3.arts.Numeric | None = None) None
Fill the path with geometric step points.
If two path points are more than
max_step
apart, additional points are added at half the distance between these two points.This process is repeated until there are no more neighboring points for which the premise is true.
Author: Richard Larsson
- Parameters:
ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[INOUT]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]max_step (Numeric, optional) – The maximum step length. Defaults to
1000
[IN]
- ray_pathFillGeometricStepwise(self, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, max_step: pyarts3.arts.Numeric | None = None) None
Fill the path with geometric step points.
If two path points are more than
max_step
apart, additional points are added by propagating one of the points towards the other with a step length ofmax_step
.This process is repeated until there are no more neighboring points for which the premise is true.
Author: Richard Larsson
- Parameters:
ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[INOUT]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]max_step (Numeric, optional) – The maximum step length. Defaults to
1000
[IN]
- ray_pathFixUpdownAzimuth(self, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None) None
Fix azimuth angle errors that can occur for 180 and 0 degrees zenith.
These only matter for polarized radiative transfer.
Author: Richard Larsson
- Parameters:
ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[INOUT]
- ray_pathGeometric(self, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, pos: pyarts3.arts.Vector3 | None = None, los: pyarts3.arts.Vector2 | None = None, max_step: pyarts3.arts.Numeric | None = None, surface_search_accuracy: pyarts3.arts.Numeric | None = None, as_observer: pyarts3.arts.Index | None = None, add_limb: pyarts3.arts.Index | None = None, remove_non_atm: pyarts3.arts.Index | None = None, fix_updown_azimuth: pyarts3.arts.Index | None = None, surface_safe_search: pyarts3.arts.Index | None = None) None
Get a geometric radiation path
The path is defined by the origo and the line of sight.
The
pos
is either at the end or at the beginning of the path depending on theas_observer
flag. A value that evaluates to true means that it is at the end of the path. Ifas_observer
is true, thelos
is therefore looking backwards along the path. Basically,as_observer
true means thatpos
andlos
behaves as sensor pos and los.The
max_step
is the maximum step length in meters. The path is first created between the two extremes of either space and/or surface. Afterwards, there are additional points added everymax_step
meters between these points until no more fits (the last step is shorter or exactlymax_step
).Upon closing the method, the following options are available to modify the output:
If
add_limb
is true, the limb point is added to the path at the end. It is computed using bisections to ensure that the zenith angle of the tangent point is as close to 90 degrees as it can numerically be.If
remove_non_atm
is true, all points that are not in the atmosphere are removed. It is recommended to remove these points as multiple methods will either perform poorly or not at all with these points present.If
fix_updown_azimuth
is true, the azimuthal angle of the path is fixed to the initial azimuthal angle of the path. Because calculations of the azimuth angle makes use of IEEE atan2, some paths may produce bad angles if this is turned off.Author: Richard Larsson
- Parameters:
ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[OUT]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]pos (Vector3) – The origo of the radiation path. [IN]
los (Vector2) – The line of sight of the radiation path. [IN]
max_step (Numeric, optional) – The maximum step length. Defaults to
1000
[IN]surface_search_accuracy (Numeric, optional) – The accuracy within which the surface intersection is counted as a hit. Defaults to
0.1
[IN]as_observer (Index, optional) – Whether or not the path is as seen by the sensor or by the radiation (see text). Defaults to
1
[IN]add_limb (Index, optional) – Wheter or not to add the limb point. Defaults to
0
[IN]remove_non_atm (Index, optional) – Wheter or not to keep only atmospheric points. Defaults to
1
[IN]fix_updown_azimuth (Index, optional) – Whether or not to attempt fix a potential issue with the path azimuthal angle. Defaults to
1
[IN]surface_safe_search (Index, optional) – Whether or not to search for the surface intersection in a safer but slower manner. Defaults to
1
[IN]
- ray_pathGeometricDownlooking(self, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, latitude: pyarts3.arts.Numeric | None = None, longitude: pyarts3.arts.Numeric | None = None, max_step: pyarts3.arts.Numeric | None = None) None
Wraps
ray_pathGeometric()
for straight downlooking paths from the top-of-the-atmosphere altitudeAuthor: Richard Larsson
Used by wrapper methods
- Parameters:
ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[OUT]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]latitude (Numeric, optional) – A single latitude. See
latitude
, defaults toself.latitude
[IN]longitude (Numeric, optional) – A single longitude. See
longitude
, defaults toself.longitude
[IN]max_step (Numeric, optional) – The maximum step length. Defaults to
1000
[IN]
- ray_pathGeometricUplooking(self, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, latitude: pyarts3.arts.Numeric | None = None, longitude: pyarts3.arts.Numeric | None = None, max_step: pyarts3.arts.Numeric | None = None) None
Wraps
ray_pathGeometric()
for straight uplooking paths from the surface altitude at the positionAuthor: Richard Larsson
- Parameters:
ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[OUT]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]latitude (Numeric, optional) – A single latitude. See
latitude
, defaults toself.latitude
[IN]longitude (Numeric, optional) – A single longitude. See
longitude
, defaults toself.longitude
[IN]max_step (Numeric, optional) – The maximum step length. Defaults to
1000
[IN]
- ray_pathInit(self, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, pos: pyarts3.arts.Vector3 | None = None, los: pyarts3.arts.Vector2 | None = None, as_sensor: pyarts3.arts.Index | None = None) None
Initialize the ray path with a single point.
Author: Richard Larsson
- Parameters:
ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[OUT]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]pos (Vector3) – The start position. [IN]
los (Vector2) – The start line-of-sight. [IN]
as_sensor (Index, optional) – Whether or not the position is the sensor position or the observer position. Defaults to
1
[IN]
- ray_pathRemoveNearby(self, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, min_distance: pyarts3.arts.Numeric | None = None, first: pyarts3.arts.Index | None = None) None
Remove points that are too close to each other.
Author: Richard Larsson
- Parameters:
ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[INOUT]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]min_distance (Numeric) – The minimum distance between points. [IN]
first (Index, optional) – Whether to remove the first or second point. Defaults to
0
[IN]
- ray_pathRemoveNonAtm(self, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None) None
Remove non-atmospheric points to the ray path
Author: Richard Larsson
- Parameters:
ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[INOUT]
- ray_pathRemoveNonGeometricGridCrossings(self, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, atm_key: pyarts3.arts.AtmKey | None = None) None
Remove all non-geometric grid crossings from the ray path.
The atmospheric field parameter must be gridded. All points overlapping with any of the three grids are kept.
Author: Richard Larsson
- Parameters:
ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[INOUT]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]atm_key (AtmKey) – The atmospheric key. [IN]
- ray_pathSetGeometricExtremes(self, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, surface_search_accuracy: pyarts3.arts.Numeric | None = None, surface_safe_search: pyarts3.arts.Index | None = None) None
Add the geometric extremes to the ray path.
Author: Richard Larsson
- Parameters:
ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[INOUT]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]surface_search_accuracy (Numeric, optional) – The accuracy within which the surface intersection is counted as a hit. Defaults to
0.1
[IN]surface_safe_search (Index, optional) – Whether or not to search for the surface intersection in a safer but slower manner. Defaults to
1
[IN]
- ray_path_atmospheric_pointFromPath(self, ray_path_atmospheric_point: pyarts3.arts.ArrayOfAtmPoint | None = None, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None) None
Gets the atmospheric points along the path.
Author: Richard Larsson
Used by wrapper methods
- Parameters:
ray_path_atmospheric_point (ArrayOfAtmPoint, optional) – Atmospheric points along the propagation path. See
ray_path_atmospheric_point
, defaults toself.ray_path_atmospheric_point
[OUT]ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[IN]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]
- ray_path_atmospheric_pointFromProfile(self, ray_path_atmospheric_point: pyarts3.arts.ArrayOfAtmPoint | None = None, atmospheric_profile: pyarts3.arts.ArrayOfAtmPoint | None = None) None
Set
ray_path_atmospheric_point = atmospheric_profile
.This is purely compositional and it is better to use pure python code if need this functionality in your own control-flow.
Author: Richard Larsson
- Parameters:
ray_path_atmospheric_point (ArrayOfAtmPoint, optional) – Atmospheric points along the propagation path. See
ray_path_atmospheric_point
, defaults toself.ray_path_atmospheric_point
[OUT]atmospheric_profile (ArrayOfAtmPoint, optional) – An atmospheric profile in ARTS. See
atmospheric_profile
, defaults toself.atmospheric_profile
[IN]
- ray_path_fieldFluxProfile(self, ray_path_field: pyarts3.arts.ArrayOfArrayOfPropagationPathPoint | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, ray_path_observer_agenda: pyarts3.arts.Agenda | None = None, azimuth: pyarts3.arts.Numeric | None = None, dza: pyarts3.arts.Numeric | None = None, atm_key: pyarts3.arts.AtmKey | None = None) None
Adds observers that covers all zenith angles for each altitude point.
By default, up-looking from surface, downlooking from top of atmosphere and limb looking just hitting the surface and just missing the surface are added.
In addition to these, all up-looking ppoints will have additional observers for max
dza
resolution and all downlooking points will have additional observers for maxdza
resolution.Additional work is requires if proper coverage of the limb is required
Author: Richard Larsson
- Parameters:
ray_path_field (ArrayOfArrayOfPropagationPathPoint, optional) – A list of
ray_path
intended to build up a field of observations. Seeray_path_field
, defaults toself.ray_path_field
[OUT]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]ray_path_observer_agenda (Agenda, optional) – Get the propagation path as it is obeserved. See
ray_path_observer_agenda
, defaults toself.ray_path_observer_agenda
[IN]azimuth (Numeric, optional) – Azimuth angle for the observer. Defaults to
0
[IN]dza (Numeric, optional) – The minimum step coverage in zenith angles. Defaults to
180
[IN]atm_key (AtmKey, optional) – The altitude profile key in the atmosphere. Defaults to
t
[IN]
- ray_path_fieldFromObserverAgenda(self, ray_path_field: pyarts3.arts.ArrayOfArrayOfPropagationPathPoint | None = None, ray_path_observers: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, ray_path_observer_agenda: pyarts3.arts.Agenda | None = None) None
Create a ray path field from a set of observers.
Author: Richard Larsson
- Parameters:
ray_path_field (ArrayOfArrayOfPropagationPathPoint, optional) – A list of
ray_path
intended to build up a field of observations. Seeray_path_field
, defaults toself.ray_path_field
[OUT]ray_path_observers (ArrayOfPropagationPathPoint, optional) – A list path points making up the observers of a propagation path. See
ray_path_observers
, defaults toself.ray_path_observers
[IN]ray_path_observer_agenda (Agenda, optional) – Get the propagation path as it is obeserved. See
ray_path_observer_agenda
, defaults toself.ray_path_observer_agenda
[IN]
- ray_path_frequency_gridFromPath(self, ray_path_frequency_grid: pyarts3.arts.ArrayOfAscendingGrid | None = None, ray_path_frequency_grid_wind_shift_jacobian: pyarts3.arts.ArrayOfVector3 | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, ray_path_atmospheric_point: pyarts3.arts.ArrayOfAtmPoint | None = None) None
Gets the frequency grids along the path.
The derivative transformation is also returned.
Author: Richard Larsson
Used by wrapper methods
- Parameters:
ray_path_frequency_grid (ArrayOfAscendingGrid, optional) – All
frequency_grid
along the propagation path. Seeray_path_frequency_grid
, defaults toself.ray_path_frequency_grid
[OUT]ray_path_frequency_grid_wind_shift_jacobian (ArrayOfVector3, optional) – A list of
frequency_grid_wind_shift_jacobian
for a ray path. Seeray_path_frequency_grid_wind_shift_jacobian
, defaults toself.ray_path_frequency_grid_wind_shift_jacobian
[OUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[IN]ray_path_atmospheric_point (ArrayOfAtmPoint, optional) – Atmospheric points along the propagation path. See
ray_path_atmospheric_point
, defaults toself.ray_path_atmospheric_point
[IN]
- ray_path_observer_agendaExecute(self, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, spectral_radiance_observer_position: pyarts3.arts.Vector3 | None = None, spectral_radiance_observer_line_of_sight: pyarts3.arts.Vector2 | None = None, ray_path_observer_agenda: pyarts3.arts.Agenda | None = None) None
Executes
ray_path_observer_agenda
, see it for more detailsAuthor:
Automatically Generated
- Parameters:
ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[OUT]spectral_radiance_observer_position (Vector3, optional) – The position of an observer of spectral radiance. See
spectral_radiance_observer_position
, defaults toself.spectral_radiance_observer_position
[IN]spectral_radiance_observer_line_of_sight (Vector2, optional) – The line-of-sight of the observer of spectral radiance. See
spectral_radiance_observer_line_of_sight
, defaults toself.spectral_radiance_observer_line_of_sight
[IN]ray_path_observer_agenda (Agenda, optional) – Get the propagation path as it is obeserved. See
ray_path_observer_agenda
, defaults toself.ray_path_observer_agenda
[IN]
- ray_path_observer_agendaExecuteOperator(self, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, spectral_radiance_observer_position: pyarts3.arts.Vector3 | None = None, spectral_radiance_observer_line_of_sight: pyarts3.arts.Vector2 | None = None, ray_path_observer_agenda_operator: pyarts3.arts.ray_path_observer_agendaOperator | None = None) None
Executes an operator emulating
ray_path_observer_agenda
, see it, and alsoray_path_observer_agendaOperator
, for more detailsAuthor:
Automatically Generated
- Parameters:
ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[OUT]spectral_radiance_observer_position (Vector3, optional) – The position of an observer of spectral radiance. See
spectral_radiance_observer_position
, defaults toself.spectral_radiance_observer_position
[IN]spectral_radiance_observer_line_of_sight (Vector2, optional) – The line-of-sight of the observer of spectral radiance. See
spectral_radiance_observer_line_of_sight
, defaults toself.spectral_radiance_observer_line_of_sight
[IN]ray_path_observer_agenda_operator (ray_path_observer_agendaOperator) – Operator for
ray_path_observer_agenda
. [IN]
- ray_path_observer_agendaSetGeometric(self, ray_path_observer_agenda: pyarts3.arts.Agenda | None = None, max_step_option: pyarts3.arts.String | None = None, surface_search_accuracy: pyarts3.arts.Numeric | None = None, max_step: pyarts3.arts.Numeric | None = None, remove_nearby: pyarts3.arts.Numeric | None = None, atm_key: pyarts3.arts.AtmKey | None = None, surface_safe_search: pyarts3.arts.Index | None = None, remove_nearby_first: pyarts3.arts.Index | None = None, add_crossings: pyarts3.arts.Index | None = None, remove_non_crossings: pyarts3.arts.Index | None = None, fix_updown_azimuth: pyarts3.arts.Index | None = None, add_limb: pyarts3.arts.Index | None = None, remove_non_atm: pyarts3.arts.Index | None = None) None
Set
ray_path_observer_agenda
from programmable geometric settings.The default settings essentially call the default settings for
ray_pathGeometric()
.Options:
max_step_option
andmax_step
: Choose the maximum distance between two points. The first string tells the behavior, and the second the distance.surface_search_accuracy
andsurface_safe_search
: The accuracy to search for surface intersections and whether or not to do it at all.remove_nearby
andremove_nearby_first
: The minimum distance between points, ignored if 0 or less. The second option tells which point to remove if they are too close.atm_key
andadd_crossings
andremove_non_crossings
: The atmospheric field key for which the grid is expected if adding grid crossings is desired. The other two options tell whether to add all grid points or remove non-crossings. The removal happens after the filling of the path.fix_updown_azimuth
: Fix the azimuth angle when looking at 0 or 180 degrees.add_limb
: Add the limb point.remove_non_atm
: Remove points in space or in the subsurface.
Author: Richard Larsson
- Parameters:
ray_path_observer_agenda (Agenda, optional) – Get the propagation path as it is obeserved. See
ray_path_observer_agenda
, defaults toself.ray_path_observer_agenda
[OUT]max_step_option (String, optional) – Option for max stepping. See
ray_path_observer_agendaSetGeometricMaxStep
. Defaults to"step"
[IN]surface_search_accuracy (Numeric, optional) – The accuracy to search for surface intersections. Defaults to
0.1
[IN]max_step (Numeric, optional) – The distance to step in-case max stepping is required. Defaults to
1000
[IN]remove_nearby (Numeric, optional) – The minimum distance between points, ignroed if 0 or less. Defaults to
0
[IN]atm_key (AtmKey, optional) – The atmospheric field key for which the grid is expected if adding grid crossings is desired. Defaults to
t
[IN]surface_safe_search (Index, optional) – Whether or not to search for the surface intersection in a safer but slower manner. Defaults to
1
[IN]remove_nearby_first (Index, optional) – Which point (first or second) to remove if they are too close. Defaults to
1
[IN]add_crossings (Index, optional) – Add all grid crossings. Defaults to
0
[IN]remove_non_crossings (Index, optional) – Remove non-crossings. Defaults to
0
[IN]fix_updown_azimuth (Index, optional) – Fix the azimuth angle when looking at 0 or 180 degrees. Defaults to
1
[IN]add_limb (Index, optional) – Add the limb point. Defaults to
0
[IN]remove_non_atm (Index, optional) – Remove non-atmospheric points. Defaults to
1
[IN]
- ray_path_observer_agendaSetOperator(self, ray_path_observer_agenda: pyarts3.arts.Agenda | None = None, f: pyarts3.arts.ray_path_observer_agendaOperator | None = None) None
Set
ray_path_observer_agenda
to exclusively use provided external operator. Seeray_path_observer_agendaOperator
for more details.Author:
Automatically Generated
- Parameters:
ray_path_observer_agenda (Agenda, optional) – Get the propagation path as it is obeserved. See
ray_path_observer_agenda
, defaults toself.ray_path_observer_agenda
[OUT]f (ray_path_observer_agendaOperator) – Operator for
ray_path_observer_agenda
. [IN]
- ray_path_observersFieldProfilePseudo2D(self, ray_path_observers: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, ray_path_observer_agenda: pyarts3.arts.Agenda | None = None, latitude: pyarts3.arts.Numeric | None = None, longitude: pyarts3.arts.Numeric | None = None, azimuth: pyarts3.arts.Numeric | None = None, nup: pyarts3.arts.Index | None = None, nlimb: pyarts3.arts.Index | None = None, ndown: pyarts3.arts.Index | None = None) None
Get a list of observer positions and line of sights to represent observing all angles of a profile.
Three observer types are added:
Downward looking. At the top-of-atmosphere, cover [za+e, 180] degrees zenith.
Limb looking. At top of the atmosphere, cover [90, za-e] degrees zenith.
Upward looking. At the surface, cover [0, 90] degrees zenith.
Here za is the surface tangent zenith angle from the top of the atmosphere. e indicates the smallest possible numerical offset from that angle in the signed direction.
Note
Each position has their zenith angle coverage linearly separated in degrees. To avoid the top-of-atmosphere limb singularity and bottom of atmosphere limb overlap, the limb zentih angle grid is divided into nlimb+1 segments. The 90 degree angle is then discarded.
Below is an example using this method to create a
ray_path_field
.import pyarts3 as pyarts import numpy as np ws = pyarts.Workspace() ws.atmospheric_fieldRead(toa=100e3, basename="planets/Earth/afgl/tropical/") ws.surface_fieldEarth() ws.ray_path_observer_agendaSetGeometric( add_crossings=True, remove_non_crossings=True ) ws.ray_path_observersFieldProfilePseudo2D(nup=3, nlimb=3, ndown=3) ws.ray_path_fieldFromObserverAgenda() f, a = None, None for x in ws.ray_path_field: f, a = pyarts.plots.ray_path.polar_ray_path( x, draw_za_aa=True, draw_map=False, fig=f, axes=a )
(
Source code
,svg
,pdf
)Author: Richard Larsson
- Parameters:
ray_path_observers (ArrayOfPropagationPathPoint, optional) – A list path points making up the observers of a propagation path. See
ray_path_observers
, defaults toself.ray_path_observers
[OUT]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]ray_path_observer_agenda (Agenda, optional) – Get the propagation path as it is obeserved. See
ray_path_observer_agenda
, defaults toself.ray_path_observer_agenda
[IN]latitude (Numeric, optional) – A single latitude. See
latitude
, defaults toself.latitude
[IN]longitude (Numeric, optional) – A single longitude. See
longitude
, defaults toself.longitude
[IN]azimuth (Numeric, optional) – Azimuth angle for the observer. Defaults to
0
[IN]nup (Index) – Number of upward looking observers (min 2). [IN]
nlimb (Index) – Number of limb looking observers (min 2). [IN]
ndown (Index) – Number of downward looking observers (min 2). [IN]
- ray_path_observersFluxProfile(self, ray_path_observers: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, azimuth: pyarts3.arts.Numeric | None = None, n: pyarts3.arts.Index | None = None, atm_key: pyarts3.arts.AtmKey | None = None) None
Add \(n\) observers per altitude point.
The number \(n\) must be uneven and larger than 2.
Author: Richard Larsson
- Parameters:
ray_path_observers (ArrayOfPropagationPathPoint, optional) – A list path points making up the observers of a propagation path. See
ray_path_observers
, defaults toself.ray_path_observers
[OUT]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]azimuth (Numeric, optional) – Azimuth angle for the observer. Defaults to
0
[IN]n (Index) – Number of limb looking observers (min 2). \(n\) above. [IN]
atm_key (AtmKey, optional) – The altitude profile key in the atmosphere. Defaults to
t
[IN]
- ray_path_pointBackground(self, ray_path_point: pyarts3.arts.PropagationPathPoint | None = None, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None) None
Sets
ray_path_point
to the expected background point ofray_path
Author: Richard Larsson
Used by wrapper methods
- Parameters:
ray_path_point (PropagationPathPoint, optional) – A single path point. See
ray_path_point
, defaults toself.ray_path_point
[OUT]ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[IN]
- ray_path_pointForeground(self, ray_path_point: pyarts3.arts.PropagationPathPoint | None = None, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None) None
Sets
ray_path_point
to the expected foreground point ofray_path
Author: Richard Larsson
Used by wrapper method
- Parameters:
ray_path_point (PropagationPathPoint, optional) – A single path point. See
ray_path_point
, defaults toself.ray_path_point
[OUT]ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[IN]
- ray_path_pointHighestFromPath(self, ray_path_point: pyarts3.arts.PropagationPathPoint | None = None, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None) None
Sets
ray_path_point
to the highest altitude point ofray_path
.Author: Richard Larsson
- Parameters:
ray_path_point (PropagationPathPoint, optional) – A single path point. See
ray_path_point
, defaults toself.ray_path_point
[OUT]ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[IN]
- ray_path_pointLowestFromPath(self, ray_path_point: pyarts3.arts.PropagationPathPoint | None = None, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None) None
Sets
ray_path_point
to the lowest altitude point ofray_path
.Author: Richard Larsson
- Parameters:
ray_path_point (PropagationPathPoint, optional) – A single path point. See
ray_path_point
, defaults toself.ray_path_point
[OUT]ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[IN]
- ray_path_propagation_matrixAddScattering(self, ray_path_propagation_matrix: pyarts3.arts.ArrayOfPropmatVector | None = None, ray_path_propagation_matrix_scattering: pyarts3.arts.ArrayOfPropmatVector | None = None) None
Adds the scattering part of the propagation matrix to the rest along the path.
The calculations are in parallel if the program is not in parallel already.
Author: Richard Larsson
Used by wrapper method
- Parameters:
ray_path_propagation_matrix (ArrayOfPropmatVector, optional) – Propagation matrices along the propagation path. See
ray_path_propagation_matrix
, defaults toself.ray_path_propagation_matrix
[INOUT]ray_path_propagation_matrix_scattering (ArrayOfPropmatVector, optional) – Propagation matrices along the propagation path for scattering. See
ray_path_propagation_matrix_scattering
, defaults toself.ray_path_propagation_matrix_scattering
[IN]
- ray_path_propagation_matrixFromPath(self, ray_path_propagation_matrix: pyarts3.arts.ArrayOfPropmatVector | None = None, ray_path_propagation_matrix_source_vector_nonlte: pyarts3.arts.ArrayOfStokvecVector | None = None, ray_path_propagation_matrix_jacobian: pyarts3.arts.ArrayOfPropmatMatrix | None = None, ray_path_propagation_matrix_source_vector_nonlte_jacobian: pyarts3.arts.ArrayOfStokvecMatrix | None = None, propagation_matrix_agenda: pyarts3.arts.Agenda | None = None, ray_path_frequency_grid: pyarts3.arts.ArrayOfAscendingGrid | None = None, ray_path_frequency_grid_wind_shift_jacobian: pyarts3.arts.ArrayOfVector3 | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, ray_path_atmospheric_point: pyarts3.arts.ArrayOfAtmPoint | None = None) None
Gets the propagation matrix and non-LTE source term along the path.
The calculations are in parallel if the program is not in parallel already.
Also outputs the
ray_path_frequency_grid
as a side effect (of wind).Author: Richard Larsson
Used by wrapper methods
- Parameters:
ray_path_propagation_matrix (ArrayOfPropmatVector, optional) – Propagation matrices along the propagation path. See
ray_path_propagation_matrix
, defaults toself.ray_path_propagation_matrix
[OUT]ray_path_propagation_matrix_source_vector_nonlte (ArrayOfStokvecVector, optional) – Additional non-LTE along the propagation path. See
ray_path_propagation_matrix_source_vector_nonlte
, defaults toself.ray_path_propagation_matrix_source_vector_nonlte
[OUT]ray_path_propagation_matrix_jacobian (ArrayOfPropmatMatrix, optional) – Propagation derivative matrices along the propagation path. See
ray_path_propagation_matrix_jacobian
, defaults toself.ray_path_propagation_matrix_jacobian
[OUT]ray_path_propagation_matrix_source_vector_nonlte_jacobian (ArrayOfStokvecMatrix, optional) – Additional non-LTE derivative along the propagation path. See
ray_path_propagation_matrix_source_vector_nonlte_jacobian
, defaults toself.ray_path_propagation_matrix_source_vector_nonlte_jacobian
[OUT]propagation_matrix_agenda (Agenda, optional) – Compute the propagation matrix, the non-LTE source vector, and their derivatives. See
propagation_matrix_agenda
, defaults toself.propagation_matrix_agenda
[IN]ray_path_frequency_grid (ArrayOfAscendingGrid, optional) – All
frequency_grid
along the propagation path. Seeray_path_frequency_grid
, defaults toself.ray_path_frequency_grid
[IN]ray_path_frequency_grid_wind_shift_jacobian (ArrayOfVector3, optional) – A list of
frequency_grid_wind_shift_jacobian
for a ray path. Seeray_path_frequency_grid_wind_shift_jacobian
, defaults toself.ray_path_frequency_grid_wind_shift_jacobian
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[IN]ray_path_atmospheric_point (ArrayOfAtmPoint, optional) – Atmospheric points along the propagation path. See
ray_path_atmospheric_point
, defaults toself.ray_path_atmospheric_point
[IN]
- ray_path_propagation_matrix_scatteringFromPath(self, ray_path_propagation_matrix_scattering: pyarts3.arts.ArrayOfPropmatVector | None = None, propagation_matrix_scattering_agenda: pyarts3.arts.Agenda | None = None, ray_path_frequency_grid: pyarts3.arts.ArrayOfAscendingGrid | None = None, ray_path_atmospheric_point: pyarts3.arts.ArrayOfAtmPoint | None = None) None
Gets the propagation matrix for scattering along the path.
The calculations are in parallel if the program is not in parallel already.
Author: Richard Larsson
Used by wrapper method
- Parameters:
ray_path_propagation_matrix_scattering (ArrayOfPropmatVector, optional) – Propagation matrices along the propagation path for scattering. See
ray_path_propagation_matrix_scattering
, defaults toself.ray_path_propagation_matrix_scattering
[OUT]propagation_matrix_scattering_agenda (Agenda, optional) – Compute the part of the propagation matrix that relates to scattering. See
propagation_matrix_scattering_agenda
, defaults toself.propagation_matrix_scattering_agenda
[IN]ray_path_frequency_grid (ArrayOfAscendingGrid, optional) – All
frequency_grid
along the propagation path. Seeray_path_frequency_grid
, defaults toself.ray_path_frequency_grid
[IN]ray_path_atmospheric_point (ArrayOfAtmPoint, optional) – Atmospheric points along the propagation path. See
ray_path_atmospheric_point
, defaults toself.ray_path_atmospheric_point
[IN]
- ray_path_propagation_matrix_scatteringFromSpectralAgenda(self, ray_path_propagation_matrix_scattering: pyarts3.arts.ArrayOfPropmatVector | None = None, ray_path_absorption_vector_scattering: pyarts3.arts.ArrayOfStokvecVector | None = None, ray_path_phase_matrix_scattering_spectral: pyarts3.arts.ArrayOfSpecmatMatrix | None = None, ray_path_frequency_grid: pyarts3.arts.ArrayOfAscendingGrid | None = None, ray_path_atmospheric_point: pyarts3.arts.ArrayOfAtmPoint | None = None, legendre_degree: pyarts3.arts.Index | None = None, propagation_matrix_scattering_spectral_agenda: pyarts3.arts.Agenda | None = None) None
Compute
ray_path_propagation_matrix_scattering
and co for a path.Author: Richard Larsson
- Parameters:
ray_path_propagation_matrix_scattering (ArrayOfPropmatVector, optional) – Propagation matrices along the propagation path for scattering. See
ray_path_propagation_matrix_scattering
, defaults toself.ray_path_propagation_matrix_scattering
[OUT]ray_path_absorption_vector_scattering (ArrayOfStokvecVector, optional) – The absorption vector of totally random orientation particles along the propagation path using spectral representation. See
ray_path_absorption_vector_scattering
, defaults toself.ray_path_absorption_vector_scattering
[OUT]ray_path_phase_matrix_scattering_spectral (ArrayOfSpecmatMatrix, optional) – The spectral phase matrix of totally random orientation particles along the propagation path using spectral representation. See
ray_path_phase_matrix_scattering_spectral
, defaults toself.ray_path_phase_matrix_scattering_spectral
[OUT]ray_path_frequency_grid (ArrayOfAscendingGrid, optional) – All
frequency_grid
along the propagation path. Seeray_path_frequency_grid
, defaults toself.ray_path_frequency_grid
[IN]ray_path_atmospheric_point (ArrayOfAtmPoint, optional) – Atmospheric points along the propagation path. See
ray_path_atmospheric_point
, defaults toself.ray_path_atmospheric_point
[IN]legendre_degree (Index, optional) – The degree of a Legendre polynimial. See
legendre_degree
, defaults toself.legendre_degree
[IN]propagation_matrix_scattering_spectral_agenda (Agenda, optional) – Get the scattering propagation matrix, the scattering absorption vector, and the scattering spectral phase matrix. See
propagation_matrix_scattering_spectral_agenda
, defaults toself.propagation_matrix_scattering_spectral_agenda
[IN]
- ray_path_propagation_matrix_species_splitFromPath(self, ray_path_propagation_matrix_species_split: pyarts3.arts.ArrayOfArrayOfPropmatVector | None = None, ray_path_propagation_matrix_source_vector_nonlte_species_split: pyarts3.arts.ArrayOfArrayOfStokvecVector | None = None, ray_path_propagation_matrix_jacobian_species_split: pyarts3.arts.ArrayOfArrayOfPropmatMatrix | None = None, ray_path_propagation_matrix_source_vector_nonlte_jacobian_species_split: pyarts3.arts.ArrayOfArrayOfStokvecMatrix | None = None, propagation_matrix_agenda: pyarts3.arts.Agenda | None = None, ray_path_frequency_grid: pyarts3.arts.ArrayOfAscendingGrid | None = None, ray_path_frequency_grid_wind_shift_jacobian: pyarts3.arts.ArrayOfVector3 | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, ray_path_atmospheric_point: pyarts3.arts.ArrayOfAtmPoint | None = None, select_species_list: pyarts3.arts.ArrayOfSpeciesEnum | None = None) None
As
ray_path_propagation_matrixFromPath()
but the output is split between the species in theselect_species_list
.The outer dimension of the output arrays are the size of the species selection list. The inner dimensions are as per
ray_path_propagation_matrixFromPath()
.Author: Richard Larsson
- Parameters:
ray_path_propagation_matrix_species_split (ArrayOfArrayOfPropmatVector) – Propagation matrix for selected species. Defaults to create and/or use
self.ray_path_propagation_matrix_species_split
:ArrayOfArrayOfPropmatVector
. [OUT]ray_path_propagation_matrix_source_vector_nonlte_species_split (ArrayOfArrayOfStokvecVector) – Non-LTE source vector for selected species. Defaults to create and/or use
self.ray_path_propagation_matrix_source_vector_nonlte_species_split
:ArrayOfArrayOfStokvecVector
. [OUT]ray_path_propagation_matrix_jacobian_species_split (ArrayOfArrayOfPropmatMatrix) – Jacobian of propagation matrix for selected species. Defaults to create and/or use
self.ray_path_propagation_matrix_jacobian_species_split
:ArrayOfArrayOfPropmatMatrix
. [OUT]ray_path_propagation_matrix_source_vector_nonlte_jacobian_species_split (ArrayOfArrayOfStokvecMatrix) – Jacobian of non-LTE source vector for selected species. Defaults to create and/or use
self.ray_path_propagation_matrix_source_vector_nonlte_jacobian_species_split
:ArrayOfArrayOfStokvecMatrix
. [OUT]propagation_matrix_agenda (Agenda, optional) – Compute the propagation matrix, the non-LTE source vector, and their derivatives. See
propagation_matrix_agenda
, defaults toself.propagation_matrix_agenda
[IN]ray_path_frequency_grid (ArrayOfAscendingGrid, optional) – All
frequency_grid
along the propagation path. Seeray_path_frequency_grid
, defaults toself.ray_path_frequency_grid
[IN]ray_path_frequency_grid_wind_shift_jacobian (ArrayOfVector3, optional) – A list of
frequency_grid_wind_shift_jacobian
for a ray path. Seeray_path_frequency_grid_wind_shift_jacobian
, defaults toself.ray_path_frequency_grid_wind_shift_jacobian
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[IN]ray_path_atmospheric_point (ArrayOfAtmPoint, optional) – Atmospheric points along the propagation path. See
ray_path_atmospheric_point
, defaults toself.ray_path_atmospheric_point
[IN]select_species_list (ArrayOfSpeciesEnum, optional) – Species selection. See
select_species_list
, defaults toself.select_species_list
[IN]
- ray_path_spectral_radiance_scatteringSunsFirstOrderRayleigh(self, ray_path_spectral_radiance_scattering: pyarts3.arts.ArrayOfStokvecVector | None = None, ray_path_propagation_matrix_scattering: pyarts3.arts.ArrayOfPropmatVector | None = None, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, ray_path_suns_path: pyarts3.arts.ArrayOfArrayOfArrayOfPropagationPathPoint | None = None, suns: pyarts3.arts.ArrayOfSun | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, propagation_matrix_agenda: pyarts3.arts.Agenda | None = None, depolarization_factor: pyarts3.arts.Numeric | None = None, hse_derivative: pyarts3.arts.Index | None = None) None
Add
suns
toray_path_spectral_radiance_source
.Author: Richard Larsson
Used by wrapper method
- Parameters:
ray_path_spectral_radiance_scattering (ArrayOfStokvecVector, optional) – Spectral radiance scattered into the propagation path. See
ray_path_spectral_radiance_scattering
, defaults toself.ray_path_spectral_radiance_scattering
[OUT]ray_path_propagation_matrix_scattering (ArrayOfPropmatVector, optional) – Propagation matrices along the propagation path for scattering. See
ray_path_propagation_matrix_scattering
, defaults toself.ray_path_propagation_matrix_scattering
[IN]ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[IN]ray_path_suns_path (ArrayOfArrayOfArrayOfPropagationPathPoint, optional) – A list of paths to the suns from the ray path. See
ray_path_suns_path
, defaults toself.ray_path_suns_path
[IN]suns (ArrayOfSun, optional) – A list of
Sun
. Seesuns
, defaults toself.suns
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]propagation_matrix_agenda (Agenda, optional) – Compute the propagation matrix, the non-LTE source vector, and their derivatives. See
propagation_matrix_agenda
, defaults toself.propagation_matrix_agenda
[IN]depolarization_factor (Numeric, optional) – The depolarization factor to use. Defaults to
0
[IN]hse_derivative (Index, optional) – Flag to compute the hypsometric distance derivatives. Defaults to
0
[IN]
- ray_path_spectral_radiance_sourceAddScattering(self, ray_path_spectral_radiance_source: pyarts3.arts.ArrayOfStokvecVector | None = None, ray_path_spectral_radiance_scattering: pyarts3.arts.ArrayOfStokvecVector | None = None, ray_path_propagation_matrix: pyarts3.arts.ArrayOfPropmatVector | None = None) None
Adds the scattering part of the propagation matrix to the rest along the path.
The calculations are in parallel if the program is not in parallel already.
Author: Richard Larsson
Used by wrapper method
- Parameters:
ray_path_spectral_radiance_source (ArrayOfStokvecVector, optional) – Source vectors along the propagation path. See
ray_path_spectral_radiance_source
, defaults toself.ray_path_spectral_radiance_source
[INOUT]ray_path_spectral_radiance_scattering (ArrayOfStokvecVector, optional) – Spectral radiance scattered into the propagation path. See
ray_path_spectral_radiance_scattering
, defaults toself.ray_path_spectral_radiance_scattering
[IN]ray_path_propagation_matrix (ArrayOfPropmatVector, optional) – Propagation matrices along the propagation path. See
ray_path_propagation_matrix
, defaults toself.ray_path_propagation_matrix
[IN]
- ray_path_spectral_radiance_sourceFromPropmat(self, ray_path_spectral_radiance_source: pyarts3.arts.ArrayOfStokvecVector | None = None, ray_path_spectral_radiance_source_jacobian: pyarts3.arts.ArrayOfStokvecMatrix | None = None, ray_path_propagation_matrix: pyarts3.arts.ArrayOfPropmatVector | None = None, ray_path_propagation_matrix_source_vector_nonlte: pyarts3.arts.ArrayOfStokvecVector | None = None, ray_path_propagation_matrix_jacobian: pyarts3.arts.ArrayOfPropmatMatrix | None = None, ray_path_propagation_matrix_source_vector_nonlte_jacobian: pyarts3.arts.ArrayOfStokvecMatrix | None = None, ray_path_frequency_grid: pyarts3.arts.ArrayOfAscendingGrid | None = None, ray_path_atmospheric_point: pyarts3.arts.ArrayOfAtmPoint | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None) None
Gets the source term along the path.
Per
Stokvec
element (single frequency, single temperature, single derivative target), the source term is computed as:\[\vec{J} = B(T, f) + \mathbf{K}^{-1} \vec{S}\]and the Jacobian is computed as:
\[\frac{\partial \vec{J}}{\partial x} = \frac{\partial B(T, f)}{\partial x} - \mathbf{K}^{-1} \left( \frac{\partial \mathbf{K}}{\partial x} \mathbf{K}^{-1} - \frac{\partial \vec{S}}{\partial x} \right)\]where:
Variable
Extracted from ARTS parameter
Meaning
\(\vec{J}\)
The spectral radiance source term along the path.
\(B(T, f)\)
None
- this is computed locallyThe Planck function at the temperature and frequency.
\(\mathbf{K}\)
The propagation matrix along the path.
\(\vec{S}\)
The non-LTE source vector along the path.
\(\frac{\partial \vec{J}}{\partial x}\)
The Jacobian of the spectral radiance source term with respect to the
jacobian_targets
.\(\frac{\partial B(T, f)}{\partial x}\)
None
- this is computed locallyThe Jacobian of the Planck function with respect to the
jacobian_targets
. Only tempertature is supported.\(\frac{\partial \mathbf{K}}{\partial x}\)
The Jacobian of the propagation matrix with respect to the
jacobian_targets
.\(\frac{\partial \vec{S}}{\partial x}\)
The Jacobian of the non-LTE source vector with respect to the
jacobian_targets
.\(x\)
The targets for the Jacobian computation.
\(T\)
The temperature at the atmospheric point along the path.
\(f\)
The frequency grid at the atmospheric point along the path.
The output dimensions are:
ray_path_spectral_radiance_source
:ray_path
xfrequency_grid
ray_path_spectral_radiance_source_jacobian
:ray_path
xfrequency_grid
xjacobian_targets
(target count)
Author: Richard Larsson
Used by wrapper methods
- Parameters:
ray_path_spectral_radiance_source (ArrayOfStokvecVector, optional) – Source vectors along the propagation path. See
ray_path_spectral_radiance_source
, defaults toself.ray_path_spectral_radiance_source
[OUT]ray_path_spectral_radiance_source_jacobian (ArrayOfStokvecMatrix, optional) – Source derivative vectors along the propagation path. See
ray_path_spectral_radiance_source_jacobian
, defaults toself.ray_path_spectral_radiance_source_jacobian
[OUT]ray_path_propagation_matrix (ArrayOfPropmatVector, optional) – Propagation matrices along the propagation path. See
ray_path_propagation_matrix
, defaults toself.ray_path_propagation_matrix
[IN]ray_path_propagation_matrix_source_vector_nonlte (ArrayOfStokvecVector, optional) – Additional non-LTE along the propagation path. See
ray_path_propagation_matrix_source_vector_nonlte
, defaults toself.ray_path_propagation_matrix_source_vector_nonlte
[IN]ray_path_propagation_matrix_jacobian (ArrayOfPropmatMatrix, optional) – Propagation derivative matrices along the propagation path. See
ray_path_propagation_matrix_jacobian
, defaults toself.ray_path_propagation_matrix_jacobian
[IN]ray_path_propagation_matrix_source_vector_nonlte_jacobian (ArrayOfStokvecMatrix, optional) – Additional non-LTE derivative along the propagation path. See
ray_path_propagation_matrix_source_vector_nonlte_jacobian
, defaults toself.ray_path_propagation_matrix_source_vector_nonlte_jacobian
[IN]ray_path_frequency_grid (ArrayOfAscendingGrid, optional) – All
frequency_grid
along the propagation path. Seeray_path_frequency_grid
, defaults toself.ray_path_frequency_grid
[IN]ray_path_atmospheric_point (ArrayOfAtmPoint, optional) – Atmospheric points along the propagation path. See
ray_path_atmospheric_point
, defaults toself.ray_path_atmospheric_point
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]
- ray_path_suns_pathFromPathObserver(self, ray_path_suns_path: pyarts3.arts.ArrayOfArrayOfArrayOfPropagationPathPoint | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, ray_path_observer_agenda: pyarts3.arts.Agenda | None = None, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, suns: pyarts3.arts.ArrayOfSun | None = None, angle_cut: pyarts3.arts.Numeric | None = None, refinement: pyarts3.arts.Index | None = None, just_hit: pyarts3.arts.Index | None = None) None
Wraps
sun_pathFromObserverAgenda()
for all paths to all suns.Author: Richard Larsson
- Parameters:
ray_path_suns_path (ArrayOfArrayOfArrayOfPropagationPathPoint, optional) – A list of paths to the suns from the ray path. See
ray_path_suns_path
, defaults toself.ray_path_suns_path
[OUT]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]ray_path_observer_agenda (Agenda, optional) – Get the propagation path as it is obeserved. See
ray_path_observer_agenda
, defaults toself.ray_path_observer_agenda
[IN]ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[IN]suns (ArrayOfSun, optional) – A list of
Sun
. Seesuns
, defaults toself.suns
[IN]angle_cut (Numeric, optional) – The angle delta-cutoff in the iterative solver [0.0, …]. Defaults to
0
[IN]refinement (Index, optional) – The refinement of the search algorithm (twice the power of this is the resultion). Defaults to
1
[IN]just_hit (Index, optional) – Whether or not it is enough to just hit the sun or if better accuracy is needed. Defaults to
0
[IN]
- ray_path_transmission_matrixFromPath(self, ray_path_transmission_matrix: pyarts3.arts.ArrayOfMuelmatVector | None = None, ray_path_transmission_matrix_jacobian: pyarts3.arts.ArrayOfMuelmatTensor3 | None = None, ray_path_propagation_matrix: pyarts3.arts.ArrayOfPropmatVector | None = None, ray_path_propagation_matrix_jacobian: pyarts3.arts.ArrayOfPropmatMatrix | None = None, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, ray_path_atmospheric_point: pyarts3.arts.ArrayOfAtmPoint | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, hse_derivative: pyarts3.arts.Index | None = None) None
Gets the transmission matrix in layers along the path.
The assumption is that each path variable forms a layer from the ray path. So there is a reduction in size by one. A demand therefore is that there are at least 2 points in the path.
The derivatives first dimensions are also 2, the first for the derivative wrt the level before and one for the level after.
Author: Richard Larsson
Used by wrapper methods
- Parameters:
ray_path_transmission_matrix (ArrayOfMuelmatVector, optional) – Transmission matrices along the propagation path. See
ray_path_transmission_matrix
, defaults toself.ray_path_transmission_matrix
[OUT]ray_path_transmission_matrix_jacobian (ArrayOfMuelmatTensor3, optional) – Transmission derivative matrices along the propagation path. See
ray_path_transmission_matrix_jacobian
, defaults toself.ray_path_transmission_matrix_jacobian
[OUT]ray_path_propagation_matrix (ArrayOfPropmatVector, optional) – Propagation matrices along the propagation path. See
ray_path_propagation_matrix
, defaults toself.ray_path_propagation_matrix
[IN]ray_path_propagation_matrix_jacobian (ArrayOfPropmatMatrix, optional) – Propagation derivative matrices along the propagation path. See
ray_path_propagation_matrix_jacobian
, defaults toself.ray_path_propagation_matrix_jacobian
[IN]ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[IN]ray_path_atmospheric_point (ArrayOfAtmPoint, optional) – Atmospheric points along the propagation path. See
ray_path_atmospheric_point
, defaults toself.ray_path_atmospheric_point
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]hse_derivative (Index, optional) – Flag to compute the hypsometric distance derivatives. Defaults to
0
[IN]
- ray_path_transmission_matrix_cumulativeFromPath(self, ray_path_transmission_matrix_cumulative: pyarts3.arts.ArrayOfMuelmatVector | None = None, ray_path_transmission_matrix: pyarts3.arts.ArrayOfMuelmatVector | None = None) None
Sets
ray_path_transmission_matrix_cumulative
by forward iteration ofray_path_transmission_matrix
Author: Richard Larsson
Used by wrapper methods
- Parameters:
ray_path_transmission_matrix_cumulative (ArrayOfMuelmatVector, optional) – Cumulative transmission matrices along the propagation path. See
ray_path_transmission_matrix_cumulative
, defaults toself.ray_path_transmission_matrix_cumulative
[OUT]ray_path_transmission_matrix (ArrayOfMuelmatVector, optional) – Transmission matrices along the propagation path. See
ray_path_transmission_matrix
, defaults toself.ray_path_transmission_matrix
[IN]
- ray_path_zeeman_magnetic_fieldFromPath(self, ray_path_zeeman_magnetic_field: pyarts3.arts.ArrayOfVector3 | None = None, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, ray_path_atmospheric_point: pyarts3.arts.ArrayOfAtmPoint | None = None) None
Sets a path of Zeeman effect magnetic field properties.
This will return a list of magnetic field properties along the path. The magnetic properties in Zeeman coordinates are the absolute strength [H], the angle between the magnetic field and the line of sight [theta], and the the rotation of the magnetic field in the plane perpendicular to the line of sight [eta].
Author: Richard Larsson
- Parameters:
ray_path_zeeman_magnetic_field (ArrayOfVector3) – Along-the-path [H, theta, eta]. Defaults to create and/or use
self.ray_path_zeeman_magnetic_field
:ArrayOfVector3
. [OUT]ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[IN]ray_path_atmospheric_point (ArrayOfAtmPoint, optional) – Atmospheric points along the propagation path. See
ray_path_atmospheric_point
, defaults toself.ray_path_atmospheric_point
[IN]
- readxml(self, file: str) str
Read variable from file
- Parameters:
file (str) – A file that can be read
- On Error:
Throws RuntimeError for any failure to read
- savexml(self, file: str, type: str = 'ascii', clobber: bool = True) str
Saves variable to file
- Parameters:
- On Error:
Throws RuntimeError for any failure to save
- scattering_speciesInit(self, scattering_species: pyarts3.arts.ArrayOfScatteringSpecies | None = None) None
Initialize scattering species.
Author: Richard Larsson
- Parameters:
scattering_species (ArrayOfScatteringSpecies, optional) – The scattering species. See
scattering_species
, defaults toself.scattering_species
[OUT]
- select_species_listCollectAbsorption(self, select_species_list: pyarts3.arts.ArrayOfSpeciesEnum | None = None, absorption_predefined_model_data: pyarts3.arts.PredefinedModelData | None = None, absorption_xsec_fit_data: pyarts3.arts.ArrayOfXsecRecord | None = None, absorption_cia_data: pyarts3.arts.ArrayOfCIARecord | None = None, absorption_bands: pyarts3.arts.AbsorptionBands | None = None) None
Selects all main absorbers from the absorption data.
Author: Richard Larsson
- Parameters:
select_species_list (ArrayOfSpeciesEnum, optional) – Species selection. See
select_species_list
, defaults toself.select_species_list
[OUT]absorption_predefined_model_data (PredefinedModelData, optional) – This contains predefined model data. See
absorption_predefined_model_data
, defaults toself.absorption_predefined_model_data
[IN]absorption_xsec_fit_data (ArrayOfXsecRecord, optional) – Fitting model coefficients for cross section species. See
absorption_xsec_fit_data
, defaults toself.absorption_xsec_fit_data
[IN]absorption_cia_data (ArrayOfCIARecord, optional) – HITRAN Collision-Induced Absorption (CIA) Data. See
absorption_cia_data
, defaults toself.absorption_cia_data
[IN]absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[IN]
- sortedIndexOfBands(self, sorted: pyarts3.arts.ArrayOfIndex | None = None, absorption_bands: pyarts3.arts.AbsorptionBands | None = None, criteria: pyarts3.arts.String | None = None, reverse: pyarts3.arts.Index | None = None, temperature: pyarts3.arts.Numeric | None = None) None
Get the sorting of the bands by first quantum identifier then some
criteria
The reverse sorting can also be achieved by setting
reverse
.See
AbsorptionBandSortingOption
for validcriteria
.Author: Richard Larsson
- Parameters:
sorted (ArrayOfIndex) – Sorted band indices (of
absorption_bands
). Defaults to create and/or useself.sorted
:ArrayOfIndex
. [OUT]absorption_bands (AbsorptionBands, optional) – Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
, defaults toself.absorption_bands
[IN]criteria (String, optional) – Internal sorting criteria. Defaults to
"None"
[IN]reverse (Index, optional) – Sort in reverse order if true. Defaults to
0
[IN]temperature (Numeric, optional) – Temperature to use for integrated intensity. Defaults to
296
[IN]
- spectral_flux_profileFromPathField(self, spectral_flux_profile: pyarts3.arts.Matrix | None = None, ray_path_field: pyarts3.arts.ArrayOfArrayOfPropagationPathPoint | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, propagation_matrix_agenda: pyarts3.arts.Agenda | None = None, spectral_radiance_space_agenda: pyarts3.arts.Agenda | None = None, spectral_radiance_surface_agenda: pyarts3.arts.Agenda | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, subsurface_field: pyarts3.arts.SubsurfaceField | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, altitude_grid: pyarts3.arts.AscendingGrid | None = None) None
Computes the spectral flux from a field of paths.
Author: Richard Larsson
- Parameters:
spectral_flux_profile (Matrix, optional) – An altitude profile of spectral flux. See
spectral_flux_profile
, defaults toself.spectral_flux_profile
[OUT]ray_path_field (ArrayOfArrayOfPropagationPathPoint, optional) – A list of
ray_path
intended to build up a field of observations. Seeray_path_field
, defaults toself.ray_path_field
[IN]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]propagation_matrix_agenda (Agenda, optional) – Compute the propagation matrix, the non-LTE source vector, and their derivatives. See
propagation_matrix_agenda
, defaults toself.propagation_matrix_agenda
[IN]spectral_radiance_space_agenda (Agenda, optional) – Spectral radiance as seen of space. See
spectral_radiance_space_agenda
, defaults toself.spectral_radiance_space_agenda
[IN]spectral_radiance_surface_agenda (Agenda, optional) – Spectral radiance as seen of the surface. See
spectral_radiance_surface_agenda
, defaults toself.spectral_radiance_surface_agenda
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]subsurface_field (SubsurfaceField, optional) – The sub0surface field describes the sub-surface properties. See
subsurface_field
, defaults toself.subsurface_field
[IN]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]altitude_grid (AscendingGrid, optional) – An ascending list of
altitude
. Often related to a field or a profile. Seealtitude_grid
, defaults toself.altitude_grid
[IN]
- spectral_flux_profileFromSpectralRadianceField(self, spectral_flux_profile: pyarts3.arts.Matrix | None = None, spectral_radiance_field: pyarts3.arts.GriddedSpectralField6 | None = None, pol: pyarts3.arts.Stokvec | None = None) None
Computes the spectral flux. The input field must be a profile.
Author: Richard Larsson
Used by wrapper method
- Parameters:
spectral_flux_profile (Matrix, optional) – An altitude profile of spectral flux. See
spectral_flux_profile
, defaults toself.spectral_flux_profile
[OUT]spectral_radiance_field (GriddedSpectralField6, optional) – The spectral radiance field. See
spectral_radiance_field
, defaults toself.spectral_radiance_field
[IN]pol (Stokvec, optional) – Polarization vector for the spectral flux profile. Defaults to
1 0 0 0
[IN]
- spectral_flux_profilePseudo2D(self, spectral_flux_profile: pyarts3.arts.Matrix | None = None, altitude_grid: pyarts3.arts.AscendingGrid | None = None, atmospheric_profile: pyarts3.arts.ArrayOfAtmPoint | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, latitude: pyarts3.arts.Numeric | None = None, longitude: pyarts3.arts.Numeric | None = None, propagation_matrix_agenda: pyarts3.arts.Agenda | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, pol: pyarts3.arts.Stokvec | None = None, dza: pyarts3.arts.Numeric | None = None, consider_limb: pyarts3.arts.Index | None = None, azimuth: pyarts3.arts.Numeric | None = None) None
Computes the spectral flux profile using pseudo-2D geometry
Wrapper calling Methods (in order):
Equivalent (mostly) Python code:
1ws = pyarts.Workspace() 2 3# ... 4 5 ws.zenith_gridProfilePseudo2D() 6 ws.spectral_radiance_fieldProfilePseudo2D() 7 ws.spectral_flux_profileFromSpectralRadianceField()
Author: Richard Larsson
- Parameters:
spectral_flux_profile (Matrix, optional) – An altitude profile of spectral flux. See
spectral_flux_profile
, defaults toself.spectral_flux_profile
[OUT]altitude_grid (AscendingGrid, optional) – An ascending list of
altitude
. Often related to a field or a profile. Seealtitude_grid
, defaults toself.altitude_grid
[IN]atmospheric_profile (ArrayOfAtmPoint, optional) – An atmospheric profile in ARTS. See
atmospheric_profile
, defaults toself.atmospheric_profile
[IN]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]latitude (Numeric, optional) – A single latitude. See
latitude
, defaults toself.latitude
[IN]longitude (Numeric, optional) – A single longitude. See
longitude
, defaults toself.longitude
[IN]propagation_matrix_agenda (Agenda, optional) – Compute the propagation matrix, the non-LTE source vector, and their derivatives. See
propagation_matrix_agenda
, defaults toself.propagation_matrix_agenda
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]pol (Stokvec, optional) – Polarization vector for the spectral flux profile. Defaults to
1 0 0 0
[IN]dza (Numeric, optional) – The zenith grid max step size. Defaults to
1
[IN]consider_limb (Index, optional) – Whether or not special care is given to the limb. Defaults to
1
[IN]azimuth (Numeric, optional) – The azimuth. Defaults to
0
[IN]
- spectral_radianceApplyForwardUnit(self, spectral_radiance: pyarts3.arts.StokvecVector | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, ray_path_point: pyarts3.arts.PropagationPathPoint | None = None, spectral_radiance_transform_operator: pyarts3.arts.SpectralRadianceTransformOperator | None = None) None
Helper to call
spectral_radianceApplyUnit()
when you do not havespectral_radiance_jacobian
.Author: Richard Larsson
- Parameters:
spectral_radiance (StokvecVector, optional) – A spectral radiance vector. See
spectral_radiance
, defaults toself.spectral_radiance
[INOUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]ray_path_point (PropagationPathPoint, optional) – A single path point. See
ray_path_point
, defaults toself.ray_path_point
[IN]spectral_radiance_transform_operator (SpectralRadianceTransformOperator, optional) – The spectral radiance transform operator. See
spectral_radiance_transform_operator
, defaults toself.spectral_radiance_transform_operator
[IN]
- spectral_radianceApplyUnit(self, spectral_radiance: pyarts3.arts.StokvecVector | None = None, spectral_radiance_jacobian: pyarts3.arts.StokvecMatrix | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, ray_path_point: pyarts3.arts.PropagationPathPoint | None = None, spectral_radiance_transform_operator: pyarts3.arts.SpectralRadianceTransformOperator | None = None) None
Applies a unit to
spectral_radiance
, returning a new fieldSee
SpectralRadianceUnitType
for valid use cases and limitations.This effectively wraps the local creation of a
SpectralRadianceTransformOperator
call.Warning
This is a destructive method. Any use of it means that it is undefined behavior to use
spectral_radiance
orspectral_radiance_jacobian
in future methods.Author: Richard Larsson
Used by wrapper method
- Parameters:
spectral_radiance (StokvecVector, optional) – A spectral radiance vector. See
spectral_radiance
, defaults toself.spectral_radiance
[INOUT]spectral_radiance_jacobian (StokvecMatrix, optional) – Jacobian of
spectral_radiance
with respect tojacobian_targets
. Seespectral_radiance_jacobian
, defaults toself.spectral_radiance_jacobian
[INOUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]ray_path_point (PropagationPathPoint, optional) – A single path point. See
ray_path_point
, defaults toself.ray_path_point
[IN]spectral_radiance_transform_operator (SpectralRadianceTransformOperator, optional) – The spectral radiance transform operator. See
spectral_radiance_transform_operator
, defaults toself.spectral_radiance_transform_operator
[IN]
- spectral_radianceApplyUnitFromSpectralRadiance(self, spectral_radiance: pyarts3.arts.StokvecVector | None = None, spectral_radiance_jacobian: pyarts3.arts.StokvecMatrix | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, spectral_radiance_transform_operator: pyarts3.arts.SpectralRadianceTransformOperator | None = None) None
Helper method for calling
spectral_radianceApplyUnit()
.It is common that
ray_path
is defined but notray_path_point
. This method simply is a convenience wrapper for that use case.Wrapper calling Methods (in order):
Equivalent (mostly) Python code:
1ws = pyarts.Workspace() 2 3# ... 4 5 ws.ray_path_pointForeground() 6 ws.spectral_radianceApplyUnit()
Author: Richard Larsson
- Parameters:
spectral_radiance (StokvecVector, optional) – A spectral radiance vector. See
spectral_radiance
, defaults toself.spectral_radiance
[INOUT]spectral_radiance_jacobian (StokvecMatrix, optional) – Jacobian of
spectral_radiance
with respect tojacobian_targets
. Seespectral_radiance_jacobian
, defaults toself.spectral_radiance_jacobian
[INOUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[IN]spectral_radiance_transform_operator (SpectralRadianceTransformOperator, optional) – The spectral radiance transform operator. See
spectral_radiance_transform_operator
, defaults toself.spectral_radiance_transform_operator
[IN]
- spectral_radianceClearskyBackgroundTransmission(self, spectral_radiance: pyarts3.arts.StokvecVector | None = None, spectral_radiance_jacobian: pyarts3.arts.StokvecMatrix | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, propagation_matrix_agenda: pyarts3.arts.Agenda | None = None, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, spectral_radiance_background: pyarts3.arts.StokvecVector | None = None, spectral_radiance_background_jacobian: pyarts3.arts.StokvecMatrix | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, hse_derivative: pyarts3.arts.Index | None = None) None
Computes clearsky transmission of spectral radiances
Wrapper calling Methods (in order):
Equivalent (mostly) Python code:
1ws = pyarts.Workspace() 2 3# ... 4 5 ws.ray_path_pointBackground() 6 ws.ray_path_atmospheric_pointFromPath() 7 ws.ray_path_frequency_gridFromPath() 8 ws.ray_path_propagation_matrixFromPath() 9 ws.ray_path_transmission_matrixFromPath() 10 ws.ray_path_transmission_matrix_cumulativeFromPath() 11 ws.transmission_matrix_backgroundFromPathPropagationBack() 12 ws.spectral_radianceCumulativeTransmission() 13 ws.spectral_radiance_jacobianFromBackground() 14 ws.spectral_radiance_jacobianAddPathPropagation()
Author: Richard Larsson
- Parameters:
spectral_radiance (StokvecVector, optional) – A spectral radiance vector. See
spectral_radiance
, defaults toself.spectral_radiance
[OUT]spectral_radiance_jacobian (StokvecMatrix, optional) – Jacobian of
spectral_radiance
with respect tojacobian_targets
. Seespectral_radiance_jacobian
, defaults toself.spectral_radiance_jacobian
[OUT]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]propagation_matrix_agenda (Agenda, optional) – Compute the propagation matrix, the non-LTE source vector, and their derivatives. See
propagation_matrix_agenda
, defaults toself.propagation_matrix_agenda
[IN]ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[IN]spectral_radiance_background (StokvecVector, optional) – Spectral radiance from the background. See
spectral_radiance_background
, defaults toself.spectral_radiance_background
[IN]spectral_radiance_background_jacobian (StokvecMatrix, optional) – Spectral radiance derivative from the background. See
spectral_radiance_background_jacobian
, defaults toself.spectral_radiance_background_jacobian
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]hse_derivative (Index, optional) – Flag to compute the hypsometric distance derivatives. Defaults to
0
[IN]
- spectral_radianceClearskyEmission(self, spectral_radiance: pyarts3.arts.StokvecVector | None = None, spectral_radiance_jacobian: pyarts3.arts.StokvecMatrix | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, propagation_matrix_agenda: pyarts3.arts.Agenda | None = None, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, spectral_radiance_space_agenda: pyarts3.arts.Agenda | None = None, spectral_radiance_surface_agenda: pyarts3.arts.Agenda | None = None, subsurface_field: pyarts3.arts.SubsurfaceField | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, hse_derivative: pyarts3.arts.Index | None = None) None
Computes clearsky emission of spectral radiances
Wrapper calling Methods (in order):
Equivalent (mostly) Python code:
1ws = pyarts.Workspace() 2 3# ... 4 5 ws.ray_path_pointBackground() 6 ws.spectral_radiance_backgroundAgendasAtEndOfPath() 7 ws.ray_path_atmospheric_pointFromPath() 8 ws.ray_path_frequency_gridFromPath() 9 ws.ray_path_propagation_matrixFromPath() 10 ws.ray_path_transmission_matrixFromPath() 11 ws.ray_path_transmission_matrix_cumulativeFromPath() 12 ws.ray_path_spectral_radiance_sourceFromPropmat() 13 ws.transmission_matrix_backgroundFromPathPropagationBack() 14 ws.spectral_radianceStepByStepEmission() 15 ws.spectral_radiance_jacobianFromBackground() 16 ws.spectral_radiance_jacobianAddPathPropagation()
Author: Richard Larsson
- Parameters:
spectral_radiance (StokvecVector, optional) – A spectral radiance vector. See
spectral_radiance
, defaults toself.spectral_radiance
[OUT]spectral_radiance_jacobian (StokvecMatrix, optional) – Jacobian of
spectral_radiance
with respect tojacobian_targets
. Seespectral_radiance_jacobian
, defaults toself.spectral_radiance_jacobian
[OUT]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]propagation_matrix_agenda (Agenda, optional) – Compute the propagation matrix, the non-LTE source vector, and their derivatives. See
propagation_matrix_agenda
, defaults toself.propagation_matrix_agenda
[IN]ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[IN]spectral_radiance_space_agenda (Agenda, optional) – Spectral radiance as seen of space. See
spectral_radiance_space_agenda
, defaults toself.spectral_radiance_space_agenda
[IN]spectral_radiance_surface_agenda (Agenda, optional) – Spectral radiance as seen of the surface. See
spectral_radiance_surface_agenda
, defaults toself.spectral_radiance_surface_agenda
[IN]subsurface_field (SubsurfaceField, optional) – The sub0surface field describes the sub-surface properties. See
subsurface_field
, defaults toself.subsurface_field
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]hse_derivative (Index, optional) – Flag to compute the hypsometric distance derivatives. Defaults to
0
[IN]
- spectral_radianceClearskyRayleighScattering(self, spectral_radiance: pyarts3.arts.StokvecVector | None = None, spectral_radiance_jacobian: pyarts3.arts.StokvecMatrix | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, propagation_matrix_agenda: pyarts3.arts.Agenda | None = None, propagation_matrix_scattering_agenda: pyarts3.arts.Agenda | None = None, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, ray_path_suns_path: pyarts3.arts.ArrayOfArrayOfArrayOfPropagationPathPoint | None = None, spectral_radiance_space_agenda: pyarts3.arts.Agenda | None = None, spectral_radiance_surface_agenda: pyarts3.arts.Agenda | None = None, subsurface_field: pyarts3.arts.SubsurfaceField | None = None, suns: pyarts3.arts.ArrayOfSun | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, hse_derivative: pyarts3.arts.Index | None = None, depolarization_factor: pyarts3.arts.Numeric | None = None) None
Computes clearsky emission of spectral radiances with solar Rayleigh scattering
Wrapper calling Methods (in order):
Equivalent (mostly) Python code:
1ws = pyarts.Workspace() 2 3# ... 4 5 ws.ray_path_pointBackground() 6 ws.spectral_radiance_backgroundAgendasAtEndOfPath() 7 ws.ray_path_atmospheric_pointFromPath() 8 ws.ray_path_frequency_gridFromPath() 9 ws.ray_path_propagation_matrixFromPath() 10 ws.ray_path_propagation_matrix_scatteringFromPath() 11 ws.ray_path_propagation_matrixAddScattering() 12 ws.ray_path_transmission_matrixFromPath() 13 ws.ray_path_transmission_matrix_cumulativeFromPath() 14 ws.ray_path_spectral_radiance_sourceFromPropmat() 15 ws.ray_path_spectral_radiance_scatteringSunsFirstOrderRayleigh() 16 ws.ray_path_spectral_radiance_sourceAddScattering() 17 ws.transmission_matrix_backgroundFromPathPropagationBack() 18 ws.spectral_radianceStepByStepEmission() 19 ws.spectral_radiance_jacobianFromBackground() 20 ws.spectral_radiance_jacobianAddPathPropagation()
Author: Richard Larsson
- Parameters:
spectral_radiance (StokvecVector, optional) – A spectral radiance vector. See
spectral_radiance
, defaults toself.spectral_radiance
[OUT]spectral_radiance_jacobian (StokvecMatrix, optional) – Jacobian of
spectral_radiance
with respect tojacobian_targets
. Seespectral_radiance_jacobian
, defaults toself.spectral_radiance_jacobian
[OUT]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]propagation_matrix_agenda (Agenda, optional) – Compute the propagation matrix, the non-LTE source vector, and their derivatives. See
propagation_matrix_agenda
, defaults toself.propagation_matrix_agenda
[IN]propagation_matrix_scattering_agenda (Agenda, optional) – Compute the part of the propagation matrix that relates to scattering. See
propagation_matrix_scattering_agenda
, defaults toself.propagation_matrix_scattering_agenda
[IN]ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[IN]ray_path_suns_path (ArrayOfArrayOfArrayOfPropagationPathPoint, optional) – A list of paths to the suns from the ray path. See
ray_path_suns_path
, defaults toself.ray_path_suns_path
[IN]spectral_radiance_space_agenda (Agenda, optional) – Spectral radiance as seen of space. See
spectral_radiance_space_agenda
, defaults toself.spectral_radiance_space_agenda
[IN]spectral_radiance_surface_agenda (Agenda, optional) – Spectral radiance as seen of the surface. See
spectral_radiance_surface_agenda
, defaults toself.spectral_radiance_surface_agenda
[IN]subsurface_field (SubsurfaceField, optional) – The sub0surface field describes the sub-surface properties. See
subsurface_field
, defaults toself.subsurface_field
[IN]suns (ArrayOfSun, optional) – A list of
Sun
. Seesuns
, defaults toself.suns
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]hse_derivative (Index, optional) – Flag to compute the hypsometric distance derivatives. Defaults to
0
[IN]depolarization_factor (Numeric, optional) – The depolarization factor to use. Defaults to
0
[IN]
- spectral_radianceClearskyTransmission(self, spectral_radiance: pyarts3.arts.StokvecVector | None = None, spectral_radiance_jacobian: pyarts3.arts.StokvecMatrix | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, propagation_matrix_agenda: pyarts3.arts.Agenda | None = None, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, spectral_radiance_space_agenda: pyarts3.arts.Agenda | None = None, spectral_radiance_surface_agenda: pyarts3.arts.Agenda | None = None, subsurface_field: pyarts3.arts.SubsurfaceField | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, hse_derivative: pyarts3.arts.Index | None = None) None
Computes clearsky transmission of spectral radiances
Wrapper calling Methods (in order):
Equivalent (mostly) Python code:
1ws = pyarts.Workspace() 2 3# ... 4 5 ws.ray_path_pointBackground() 6 ws.spectral_radiance_backgroundAgendasAtEndOfPath() 7 ws.ray_path_atmospheric_pointFromPath() 8 ws.ray_path_frequency_gridFromPath() 9 ws.ray_path_propagation_matrixFromPath() 10 ws.ray_path_transmission_matrixFromPath() 11 ws.ray_path_transmission_matrix_cumulativeFromPath() 12 ws.transmission_matrix_backgroundFromPathPropagationBack() 13 ws.spectral_radianceCumulativeTransmission() 14 ws.spectral_radiance_jacobianFromBackground() 15 ws.spectral_radiance_jacobianAddPathPropagation()
Author: Richard Larsson
- Parameters:
spectral_radiance (StokvecVector, optional) – A spectral radiance vector. See
spectral_radiance
, defaults toself.spectral_radiance
[OUT]spectral_radiance_jacobian (StokvecMatrix, optional) – Jacobian of
spectral_radiance
with respect tojacobian_targets
. Seespectral_radiance_jacobian
, defaults toself.spectral_radiance_jacobian
[OUT]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]propagation_matrix_agenda (Agenda, optional) – Compute the propagation matrix, the non-LTE source vector, and their derivatives. See
propagation_matrix_agenda
, defaults toself.propagation_matrix_agenda
[IN]ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[IN]spectral_radiance_space_agenda (Agenda, optional) – Spectral radiance as seen of space. See
spectral_radiance_space_agenda
, defaults toself.spectral_radiance_space_agenda
[IN]spectral_radiance_surface_agenda (Agenda, optional) – Spectral radiance as seen of the surface. See
spectral_radiance_surface_agenda
, defaults toself.spectral_radiance_surface_agenda
[IN]subsurface_field (SubsurfaceField, optional) – The sub0surface field describes the sub-surface properties. See
subsurface_field
, defaults toself.subsurface_field
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]hse_derivative (Index, optional) – Flag to compute the hypsometric distance derivatives. Defaults to
0
[IN]
- spectral_radianceCumulativeTransmission(self, spectral_radiance: pyarts3.arts.StokvecVector | None = None, ray_path_spectral_radiance_jacobian: pyarts3.arts.ArrayOfStokvecMatrix | None = None, ray_path_transmission_matrix: pyarts3.arts.ArrayOfMuelmatVector | None = None, ray_path_transmission_matrix_cumulative: pyarts3.arts.ArrayOfMuelmatVector | None = None, ray_path_transmission_matrix_jacobian: pyarts3.arts.ArrayOfMuelmatTensor3 | None = None, spectral_radiance_background: pyarts3.arts.StokvecVector | None = None) None
Gets the spectral radiance from the path transmission.
Also get the Jacobian of the spectral radiance with regards to the path parameters.
Author: Richard Larsson
Used by wrapper methods
- Parameters:
spectral_radiance (StokvecVector, optional) – A spectral radiance vector. See
spectral_radiance
, defaults toself.spectral_radiance
[OUT]ray_path_spectral_radiance_jacobian (ArrayOfStokvecMatrix, optional) – Spectral radiance derivative along the propagation path. See
ray_path_spectral_radiance_jacobian
, defaults toself.ray_path_spectral_radiance_jacobian
[OUT]ray_path_transmission_matrix (ArrayOfMuelmatVector, optional) – Transmission matrices along the propagation path. See
ray_path_transmission_matrix
, defaults toself.ray_path_transmission_matrix
[IN]ray_path_transmission_matrix_cumulative (ArrayOfMuelmatVector, optional) – Cumulative transmission matrices along the propagation path. See
ray_path_transmission_matrix_cumulative
, defaults toself.ray_path_transmission_matrix_cumulative
[IN]ray_path_transmission_matrix_jacobian (ArrayOfMuelmatTensor3, optional) – Transmission derivative matrices along the propagation path. See
ray_path_transmission_matrix_jacobian
, defaults toself.ray_path_transmission_matrix_jacobian
[IN]spectral_radiance_background (StokvecVector, optional) – Spectral radiance from the background. See
spectral_radiance_background
, defaults toself.spectral_radiance_background
[IN]
- spectral_radianceDefaultTransmission(self, spectral_radiance: pyarts3.arts.StokvecVector | None = None, spectral_radiance_jacobian: pyarts3.arts.StokvecMatrix | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None) None
Sets default
spectral_radiance
andspectral_radiance_jacobian
for transmission.The Jacobian variable is all 0s, the background is [1 0 0 0] everywhere
Author: Richard Larsson
- Parameters:
spectral_radiance (StokvecVector, optional) – A spectral radiance vector. See
spectral_radiance
, defaults toself.spectral_radiance
[OUT]spectral_radiance_jacobian (StokvecMatrix, optional) – Jacobian of
spectral_radiance
with respect tojacobian_targets
. Seespectral_radiance_jacobian
, defaults toself.spectral_radiance_jacobian
[OUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]
- spectral_radianceFlatScalarReflectance(self, spectral_radiance: pyarts3.arts.StokvecVector | None = None, spectral_radiance_jacobian: pyarts3.arts.StokvecMatrix | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, subsurface_field: pyarts3.arts.SubsurfaceField | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, ray_path_point: pyarts3.arts.PropagationPathPoint | None = None, spectral_radiance_observer_agenda: pyarts3.arts.Agenda | None = None) None
Set surface spectral radiance from Planck function of the surface temperature and the reflectance of incoming radiation
Gets incoming radiation by placing an observer at the surface looking at the specular reflection of the outgoing radiation (as described by
ray_path_point
)The surface field must contain the surface temperature and the reflectance. The reflectance lives under the
SurfacePropertyTag
key “flat scalar reflectance”.Author: Richard Larsson
- Parameters:
spectral_radiance (StokvecVector, optional) – A spectral radiance vector. See
spectral_radiance
, defaults toself.spectral_radiance
[OUT]spectral_radiance_jacobian (StokvecMatrix, optional) – Jacobian of
spectral_radiance
with respect tojacobian_targets
. Seespectral_radiance_jacobian
, defaults toself.spectral_radiance_jacobian
[OUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]subsurface_field (SubsurfaceField, optional) – The sub0surface field describes the sub-surface properties. See
subsurface_field
, defaults toself.subsurface_field
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]ray_path_point (PropagationPathPoint, optional) – A single path point. See
ray_path_point
, defaults toself.ray_path_point
[IN]spectral_radiance_observer_agenda (Agenda, optional) – Spectral radiance as seen from the input position and environment. See
spectral_radiance_observer_agenda
, defaults toself.spectral_radiance_observer_agenda
[IN]
- spectral_radianceIntegrateDisort(self, spectral_radiance: pyarts3.arts.StokvecVector | None = None, disort_spectral_radiance_field: pyarts3.arts.DisortRadiance | None = None, disort_quadrature: pyarts3.arts.ZenithGriddedField1 | None = None) None
Integrate Disort spectral radiance.
Author: Richard Larsson
- Parameters:
spectral_radiance (StokvecVector, optional) – A spectral radiance vector. See
spectral_radiance
, defaults toself.spectral_radiance
[OUT]disort_spectral_radiance_field (DisortRadiance, optional) – The spectral radiance field from Disort. See
disort_spectral_radiance_field
, defaults toself.disort_spectral_radiance_field
[IN]disort_quadrature (ZenithGriddedField1, optional) – The quadrature angles for Disort with accompying weights. See
disort_quadrature
, defaults toself.disort_quadrature
[IN]
- spectral_radianceStepByStepEmission(self, spectral_radiance: pyarts3.arts.StokvecVector | None = None, ray_path_spectral_radiance_jacobian: pyarts3.arts.ArrayOfStokvecMatrix | None = None, ray_path_transmission_matrix: pyarts3.arts.ArrayOfMuelmatVector | None = None, ray_path_transmission_matrix_cumulative: pyarts3.arts.ArrayOfMuelmatVector | None = None, ray_path_transmission_matrix_jacobian: pyarts3.arts.ArrayOfMuelmatTensor3 | None = None, ray_path_spectral_radiance_source: pyarts3.arts.ArrayOfStokvecVector | None = None, ray_path_spectral_radiance_source_jacobian: pyarts3.arts.ArrayOfStokvecMatrix | None = None, spectral_radiance_background: pyarts3.arts.StokvecVector | None = None) None
Gets the spectral radiance from the path.
This uses a step-by-step solver to propagate background radiation along the path.
Author: Richard Larsson
Used by wrapper methods
- Parameters:
spectral_radiance (StokvecVector, optional) – A spectral radiance vector. See
spectral_radiance
, defaults toself.spectral_radiance
[OUT]ray_path_spectral_radiance_jacobian (ArrayOfStokvecMatrix, optional) – Spectral radiance derivative along the propagation path. See
ray_path_spectral_radiance_jacobian
, defaults toself.ray_path_spectral_radiance_jacobian
[OUT]ray_path_transmission_matrix (ArrayOfMuelmatVector, optional) – Transmission matrices along the propagation path. See
ray_path_transmission_matrix
, defaults toself.ray_path_transmission_matrix
[IN]ray_path_transmission_matrix_cumulative (ArrayOfMuelmatVector, optional) – Cumulative transmission matrices along the propagation path. See
ray_path_transmission_matrix_cumulative
, defaults toself.ray_path_transmission_matrix_cumulative
[IN]ray_path_transmission_matrix_jacobian (ArrayOfMuelmatTensor3, optional) – Transmission derivative matrices along the propagation path. See
ray_path_transmission_matrix_jacobian
, defaults toself.ray_path_transmission_matrix_jacobian
[IN]ray_path_spectral_radiance_source (ArrayOfStokvecVector, optional) – Source vectors along the propagation path. See
ray_path_spectral_radiance_source
, defaults toself.ray_path_spectral_radiance_source
[IN]ray_path_spectral_radiance_source_jacobian (ArrayOfStokvecMatrix, optional) – Source derivative vectors along the propagation path. See
ray_path_spectral_radiance_source_jacobian
, defaults toself.ray_path_spectral_radiance_source_jacobian
[IN]spectral_radiance_background (StokvecVector, optional) – Spectral radiance from the background. See
spectral_radiance_background
, defaults toself.spectral_radiance_background
[IN]
- spectral_radianceSunOrCosmicBackground(self, spectral_radiance: pyarts3.arts.StokvecVector | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, sun_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, sun: pyarts3.arts.Sun | None = None, surface_field: pyarts3.arts.SurfaceField | None = None) None
Get the spectral radiance of a sun or of the cosmic background if the sun is not hit.
Author: Richard Larsson
- Parameters:
spectral_radiance (StokvecVector, optional) – A spectral radiance vector. See
spectral_radiance
, defaults toself.spectral_radiance
[OUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]sun_path (ArrayOfPropagationPathPoint, optional) – A path to a sun if it is visible. See
sun_path
, defaults toself.sun_path
[IN]sun (Sun, optional) – A sun. See
sun
, defaults toself.sun
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]
- spectral_radianceSunsOrCosmicBackground(self, spectral_radiance: pyarts3.arts.StokvecVector | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, ray_path_point: pyarts3.arts.PropagationPathPoint | None = None, suns: pyarts3.arts.ArrayOfSun | None = None, surface_field: pyarts3.arts.SurfaceField | None = None) None
Get the spectral radiance of a sun or of the cosmic background if no sun is hit.
Note that only the first sun is used if multiple suns are defined, so it is advantageous to have sorted
suns
by distance before running this code.Author: Richard Larsson
- Parameters:
spectral_radiance (StokvecVector, optional) – A spectral radiance vector. See
spectral_radiance
, defaults toself.spectral_radiance
[OUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]ray_path_point (PropagationPathPoint, optional) – A single path point. See
ray_path_point
, defaults toself.ray_path_point
[IN]suns (ArrayOfSun, optional) – A list of
Sun
. Seesuns
, defaults toself.suns
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]
- spectral_radianceSurfaceBlackbody(self, spectral_radiance: pyarts3.arts.StokvecVector | None = None, spectral_radiance_jacobian: pyarts3.arts.StokvecMatrix | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, ray_path_point: pyarts3.arts.PropagationPathPoint | None = None) None
Set surface spectral radiance from Planck function of the surface temperature
Author: Richard Larsson
- Parameters:
spectral_radiance (StokvecVector, optional) – A spectral radiance vector. See
spectral_radiance
, defaults toself.spectral_radiance
[OUT]spectral_radiance_jacobian (StokvecMatrix, optional) – Jacobian of
spectral_radiance
with respect tojacobian_targets
. Seespectral_radiance_jacobian
, defaults toself.spectral_radiance_jacobian
[OUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]ray_path_point (PropagationPathPoint, optional) – A single path point. See
ray_path_point
, defaults toself.ray_path_point
[IN]
- spectral_radianceUniformCosmicBackground(self, spectral_radiance: pyarts3.arts.StokvecVector | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None) None
Background spectral radiance is from a uniform cosmic background temperature.
Author: Richard Larsson
- Parameters:
spectral_radiance (StokvecVector, optional) – A spectral radiance vector. See
spectral_radiance
, defaults toself.spectral_radiance
[OUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]
- spectral_radiance_backgroundAgendasAtEndOfPath(self, spectral_radiance_background: pyarts3.arts.StokvecVector | None = None, spectral_radiance_background_jacobian: pyarts3.arts.StokvecMatrix | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, ray_path_point: pyarts3.arts.PropagationPathPoint | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, subsurface_field: pyarts3.arts.SubsurfaceField | None = None, spectral_radiance_space_agenda: pyarts3.arts.Agenda | None = None, spectral_radiance_surface_agenda: pyarts3.arts.Agenda | None = None) None
Computes the background radiation.
Author: Richard Larsson
Used by wrapper methods
- Parameters:
spectral_radiance_background (StokvecVector, optional) – Spectral radiance from the background. See
spectral_radiance_background
, defaults toself.spectral_radiance_background
[OUT]spectral_radiance_background_jacobian (StokvecMatrix, optional) – Spectral radiance derivative from the background. See
spectral_radiance_background_jacobian
, defaults toself.spectral_radiance_background_jacobian
[OUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]ray_path_point (PropagationPathPoint, optional) – A single path point. See
ray_path_point
, defaults toself.ray_path_point
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]subsurface_field (SubsurfaceField, optional) – The sub0surface field describes the sub-surface properties. See
subsurface_field
, defaults toself.subsurface_field
[IN]spectral_radiance_space_agenda (Agenda, optional) – Spectral radiance as seen of space. See
spectral_radiance_space_agenda
, defaults toself.spectral_radiance_space_agenda
[IN]spectral_radiance_surface_agenda (Agenda, optional) – Spectral radiance as seen of the surface. See
spectral_radiance_surface_agenda
, defaults toself.spectral_radiance_surface_agenda
[IN]
- spectral_radiance_fieldFromOperatorPath(self, spectral_radiance_field: pyarts3.arts.GriddedSpectralField6 | None = None, spectral_radiance_operator: pyarts3.arts.SpectralRadianceOperator | None = None, ray_path_observer_agenda: pyarts3.arts.Agenda | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, zenith_grid: pyarts3.arts.ZenithGrid | None = None, azimuth_grid: pyarts3.arts.AzimuthGrid | None = None) None
Computes the spectral radiance field using
ray_path_observer_agenda
.Each point is in computed individually, so there will be zenith x azimuth x altitude x latitude x longitude x frequency number of calculations. The positional arguments are taken from
spectral_radiance_operator
.If the code is not already in parallel operation mode when this method is called, the first 5 dimensions are computed in parallel.
Author: Richard Larsson
- Parameters:
spectral_radiance_field (GriddedSpectralField6, optional) – The spectral radiance field. See
spectral_radiance_field
, defaults toself.spectral_radiance_field
[OUT]spectral_radiance_operator (SpectralRadianceOperator, optional) – The spectral radiance operator. See
spectral_radiance_operator
, defaults toself.spectral_radiance_operator
[IN]ray_path_observer_agenda (Agenda, optional) – Get the propagation path as it is obeserved. See
ray_path_observer_agenda
, defaults toself.ray_path_observer_agenda
[IN]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]zenith_grid (ZenithGrid, optional) – A single zenith angle grid. See
zenith_grid
, defaults toself.zenith_grid
[IN]azimuth_grid (AzimuthGrid) – The azimuth grid. [IN]
- spectral_radiance_fieldFromOperatorPlanarGeometric(self, spectral_radiance_field: pyarts3.arts.GriddedSpectralField6 | None = None, spectral_radiance_operator: pyarts3.arts.SpectralRadianceOperator | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, zenith_grid: pyarts3.arts.ZenithGrid | None = None, azimuth_grid: pyarts3.arts.AzimuthGrid | None = None) None
Computes the spectral radiance field assuming planar geometric paths
A planar geometric path is just defined by a 1D atmospheric profile. If the
spectral_radiance_operator
contains more than one latitude and/or longitude point, their altitude profiles are treated independently.Limitations:
The zenith grid is not allowed to contain the value 90 degrees.
Author: Richard Larsson
- Parameters:
spectral_radiance_field (GriddedSpectralField6, optional) – The spectral radiance field. See
spectral_radiance_field
, defaults toself.spectral_radiance_field
[OUT]spectral_radiance_operator (SpectralRadianceOperator, optional) – The spectral radiance operator. See
spectral_radiance_operator
, defaults toself.spectral_radiance_operator
[IN]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]zenith_grid (ZenithGrid, optional) – A single zenith angle grid. See
zenith_grid
, defaults toself.zenith_grid
[IN]azimuth_grid (AzimuthGrid) – The azimuth grid. [IN]
- spectral_radiance_fieldProfilePseudo2D(self, spectral_radiance_field: pyarts3.arts.GriddedSpectralField6 | None = None, propagation_matrix_agenda: pyarts3.arts.Agenda | None = None, atmospheric_profile: pyarts3.arts.ArrayOfAtmPoint | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, zenith_grid: pyarts3.arts.ZenithGrid | None = None, altitude_grid: pyarts3.arts.AscendingGrid | None = None, latitude: pyarts3.arts.Numeric | None = None, longitude: pyarts3.arts.Numeric | None = None, azimuth: pyarts3.arts.Numeric | None = None) None
Computes the spectral radiance field assuming a profile and a pseudo-2D path.
A profile is defined as having space blackbody emission from the top and surface temperature blackbody emissision from the surface.
Limb paths are only considered when the zenith angle misses the next lower level using the same mechanism as in
zenith_gridProfilePseudo2D()
.Author: Richard Larsson
Used by wrapper method
- Parameters:
spectral_radiance_field (GriddedSpectralField6, optional) – The spectral radiance field. See
spectral_radiance_field
, defaults toself.spectral_radiance_field
[OUT]propagation_matrix_agenda (Agenda, optional) – Compute the propagation matrix, the non-LTE source vector, and their derivatives. See
propagation_matrix_agenda
, defaults toself.propagation_matrix_agenda
[IN]atmospheric_profile (ArrayOfAtmPoint, optional) – An atmospheric profile in ARTS. See
atmospheric_profile
, defaults toself.atmospheric_profile
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]zenith_grid (ZenithGrid, optional) – A single zenith angle grid. See
zenith_grid
, defaults toself.zenith_grid
[IN]altitude_grid (AscendingGrid, optional) – An ascending list of
altitude
. Often related to a field or a profile. Seealtitude_grid
, defaults toself.altitude_grid
[IN]latitude (Numeric, optional) – A single latitude. See
latitude
, defaults toself.latitude
[IN]longitude (Numeric, optional) – A single longitude. See
longitude
, defaults toself.longitude
[IN]azimuth (Numeric, optional) – The azimuth. Defaults to
0
[IN]
- spectral_radiance_jacobianAddPathPropagation(self, spectral_radiance_jacobian: pyarts3.arts.StokvecMatrix | None = None, ray_path_spectral_radiance_jacobian: pyarts3.arts.ArrayOfStokvecMatrix | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None) None
Adds the propagation variables to
spectral_radiance_jacobian
Author: Richard Larsson
Used by wrapper methods
- Parameters:
spectral_radiance_jacobian (StokvecMatrix, optional) – Jacobian of
spectral_radiance
with respect tojacobian_targets
. Seespectral_radiance_jacobian
, defaults toself.spectral_radiance_jacobian
[INOUT]ray_path_spectral_radiance_jacobian (ArrayOfStokvecMatrix, optional) – Spectral radiance derivative along the propagation path. See
ray_path_spectral_radiance_jacobian
, defaults toself.ray_path_spectral_radiance_jacobian
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[IN]
- spectral_radiance_jacobianAddSensorJacobianPerturbations(self, spectral_radiance_jacobian: pyarts3.arts.StokvecMatrix | None = None, spectral_radiance: pyarts3.arts.StokvecVector | None = None, measurement_sensor: pyarts3.arts.ArrayOfSensorObsel | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, spectral_radiance_observer_position: pyarts3.arts.Vector3 | None = None, spectral_radiance_observer_line_of_sight: pyarts3.arts.Vector2 | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, subsurface_field: pyarts3.arts.SubsurfaceField | None = None, spectral_radiance_observer_agenda: pyarts3.arts.Agenda | None = None) None
Adds sensor properties to the
spectral_radiance_jacobian
.This is done via perturbation based on the input delta values to the sensor Jacobian targets and a callback to
spectral_radiance_observer_agenda
with a modifiedjacobian_targets
, making it safe to use this method insidespectral_radiance_observer_agenda
.Author: Richard Larsson
- Parameters:
spectral_radiance_jacobian (StokvecMatrix, optional) – Jacobian of
spectral_radiance
with respect tojacobian_targets
. Seespectral_radiance_jacobian
, defaults toself.spectral_radiance_jacobian
[INOUT]spectral_radiance (StokvecVector, optional) – A spectral radiance vector. See
spectral_radiance
, defaults toself.spectral_radiance
[IN]measurement_sensor (ArrayOfSensorObsel, optional) – A list of sensor elements. See
measurement_sensor
, defaults toself.measurement_sensor
[IN]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]spectral_radiance_observer_position (Vector3, optional) – The position of an observer of spectral radiance. See
spectral_radiance_observer_position
, defaults toself.spectral_radiance_observer_position
[IN]spectral_radiance_observer_line_of_sight (Vector2, optional) – The line-of-sight of the observer of spectral radiance. See
spectral_radiance_observer_line_of_sight
, defaults toself.spectral_radiance_observer_line_of_sight
[IN]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]subsurface_field (SubsurfaceField, optional) – The sub0surface field describes the sub-surface properties. See
subsurface_field
, defaults toself.subsurface_field
[IN]spectral_radiance_observer_agenda (Agenda, optional) – Spectral radiance as seen from the input position and environment. See
spectral_radiance_observer_agenda
, defaults toself.spectral_radiance_observer_agenda
[IN]
- spectral_radiance_jacobianEmpty(self, spectral_radiance_jacobian: pyarts3.arts.StokvecMatrix | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None) None
Set the cosmic background radiation derivative to empty.
Size : (
jacobian_targets
,frequency_grid
)Author: Richard Larsson
- Parameters:
spectral_radiance_jacobian (StokvecMatrix, optional) – Jacobian of
spectral_radiance
with respect tojacobian_targets
. Seespectral_radiance_jacobian
, defaults toself.spectral_radiance_jacobian
[OUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]
- spectral_radiance_jacobianFromBackground(self, spectral_radiance_jacobian: pyarts3.arts.StokvecMatrix | None = None, spectral_radiance_background_jacobian: pyarts3.arts.StokvecMatrix | None = None, transmission_matrix_background: pyarts3.arts.MuelmatVector | None = None) None
Sets
spectral_radiance_jacobian
from the background valuesAuthor: Richard Larsson
Used by wrapper methods
- Parameters:
spectral_radiance_jacobian (StokvecMatrix, optional) – Jacobian of
spectral_radiance
with respect tojacobian_targets
. Seespectral_radiance_jacobian
, defaults toself.spectral_radiance_jacobian
[OUT]spectral_radiance_background_jacobian (StokvecMatrix, optional) – Spectral radiance derivative from the background. See
spectral_radiance_background_jacobian
, defaults toself.spectral_radiance_background_jacobian
[IN]transmission_matrix_background (MuelmatVector, optional) – Transmittance from the background. See
transmission_matrix_background
, defaults toself.transmission_matrix_background
[IN]
- spectral_radiance_observer_agendaExecute(self, spectral_radiance: pyarts3.arts.StokvecVector | None = None, spectral_radiance_jacobian: pyarts3.arts.StokvecMatrix | None = None, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, spectral_radiance_observer_position: pyarts3.arts.Vector3 | None = None, spectral_radiance_observer_line_of_sight: pyarts3.arts.Vector2 | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, subsurface_field: pyarts3.arts.SubsurfaceField | None = None, spectral_radiance_observer_agenda: pyarts3.arts.Agenda | None = None) None
Executes
spectral_radiance_observer_agenda
, see it for more detailsAuthor:
Automatically Generated
- Parameters:
spectral_radiance (StokvecVector, optional) – A spectral radiance vector. See
spectral_radiance
, defaults toself.spectral_radiance
[OUT]spectral_radiance_jacobian (StokvecMatrix, optional) – Jacobian of
spectral_radiance
with respect tojacobian_targets
. Seespectral_radiance_jacobian
, defaults toself.spectral_radiance_jacobian
[OUT]ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[OUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]spectral_radiance_observer_position (Vector3, optional) – The position of an observer of spectral radiance. See
spectral_radiance_observer_position
, defaults toself.spectral_radiance_observer_position
[IN]spectral_radiance_observer_line_of_sight (Vector2, optional) – The line-of-sight of the observer of spectral radiance. See
spectral_radiance_observer_line_of_sight
, defaults toself.spectral_radiance_observer_line_of_sight
[IN]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]subsurface_field (SubsurfaceField, optional) – The sub0surface field describes the sub-surface properties. See
subsurface_field
, defaults toself.subsurface_field
[IN]spectral_radiance_observer_agenda (Agenda, optional) – Spectral radiance as seen from the input position and environment. See
spectral_radiance_observer_agenda
, defaults toself.spectral_radiance_observer_agenda
[IN]
- spectral_radiance_observer_agendaExecuteOperator(self, spectral_radiance: pyarts3.arts.StokvecVector | None = None, spectral_radiance_jacobian: pyarts3.arts.StokvecMatrix | None = None, ray_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, spectral_radiance_observer_position: pyarts3.arts.Vector3 | None = None, spectral_radiance_observer_line_of_sight: pyarts3.arts.Vector2 | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, subsurface_field: pyarts3.arts.SubsurfaceField | None = None, spectral_radiance_observer_agenda_operator: pyarts3.arts.spectral_radiance_observer_agendaOperator | None = None) None
Executes an operator emulating
spectral_radiance_observer_agenda
, see it, and alsospectral_radiance_observer_agendaOperator
, for more detailsAuthor:
Automatically Generated
- Parameters:
spectral_radiance (StokvecVector, optional) – A spectral radiance vector. See
spectral_radiance
, defaults toself.spectral_radiance
[OUT]spectral_radiance_jacobian (StokvecMatrix, optional) – Jacobian of
spectral_radiance
with respect tojacobian_targets
. Seespectral_radiance_jacobian
, defaults toself.spectral_radiance_jacobian
[OUT]ray_path (ArrayOfPropagationPathPoint, optional) – A list path points making up a propagation path. See
ray_path
, defaults toself.ray_path
[OUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]spectral_radiance_observer_position (Vector3, optional) – The position of an observer of spectral radiance. See
spectral_radiance_observer_position
, defaults toself.spectral_radiance_observer_position
[IN]spectral_radiance_observer_line_of_sight (Vector2, optional) – The line-of-sight of the observer of spectral radiance. See
spectral_radiance_observer_line_of_sight
, defaults toself.spectral_radiance_observer_line_of_sight
[IN]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]subsurface_field (SubsurfaceField, optional) – The sub0surface field describes the sub-surface properties. See
subsurface_field
, defaults toself.subsurface_field
[IN]spectral_radiance_observer_agenda_operator (spectral_radiance_observer_agendaOperator) – Operator for
spectral_radiance_observer_agenda
. [IN]
- spectral_radiance_observer_agendaSet(self, spectral_radiance_observer_agenda: pyarts3.arts.Agenda | None = None, option: pyarts3.arts.String | None = None) None
Set
spectral_radiance_observer_agenda
to a specific predefined optionAuthor:
Automatically Generated
- Parameters:
spectral_radiance_observer_agenda (Agenda, optional) – Spectral radiance as seen from the input position and environment. See
spectral_radiance_observer_agenda
, defaults toself.spectral_radiance_observer_agenda
[OUT]option (String, optional) – Choice of generated agenda. Defaults to
"Emission"
[IN]
Valid options
These are the valid options for the
spectral_radiance_observer_agendaSet
method. The listed method calls describe the order of the agenda calls for eachoption
.
spectral_radiance_observer_agendaSet(option="Emission")
- spectral_radiance_observer_agendaSetOperator(self, spectral_radiance_observer_agenda: pyarts3.arts.Agenda | None = None, f: pyarts3.arts.spectral_radiance_observer_agendaOperator | None = None) None
Set
spectral_radiance_observer_agenda
to exclusively use provided external operator. Seespectral_radiance_observer_agendaOperator
for more details.Author:
Automatically Generated
- Parameters:
spectral_radiance_observer_agenda (Agenda, optional) – Spectral radiance as seen from the input position and environment. See
spectral_radiance_observer_agenda
, defaults toself.spectral_radiance_observer_agenda
[OUT]f (spectral_radiance_observer_agendaOperator) – Operator for
spectral_radiance_observer_agenda
. [IN]
- spectral_radiance_operatorClearsky1D(self, spectral_radiance_operator: pyarts3.arts.SpectralRadianceOperator | None = None, atmospheric_field: pyarts3.arts.AtmField | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, altitude_grid: pyarts3.arts.AscendingGrid | None = None, latitude: pyarts3.arts.Numeric | None = None, longitude: pyarts3.arts.Numeric | None = None, cia_extrapolation: pyarts3.arts.Numeric | None = None, cia_robust: pyarts3.arts.Index | None = None) None
Set up a 1D spectral radiance operator
The operator is set up to compute the spectral radiance at any point as seen from a 1D atmospheric profile.
This method will share line-by-line,cross-section, collision-induced absorption, and predefined model data with the workspace (if they exist already when this method is called).
Author: Richard Larsson
- Parameters:
spectral_radiance_operator (SpectralRadianceOperator, optional) – The spectral radiance operator. See
spectral_radiance_operator
, defaults toself.spectral_radiance_operator
[OUT]atmospheric_field (AtmField, optional) – An atmospheric field in ARTS. See
atmospheric_field
, defaults toself.atmospheric_field
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]altitude_grid (AscendingGrid, optional) – An ascending list of
altitude
. Often related to a field or a profile. Seealtitude_grid
, defaults toself.altitude_grid
[IN]latitude (Numeric, optional) – A single latitude. See
latitude
, defaults toself.latitude
[IN]longitude (Numeric, optional) – A single longitude. See
longitude
, defaults toself.longitude
[IN]cia_extrapolation (Numeric, optional) – The extrapolation distance for cia. Defaults to
0
[IN]cia_robust (Index, optional) – The robustness of the cia extrapolation. Defaults to
0
[IN]
- spectral_radiance_space_agendaExecute(self, spectral_radiance: pyarts3.arts.StokvecVector | None = None, spectral_radiance_jacobian: pyarts3.arts.StokvecMatrix | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, ray_path_point: pyarts3.arts.PropagationPathPoint | None = None, spectral_radiance_space_agenda: pyarts3.arts.Agenda | None = None) None
Executes
spectral_radiance_space_agenda
, see it for more detailsAuthor:
Automatically Generated
- Parameters:
spectral_radiance (StokvecVector, optional) – A spectral radiance vector. See
spectral_radiance
, defaults toself.spectral_radiance
[OUT]spectral_radiance_jacobian (StokvecMatrix, optional) – Jacobian of
spectral_radiance
with respect tojacobian_targets
. Seespectral_radiance_jacobian
, defaults toself.spectral_radiance_jacobian
[OUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]ray_path_point (PropagationPathPoint, optional) – A single path point. See
ray_path_point
, defaults toself.ray_path_point
[IN]spectral_radiance_space_agenda (Agenda, optional) – Spectral radiance as seen of space. See
spectral_radiance_space_agenda
, defaults toself.spectral_radiance_space_agenda
[IN]
- spectral_radiance_space_agendaExecuteOperator(self, spectral_radiance: pyarts3.arts.StokvecVector | None = None, spectral_radiance_jacobian: pyarts3.arts.StokvecMatrix | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, ray_path_point: pyarts3.arts.PropagationPathPoint | None = None, spectral_radiance_space_agenda_operator: pyarts3.arts.spectral_radiance_space_agendaOperator | None = None) None
Executes an operator emulating
spectral_radiance_space_agenda
, see it, and alsospectral_radiance_space_agendaOperator
, for more detailsAuthor:
Automatically Generated
- Parameters:
spectral_radiance (StokvecVector, optional) – A spectral radiance vector. See
spectral_radiance
, defaults toself.spectral_radiance
[OUT]spectral_radiance_jacobian (StokvecMatrix, optional) – Jacobian of
spectral_radiance
with respect tojacobian_targets
. Seespectral_radiance_jacobian
, defaults toself.spectral_radiance_jacobian
[OUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]ray_path_point (PropagationPathPoint, optional) – A single path point. See
ray_path_point
, defaults toself.ray_path_point
[IN]spectral_radiance_space_agenda_operator (spectral_radiance_space_agendaOperator) – Operator for
spectral_radiance_space_agenda
. [IN]
- spectral_radiance_space_agendaSet(self, spectral_radiance_space_agenda: pyarts3.arts.Agenda | None = None, option: pyarts3.arts.String | None = None) None
Set
spectral_radiance_space_agenda
to a specific predefined optionAuthor:
Automatically Generated
- Parameters:
spectral_radiance_space_agenda (Agenda, optional) – Spectral radiance as seen of space. See
spectral_radiance_space_agenda
, defaults toself.spectral_radiance_space_agenda
[OUT]option (String, optional) – Choice of generated agenda. Defaults to
"UniformCosmicBackground"
[IN]
Valid options
These are the valid options for the
spectral_radiance_space_agendaSet
method. The listed method calls describe the order of the agenda calls for eachoption
.
spectral_radiance_space_agendaSet(option="UniformCosmicBackground")
Ignore()
, using: input =ray_path_point
spectral_radiance_space_agendaSet(option="SunOrCosmicBackground")
spectral_radiance_space_agendaSet(option="Transmission")
Ignore()
, using: input =ray_path_point
- spectral_radiance_space_agendaSetOperator(self, spectral_radiance_space_agenda: pyarts3.arts.Agenda | None = None, f: pyarts3.arts.spectral_radiance_space_agendaOperator | None = None) None
Set
spectral_radiance_space_agenda
to exclusively use provided external operator. Seespectral_radiance_space_agendaOperator
for more details.Author:
Automatically Generated
- Parameters:
spectral_radiance_space_agenda (Agenda, optional) – Spectral radiance as seen of space. See
spectral_radiance_space_agenda
, defaults toself.spectral_radiance_space_agenda
[OUT]f (spectral_radiance_space_agendaOperator) – Operator for
spectral_radiance_space_agenda
. [IN]
- spectral_radiance_surface_agendaExecute(self, spectral_radiance: pyarts3.arts.StokvecVector | None = None, spectral_radiance_jacobian: pyarts3.arts.StokvecMatrix | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, ray_path_point: pyarts3.arts.PropagationPathPoint | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, subsurface_field: pyarts3.arts.SubsurfaceField | None = None, spectral_radiance_surface_agenda: pyarts3.arts.Agenda | None = None) None
Executes
spectral_radiance_surface_agenda
, see it for more detailsAuthor:
Automatically Generated
- Parameters:
spectral_radiance (StokvecVector, optional) – A spectral radiance vector. See
spectral_radiance
, defaults toself.spectral_radiance
[OUT]spectral_radiance_jacobian (StokvecMatrix, optional) – Jacobian of
spectral_radiance
with respect tojacobian_targets
. Seespectral_radiance_jacobian
, defaults toself.spectral_radiance_jacobian
[OUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]ray_path_point (PropagationPathPoint, optional) – A single path point. See
ray_path_point
, defaults toself.ray_path_point
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]subsurface_field (SubsurfaceField, optional) – The sub0surface field describes the sub-surface properties. See
subsurface_field
, defaults toself.subsurface_field
[IN]spectral_radiance_surface_agenda (Agenda, optional) – Spectral radiance as seen of the surface. See
spectral_radiance_surface_agenda
, defaults toself.spectral_radiance_surface_agenda
[IN]
- spectral_radiance_surface_agendaExecuteOperator(self, spectral_radiance: pyarts3.arts.StokvecVector | None = None, spectral_radiance_jacobian: pyarts3.arts.StokvecMatrix | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None, ray_path_point: pyarts3.arts.PropagationPathPoint | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, subsurface_field: pyarts3.arts.SubsurfaceField | None = None, spectral_radiance_surface_agenda_operator: pyarts3.arts.spectral_radiance_surface_agendaOperator | None = None) None
Executes an operator emulating
spectral_radiance_surface_agenda
, see it, and alsospectral_radiance_surface_agendaOperator
, for more detailsAuthor:
Automatically Generated
- Parameters:
spectral_radiance (StokvecVector, optional) – A spectral radiance vector. See
spectral_radiance
, defaults toself.spectral_radiance
[OUT]spectral_radiance_jacobian (StokvecMatrix, optional) – Jacobian of
spectral_radiance
with respect tojacobian_targets
. Seespectral_radiance_jacobian
, defaults toself.spectral_radiance_jacobian
[OUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]ray_path_point (PropagationPathPoint, optional) – A single path point. See
ray_path_point
, defaults toself.ray_path_point
[IN]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]subsurface_field (SubsurfaceField, optional) – The sub0surface field describes the sub-surface properties. See
subsurface_field
, defaults toself.subsurface_field
[IN]spectral_radiance_surface_agenda_operator (spectral_radiance_surface_agendaOperator) – Operator for
spectral_radiance_surface_agenda
. [IN]
- spectral_radiance_surface_agendaSet(self, spectral_radiance_surface_agenda: pyarts3.arts.Agenda | None = None, option: pyarts3.arts.String | None = None) None
Set
spectral_radiance_surface_agenda
to a specific predefined optionAuthor:
Automatically Generated
- Parameters:
spectral_radiance_surface_agenda (Agenda, optional) – Spectral radiance as seen of the surface. See
spectral_radiance_surface_agenda
, defaults toself.spectral_radiance_surface_agenda
[OUT]option (String, optional) – Choice of generated agenda. Defaults to
"Blackbody"
[IN]
Valid options
These are the valid options for the
spectral_radiance_surface_agendaSet
method. The listed method calls describe the order of the agenda calls for eachoption
.
spectral_radiance_surface_agendaSet(option="Blackbody")
Ignore()
, using: input =subsurface_field
spectral_radiance_surface_agendaSet(option="Transmission")
Ignore()
, using: input =ray_path_point
Ignore()
, using: input =surface_field
Ignore()
, using: input =subsurface_field
spectral_radiance_surface_agendaSet(option="FlatScalarReflectance")
- spectral_radiance_surface_agendaSetOperator(self, spectral_radiance_surface_agenda: pyarts3.arts.Agenda | None = None, f: pyarts3.arts.spectral_radiance_surface_agendaOperator | None = None) None
Set
spectral_radiance_surface_agenda
to exclusively use provided external operator. Seespectral_radiance_surface_agendaOperator
for more details.Author:
Automatically Generated
- Parameters:
spectral_radiance_surface_agenda (Agenda, optional) – Spectral radiance as seen of the surface. See
spectral_radiance_surface_agenda
, defaults toself.spectral_radiance_surface_agenda
[OUT]f (spectral_radiance_surface_agendaOperator) – Operator for
spectral_radiance_surface_agenda
. [IN]
- spectral_radiance_transform_operatorSet(self, spectral_radiance_transform_operator: pyarts3.arts.SpectralRadianceTransformOperator | None = None, option: pyarts3.arts.SpectralRadianceUnitType | None = None) None
Creates a
SpectralRadianceTransformOperator
from aSpectralRadianceUnitType
.Author: Richard Larsson
- Parameters:
spectral_radiance_transform_operator (SpectralRadianceTransformOperator, optional) – The spectral radiance transform operator. See
spectral_radiance_transform_operator
, defaults toself.spectral_radiance_transform_operator
[OUT]option (SpectralRadianceUnitType) – The type of the spectral radiance transform operator to create. See
SpectralRadianceUnitType
for valid values and what they do. [IN]
- subsurface_fieldFromModelState(self, subsurface_field: pyarts3.arts.SubsurfaceField | None = None, model_state_vector: pyarts3.arts.Vector | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None) None
Sets
subsurface_field
to the state of the model.Author: Richard Larsson
Used by wrapper method
- Parameters:
subsurface_field (SubsurfaceField, optional) – The sub0surface field describes the sub-surface properties. See
subsurface_field
, defaults toself.subsurface_field
[INOUT]model_state_vector (Vector, optional) – A state vector of the model. See
model_state_vector
, defaults toself.model_state_vector
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]
- sunBlackbody(self, sun: pyarts3.arts.Sun | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, latitude: pyarts3.arts.Numeric | None = None, longitude: pyarts3.arts.Numeric | None = None, radius: pyarts3.arts.Numeric | None = None, distance: pyarts3.arts.Numeric | None = None, temperature: pyarts3.arts.Numeric | None = None) None
Set
sun
to blackbody.Note
For a Sol-like sun there are huge differences in the UV-range between the actual sun spectrum and the blackbody spectrum with the effective temperature of the sun. The blackbody sun strongly overestimates the UV radiation.
Authors: Jon Petersen, Richard Larsson
- Parameters:
sun (Sun, optional) – A sun. See
sun
, defaults toself.sun
[OUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]latitude (Numeric, optional) – A single latitude. See
latitude
, defaults toself.latitude
[IN]longitude (Numeric, optional) – A single longitude. See
longitude
, defaults toself.longitude
[IN]radius (Numeric, optional) – The radius of the sun in meter. Default is the radius of our sun. . Defaults to
696324200
[IN]distance (Numeric, optional) – The average distance between the sun and the planet in meter. Default value is set to 1 a.u. . Defaults to
149597870700
[IN]temperature (Numeric, optional) – The effective temperature of the suns photosphere in Kelvin. Default is the temperature of our sun - 5772 Kelvin . Defaults to
5772
[IN]
- sunFromGrid(self, sun: pyarts3.arts.Sun | None = None, frequency_grid: pyarts3.arts.AscendingGrid | None = None, latitude: pyarts3.arts.Numeric | None = None, longitude: pyarts3.arts.Numeric | None = None, sun_spectrum_raw: pyarts3.arts.GriddedField2 | None = None, radius: pyarts3.arts.Numeric | None = None, distance: pyarts3.arts.Numeric | None = None, temperature: pyarts3.arts.Numeric | None = None, description: pyarts3.arts.String | None = None) None
Extracts a sun spectrum from a field of such data.
The method allows to obtain the sun spectrum by interpolation from a field of such data. The sun spectrum is expected to be stored as the irradiance at the suns photosphere.
Unit:
GriddedField2: [W m-2 Hz-1]
Vector
frequency_grid
[Hz]Vector
stokes_dim
[1]
Dimensions: [
frequency_grid
, stokes_dim]This method performs an interpolation onto the
frequency_grid
. The point offrequency_grid
that are outside the data frequency grid are initialized according to planck’s law of the temperature variable. Hence, a temperature of 0 means 0s the edges of thefrequency_grid
.Authors: Jon Petersen, Richard Larsson
- Parameters:
sun (Sun, optional) – A sun. See
sun
, defaults toself.sun
[OUT]frequency_grid (AscendingGrid, optional) – A single frequency grid. See
frequency_grid
, defaults toself.frequency_grid
[IN]latitude (Numeric, optional) – A single latitude. See
latitude
, defaults toself.latitude
[IN]longitude (Numeric, optional) – A single longitude. See
longitude
, defaults toself.longitude
[IN]sun_spectrum_raw (GriddedField2) – A raw spectrum. [IN]
radius (Numeric, optional) – The radius of the sun in meter. Default is the radius of our sun. . Defaults to
696324200
[IN]distance (Numeric, optional) – The average distance between the sun and the planet in meter. Default value is set to 1 a.u. . Defaults to
149597870700
[IN]temperature (Numeric, optional) – The effective temperature of the suns photosphere in Kelvin. Default is the temperature of our sun - 5772 Kelvin . Defaults to
5772
[IN]description (String, optional) – A description of the sun. Defaults to
"A sun"
[IN]
- sun_pathFromObserverAgenda(self, sun_path: pyarts3.arts.ArrayOfPropagationPathPoint | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, ray_path_observer_agenda: pyarts3.arts.Agenda | None = None, sun: pyarts3.arts.Sun | None = None, pos: pyarts3.arts.Vector3 | None = None, angle_cut: pyarts3.arts.Numeric | None = None, refinement: pyarts3.arts.Index | None = None, just_hit: pyarts3.arts.Index | None = None) None
Find a path that hits the sun if possible
The algorithm finds the pair of angles with the least error in regards to angular zenith and azimuth offset from the sun. It uses this pair of angles to compute said path. The algorithm is iterative. It first finds the geometric pair of angles pointing at the sun. It then computes the path, using the space-facing path point’s pointing offset relative to the sun to change the angles in the four directions (up, left, right, down) until it finds a better solution. If no better solution is found, the algorithm it refines the angular search to half for every level of refinement above 1, it then stops.
Note that special care is taken to eliminate surface intersections so that part of the sun may still be hit if it is above the horizon. If the sun is entirerly below the horizon, the path will point close to the horizon.
The two control parameters are the
angle_cut
andjust_hit
. Theangle_cut
is the limit in degrees to which the algorithm should search for a better solution. Thejust_hit
is a flag that just returns the first time a path hits the sun.Author: Richard Larsson
- Parameters:
sun_path (ArrayOfPropagationPathPoint, optional) – A path to a sun if it is visible. See
sun_path
, defaults toself.sun_path
[OUT]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]ray_path_observer_agenda (Agenda, optional) – Get the propagation path as it is obeserved. See
ray_path_observer_agenda
, defaults toself.ray_path_observer_agenda
[IN]sun (Sun, optional) – A sun. See
sun
, defaults toself.sun
[IN]pos (Vector3) – An observer position [alt, lat, lon]. [IN]
angle_cut (Numeric, optional) – The angle delta-cutoff in the iterative solver [0.0, …]. Defaults to
0
[IN]refinement (Index, optional) – The refinement of the search algorithm (twice the power of this is the resultion). Defaults to
1
[IN]just_hit (Index, optional) – Whether or not it is enough to just hit the sun or if better accuracy is needed. Defaults to
0
[IN]
- sunsAddSun(self, suns: pyarts3.arts.ArrayOfSun | None = None, sun: pyarts3.arts.Sun | None = None) None
Add
sun
tosuns
, only exist for composability.Author: Richard Larsson
- Parameters:
suns (ArrayOfSun, optional) – A list of
Sun
. Seesuns
, defaults toself.suns
[INOUT]sun (Sun, optional) – A sun. See
sun
, defaults toself.sun
[IN]
- surface_fieldEarth(self, surface_field: pyarts3.arts.SurfaceField | None = None, model: pyarts3.arts.String | None = None, surface_elevation: pyarts3.arts.Numeric | None = None) None
Earth reference ellipsoids.
The reference ellipsoid is set to model the Earth.
See
EarthEllipsoid
for validmodel
Author: Patrick Eriksson
- Parameters:
surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[OUT]model (String, optional) – Model ellipsoid to use. Options listed above. Defaults to
"Sphere"
[IN]surface_elevation (Numeric, optional) – Surface elevation over the full field. Defaults to
0
[IN]
- surface_fieldEuropa(self, surface_field: pyarts3.arts.SurfaceField | None = None, model: pyarts3.arts.String | None = None, surface_elevation: pyarts3.arts.Numeric | None = None) None
Europa reference ellipsoids.
The reference ellipsoid is set to model the Europa.
See
EuropaEllipsoid
for validmodel
.Author: Richard Larsson
- Parameters:
surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[OUT]model (String, optional) – Model ellipsoid to use. Options listed above. Defaults to
"Sphere"
[IN]surface_elevation (Numeric, optional) – Surface elevation over the full field. Defaults to
0
[IN]
- surface_fieldFromModelState(self, surface_field: pyarts3.arts.SurfaceField | None = None, model_state_vector: pyarts3.arts.Vector | None = None, jacobian_targets: pyarts3.arts.JacobianTargets | None = None) None
Sets
surface_field
to the state of the model.Author: Richard Larsson
Used by wrapper method
- Parameters:
surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[INOUT]model_state_vector (Vector, optional) – A state vector of the model. See
model_state_vector
, defaults toself.model_state_vector
[IN]jacobian_targets (JacobianTargets, optional) – A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
, defaults toself.jacobian_targets
[IN]
- surface_fieldGanymede(self, surface_field: pyarts3.arts.SurfaceField | None = None, model: pyarts3.arts.String | None = None, surface_elevation: pyarts3.arts.Numeric | None = None) None
Ganymede reference ellipsoids.
See
GanymedeEllipsoid
for validmodel
.Author: Takayoshi Yamada
- Parameters:
surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[OUT]model (String, optional) – Model ellipsoid to use. Options listed above. Defaults to
"Sphere"
[IN]surface_elevation (Numeric, optional) – Surface elevation over the full field. Defaults to
0
[IN]
- surface_fieldInit(self, surface_field: pyarts3.arts.SurfaceField | None = None, a: pyarts3.arts.Numeric | None = None, b: pyarts3.arts.Numeric | None = None, surface_elevation: pyarts3.arts.Numeric | None = None) None
Manual setting of the reference ellipsoid.
The two values of the reference ellipsoid are set manually. The two arguments correspond directly to first and second element of reference ellipsoid.
Author: Patrick Eriksson
- Parameters:
surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[OUT]a (Numeric) – Average or equatorial radius. [IN]
b (Numeric) – Average or polar radius. [IN]
surface_elevation (Numeric, optional) – Surface elevation over the full field. Defaults to
0
[IN]
- surface_fieldIo(self, surface_field: pyarts3.arts.SurfaceField | None = None, model: pyarts3.arts.String | None = None, surface_elevation: pyarts3.arts.Numeric | None = None) None
Io reference ellipsoids.
The reference ellipsoid is set to model the Io.
See
IoEllipsoid
for validmodel
.Author: Richard Larsson
- Parameters:
surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[OUT]model (String, optional) – Model ellipsoid to use. Options listed above. Defaults to
"Sphere"
[IN]surface_elevation (Numeric, optional) – Surface elevation over the full field. Defaults to
0
[IN]
- surface_fieldJupiter(self, surface_field: pyarts3.arts.SurfaceField | None = None, model: pyarts3.arts.String | None = None, surface_elevation: pyarts3.arts.Numeric | None = None) None
Jupiter reference ellipsoids.
The reference ellipsoid is set to model the Jupiter.
See
JupiterEllipsoid
for validmodel
.Author: Patrick Eriksson
- Parameters:
surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[OUT]model (String, optional) – Model ellipsoid to use. Options listed above. Defaults to
"Sphere"
[IN]surface_elevation (Numeric, optional) – Surface elevation over the full field. Defaults to
0
[IN]
- surface_fieldMars(self, surface_field: pyarts3.arts.SurfaceField | None = None, model: pyarts3.arts.String | None = None, surface_elevation: pyarts3.arts.Numeric | None = None) None
Mars reference ellipsoids.
The reference ellipsoid is set to model the Mars.
See
MarsEllipsoid
for validmodel
.Author: Patrick Eriksson
- Parameters:
surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[OUT]model (String, optional) – Model ellipsoid to use. Options listed above. Defaults to
"Sphere"
[IN]surface_elevation (Numeric, optional) – Surface elevation over the full field. Defaults to
0
[IN]
- surface_fieldMoon(self, surface_field: pyarts3.arts.SurfaceField | None = None, model: pyarts3.arts.String | None = None, surface_elevation: pyarts3.arts.Numeric | None = None) None
Moon reference ellipsoids.
The reference ellipsoid is set to model the Moon.
See
MoonEllipsoid
for validmodel
.Author: Patrick Eriksson
- Parameters:
surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[OUT]model (String, optional) – Model ellipsoid to use. Options listed above. Defaults to
"Sphere"
[IN]surface_elevation (Numeric, optional) – Surface elevation over the full field. Defaults to
0
[IN]
- surface_fieldPlanet(self, surface_field: pyarts3.arts.SurfaceField | None = None, option: pyarts3.arts.String | None = None, surface_elevation: pyarts3.arts.Numeric | None = None) None
Initialize the surface field with the ellipsoid of a planet.
See
PlanetOrMoonType
for validoption
.Author: Richard Larsson
- Parameters:
surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[OUT]option (String) – Choice of planet or moon. [IN]
surface_elevation (Numeric, optional) – Surface elevation over the full field. Defaults to
0
[IN]
- surface_fieldVenus(self, surface_field: pyarts3.arts.SurfaceField | None = None, model: pyarts3.arts.String | None = None, surface_elevation: pyarts3.arts.Numeric | None = None) None
Venus reference ellipsoids.
The reference ellipsoid is set to model the Venus.
See
VenusEllipsoid
for validmodel
.Author: Patrick Eriksson
- Parameters:
surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[OUT]model (String, optional) – Model ellipsoid to use. Options listed above. Defaults to
"Sphere"
[IN]surface_elevation (Numeric, optional) – Surface elevation over the full field. Defaults to
0
[IN]
- swap(self, other: pyarts3.arts.CxxWorkspace) None
Swap the workspace for andother.
- transmission_matrix_backgroundFromPathPropagationBack(self, transmission_matrix_background: pyarts3.arts.MuelmatVector | None = None, ray_path_transmission_matrix_cumulative: pyarts3.arts.ArrayOfMuelmatVector | None = None) None
Sets
transmission_matrix_background
to back ofray_path_transmission_matrix_cumulative
.This is purely compositional and it is better to use pure python code if need this functionality in your own control-flow.
Author: Richard Larsson
Used by wrapper methods
- Parameters:
transmission_matrix_background (MuelmatVector, optional) – Transmittance from the background. See
transmission_matrix_background
, defaults toself.transmission_matrix_background
[OUT]ray_path_transmission_matrix_cumulative (ArrayOfMuelmatVector, optional) – Cumulative transmission matrices along the propagation path. See
ray_path_transmission_matrix_cumulative
, defaults toself.ray_path_transmission_matrix_cumulative
[IN]
- transmission_matrix_backgroundFromPathPropagationFront(self, transmission_matrix_background: pyarts3.arts.MuelmatVector | None = None, ray_path_transmission_matrix_cumulative: pyarts3.arts.ArrayOfMuelmatVector | None = None) None
Sets
transmission_matrix_background
to front ofray_path_transmission_matrix_cumulative
.This is purely compositional and it is better to use pure python code if need this functionality in your own control-flow.
Author: Richard Larsson
- Parameters:
transmission_matrix_background (MuelmatVector, optional) – Transmittance from the background. See
transmission_matrix_background
, defaults toself.transmission_matrix_background
[OUT]ray_path_transmission_matrix_cumulative (ArrayOfMuelmatVector, optional) – Cumulative transmission matrices along the propagation path. See
ray_path_transmission_matrix_cumulative
, defaults toself.ray_path_transmission_matrix_cumulative
[IN]
- water_equivalent_pressure_operatorMK05(self, water_equivalent_pressure_operator: pyarts3.arts.NumericUnaryOperator | None = None, only_liquid: pyarts3.arts.Index | None = None) None
Sets an operator to compute the water equivalent pressure according to Murphy and Koop, 2005.
Default is setting the saturation pressure to the one with respect to water at temperatures >= 0C, and to the one with respect to ice for <0C. The GIN
only_liquid
allows you to apply the liquid value at all temperatures.The saturation pressure with respect to liquid and ice water is calculated according to Eq. 10 and 7, respectively, of: Murphy, D. M., & Koop, T. (2005). Review of the vapour pressures of ice and supercooled water for atmospheric applications. Quarterly Journal of the Royal Meteorological Society, 131(608), 1539-1565.
Author: Patrick Eriksson
- Parameters:
water_equivalent_pressure_operator (NumericUnaryOperator, optional) – The water equivalent pressure operator. See
water_equivalent_pressure_operator
, defaults toself.water_equivalent_pressure_operator
[OUT]only_liquid (Index, optional) – See text. Defaults to
0
[IN]
- zenith_gridProfilePseudo2D(self, zenith_grid: pyarts3.arts.ZenithGrid | None = None, surface_field: pyarts3.arts.SurfaceField | None = None, altitude_grid: pyarts3.arts.AscendingGrid | None = None, latitude: pyarts3.arts.Numeric | None = None, longitude: pyarts3.arts.Numeric | None = None, dza: pyarts3.arts.Numeric | None = None, azimuth: pyarts3.arts.Numeric | None = None, consider_limb: pyarts3.arts.Index | None = None) None
A custom zenith grid for
spectral_radiance_fieldProfilePseudo2D()
Author: Richard Larsson
Used by wrapper method
- Parameters:
zenith_grid (ZenithGrid, optional) – A single zenith angle grid. See
zenith_grid
, defaults toself.zenith_grid
[OUT]surface_field (SurfaceField, optional) – The surface field describes the surface properties. See
surface_field
, defaults toself.surface_field
[IN]altitude_grid (AscendingGrid, optional) – An ascending list of
altitude
. Often related to a field or a profile. Seealtitude_grid
, defaults toself.altitude_grid
[IN]latitude (Numeric, optional) – A single latitude. See
latitude
, defaults toself.latitude
[IN]longitude (Numeric, optional) – A single longitude. See
longitude
, defaults toself.longitude
[IN]dza (Numeric, optional) – The zenith grid max step size. Defaults to
1
[IN]azimuth (Numeric, optional) – The azimuth. Defaults to
0
[IN]consider_limb (Index, optional) – Whether or not special care is given to the limb. Defaults to
1
[IN]
Static Methods
- fromxml(file: str) pyarts3.arts.CxxWorkspace
Create variable from file
- Parameters:
file (str) – A file that can be read
- On Error:
Throws RuntimeError for any failure to read
Attributes
- absorption_bands: AbsorptionBands
Bands of absorption lines for line-by-line (LBL) calculations.
See methods that consume this variable for more details on its content.
Input to workspace methods
Modified by workspace methods
Output from workspace methods
Modified by workspace agenda
Related workspace variables
- absorption_cia_data: ArrayOfCIARecord
HITRAN Collision-Induced Absorption (CIA) Data.
This variable holds HITRAN CIA data (binary absorption cross-sections). The data itself is described in: Richard, C. et al. (2012), New section of the HITRAN database: Collision-induced absorption (CIA), J. Quant. Spectrosc. Radiat. Transfer, 113, 1276-1285, doi:10.1016/j.jqsrt.2011.11.004.
The binary absorption cross-sections have to be multiplied with the densities of both molecules to get a scalar absorption coefficient.
Dimensions:
The length of this array should be equal to the number of pairs of molecules that have CIA data available. Some methods that split the data might not work as intended otherwise.
Input to workspace methods
Modified by workspace method
Output from workspace methods
Related workspace variables
- absorption_lookup_table: AbsorptionLookupTables
Absorption lookup table for scalar gas absorption coefficients.
Precomputing this table replaces the need for the calculation of scalar gas line-by-line absorption.
Input to workspace methods
Modified by workspace methods
Output from workspace methods
Related workspace variables
- absorption_predefined_model_data: PredefinedModelData
This contains predefined model data.
Can currently only contain data for new MT CKD models of water.
Input to workspace methods
Modified by workspace method
Output from workspace methods
Related workspace variables
- absorption_species: ArrayOfArrayOfSpeciesTag
Tag groups for gas absorption.
This allows the user to set up groups of species tags that are used to load the correct data.
It is only used to let data-reading methods know which species they should read from the available input files.
Input to workspace methods
Output from workspace methods
Related workspace variables
- absorption_vector_scattering: StokvecVector
The absorption vector of totally random orientation particles at a single point along a path using spectral representation
Modified by workspace method
Output from workspace methods
Output from workspace agenda
Related workspace variables
- absorption_xsec_fit_data: ArrayOfXsecRecord
Fitting model coefficients for cross section species.
Dimensions: [ n_species ]
XsecRecord:
species: Name of species
version: Fit model version
fitcoeffs:
Fit model coefficients as an
ArrayOfGriddedField2
Dimensions: [ n_bands ]
GriddedField2: [ n_band_frequencies, n_coeffs ]
The fit model:
z = p00 + p10*x + p01*y + p20*x^2
z = Xsec [m^2]
x = T / T0
y = P / P0
T0 = 1 [K]
P0 = 1 [Pa]
fitcoeffs(:, 0) p00 [m^2]
fitcoeffs(:, 1) p10 [m^2]
fitcoeffs(:, 2) p01 [m^2]
fitcoeffs(:, 3) p20 [m^2]
fitminpressures:
Minimum pressure available in source xsec data to generate the fit coefficients.
Dimensions: [ n_bands ]
fitmaxpressures:
Maximum pressure available in source xsec data to generate the fit coefficients.
Dimensions: [ n_bands ]
fitmintemperatures:
Minimum temperature available in source xsec data to generate the fit coefficients.
Dimensions: [ n_bands ]
fitmintemperatures:
Maximum temperature available in source xsec data to generate the fit coefficients.
Dimensions: [ n_bands ]
fitminpressures, fitmaxpressures, fitmintemperatures and fitmaxtemperatures are not used to apply the model and solely serve for informational purposes.
Input to workspace methods
Output from workspace methods
Related workspace variables
- altitude: Numeric
A single altitude in the atmosphere.
Unit: m
Default value
0
Related workspace variable
- altitude_grid: AscendingGrid
An ascending list of
altitude
. Often related to a field or a profile.Unit: m
Note
There is no global grid system in ARTS, so beware of the local nature of all grids.
Input to workspace methods
Output from workspace method
Related workspace variables
- atmospheric_field: AtmField
An atmospheric field in ARTS.
The atmospheric field defines the altitude of the top-of-the-atmosphere, as well as the variables that are required for the radiative transfer calculations along a path through the atmosphere. The field can be accessed at any altitude, latitude, longitude path that is within the atmosphere to access the relevant atmospheric point data (
atmospheric_point
).Note that constraints on the various field parameters may be imposed by extrapolation limitations on the field parameter itself, causing some or large swaths of the atmosphere to be inaccessible.
The atmospheric field may, but does not have to, consist of the following:
Temperature - Atmospheric temperatures in Kelvin
Pressure - Atmospheric pressure in Pascal
Wind - Atmospheric wind field in meters per second
Magnetic Field - Magnetic field in Tesla
Species content - Usually the volume-mixing ratio of various species, with some exceptions. See
SpeciesEnum
for more details.Isotopologue ratios - The isotopologue ratios of various species. See
SpeciesIsotope
for more details.Non-local thermodynamics ratios - Unitless [pure-style] OR Kelvin [vibrational-style] ratios replacing the Boltzman distribution used in the LTE calculations.
Scattering species content - See user guide for more information. This is custom data to aid scattering calculations.
Input to workspace methods
Modified by workspace methods
Output from workspace methods
Input to workspace agenda
Modified by workspace agenda
- atmospheric_point: AtmPoint
An atmospheric point in ARTS.
The atmospheric point consists of all the relevant atmospheric field data at a discrete point in the atmosphere. It is often extracted from an
AtmField
at a single altitude-latitude-longitude but may of course be generated manually.See
atmospheric_field
for the data that may be available in the atmospheric point.Input to workspace methods
Output from workspace method
Input to workspace agendas
Related workspace variable
- atmospheric_profile: ArrayOfAtmPoint
An atmospheric profile in ARTS.
The atmospheric profile consists of all the relevant atmospheric field data at a discrete profile in the atmosphere. It is often extracted from an
AtmField
at a single latitude-longitude coordinate but may of course be generated manually.See
atmospheric_field
for the data that may be available in the atmospheric point.The size of the profile is the same as
altitude_grid
.Input to workspace methods
Modified by workspace methods
Output from workspace methods
- covariance_matrix_diagonal_blocks: JacobianTargetsDiagonalCovarianceMatrixMap
A helper map for setting the covariance matrix.
Input to workspace method
Modified by workspace methods
Output from workspace method
- disort_fourier_mode_dimension: Index
The number of Fourier modes for Disort.
Input to workspace methods
Input to workspace agenda
Related workspace variables
- disort_legendre_polynomial_dimension: Index
The number of input Legendre polynimials for Disort.
Input to workspace methods
Input to workspace agenda
Related workspace variables
- disort_quadrature: ZenithGriddedField1
The quadrature angles for Disort with accompying weights.
Size is
disort_quadrature_dimension
or zenith angle grid ofdisort_spectral_radiance_field
.Input to workspace method
Output from workspace methods
Related workspace variables
- disort_quadrature_dimension: Index
The quadrature size for Disort.
Input to workspace methods
Input to workspace agenda
Related workspace variables
- disort_settings: DisortSettings
Contains the full settings of spectral Disort calculations.
Input to workspace methods
Modified by workspace methods
Output from workspace methods
Output from workspace agenda
Related workspace variables
- disort_settings_agenda: Agenda
An agenda for setting up Disort.
The only intent of this Agenda is to simplify the setup of Disort for different scenarios. The output of this Agenda is just that setting.
It is possible to execute
disort_settings_agenda
directly from the workspace by callingdisort_settings_agendaExecute()
.As all agendas in ARTS,
disort_settings_agenda
is also customizable via its operator helper class:disort_settings_agendaOperator
. See it,disort_settings_agendaSetOperator()
, anddisort_settings_agendaExecuteOperator()
for more details.Parameters
- disort_settings~pyarts3.arts.DisortSettings
Contains the full settings of spectral Disort calculations. See
disort_settings
[OUT]- frequency_grid~pyarts3.arts.AscendingGrid
A single frequency grid. See
frequency_grid
[IN]- ray_path~pyarts3.arts.ArrayOfPropagationPathPoint
A list path points making up a propagation path. See
ray_path
[IN]- disort_quadrature_dimension~pyarts3.arts.Index
The quadrature size for Disort. See
disort_quadrature_dimension
[IN]- disort_fourier_mode_dimension~pyarts3.arts.Index
The number of Fourier modes for Disort. See
disort_fourier_mode_dimension
[IN]- disort_legendre_polynomial_dimension~pyarts3.arts.Index
The number of input Legendre polynimials for Disort. See
disort_legendre_polynomial_dimension
[IN]
Input to workspace methods
Output from workspace methods
Related workspace variables
- disort_spectral_flux_field: DisortFlux
The spectral flux field from Disort.
Input to workspace method
Output from workspace methods
Related workspace variables
- disort_spectral_radiance_field: DisortRadiance
The spectral radiance field from Disort.
Input to workspace method
Output from workspace methods
Related workspace variables
- do_jacobian: Index
A boolean calculations related to the
measurement_jacobian
should be ignored.This variable is limited to very few methods related to the inversion process for
OEM()
. Note that deep code of ARTS will ignore this variable, so it is not a global switch. Instead, it is used as a switch to clear thejacobian_targets
variable, which is used to determine the size of themeasurement_jacobian
. It is important to be careful with this, as it will mess with the size of themeasurement_jacobian
and could thus lead to runtime errors being thrown in places where unexpected sizes are encountered.Default value
1
Input to workspace methods
Input to workspace agendas
Related workspace variables
- ecs_data: LinemixingEcsData
Error corrected sudden data
Dimensions: [num Isotopologues] [num Species]
Used in line-by-line calculations requiring ECS data.
Default value
pyarts.arts.LinemixingEcsData()
Input to workspace methods
Modified by workspace methods
Output from workspace method
- frequency_grid: AscendingGrid
A single frequency grid.
Units: Hz
Note
There is no global grid system in ARTS, so beware of the local nature of all grids.
Input to workspace methods
Modified by workspace method
Output from workspace method
Input to workspace agendas
Related workspace variables
- frequency_grid_wind_shift_jacobian: Vector3
The frequency grid wind shift Jacobian.
Used because all methods inside
propagation_matrix_agenda
work on the frequency grid, not on the actual wind speed for the sake of wind shift Jacobian calculations.The order is
[df_du, df_dv, df_fw]
Default value
0 0 0
Input to workspace methods
Output from workspace method
Input to workspace agenda
Related workspace variables
- gravity_operator: NumericTernaryOperator
The gravity operator.
Usage: gravity = gravity_operator(altitude, latitude, longitude).
Parameters
- altitudeNumeric
Altitude in meters.
- latitudeNumeric
Latitude in degrees.
- longitudeNumeric
Longitude in degrees.
Returns
- gravityNumeric
The gravity in m/s \(^2\).
Input to workspace method
Output from workspace method
- inversion_iterate_agenda: Agenda
Work in progress …
See
OEM()
.Note
The output
measurement_jacobian
size may depend on thedo_jacobian
input.It is possible to execute
inversion_iterate_agenda
directly from the workspace by callinginversion_iterate_agendaExecute()
.As all agendas in ARTS,
inversion_iterate_agenda
is also customizable via its operator helper class:inversion_iterate_agendaOperator
. See it,inversion_iterate_agendaSetOperator()
, andinversion_iterate_agendaExecuteOperator()
for more details.inversion_iterate_agenda
have these constraints ():On output, the measurement vector and Jacobian must match expected size.
On output, the model state vector and Jacobian must match expected size.
Parameters
- atmospheric_field~pyarts3.arts.AtmField
An atmospheric field in ARTS. See
atmospheric_field
[INOUT]- absorption_bands~pyarts3.arts.AbsorptionBands
Bands of absorption lines for line-by-line (LBL) calculations. See
absorption_bands
[INOUT]- measurement_sensor~pyarts3.arts.ArrayOfSensorObsel
A list of sensor elements. See
measurement_sensor
[INOUT]- surface_field~pyarts3.arts.SurfaceField
The surface field describes the surface properties. See
surface_field
[INOUT]- subsurface_field~pyarts3.arts.SubsurfaceField
The sub0surface field describes the sub-surface properties. See
subsurface_field
[INOUT]- measurement_vector_fitted~pyarts3.arts.Vector
As
measurement_vector
, but fitted to the model. Seemeasurement_vector_fitted
[OUT]- measurement_jacobian~pyarts3.arts.Matrix
The first order partial derivatives of the
measurement_vector
. Seemeasurement_jacobian
[OUT]- jacobian_targets~pyarts3.arts.JacobianTargets
A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
[IN]- model_state_vector~pyarts3.arts.Vector
A state vector of the model. See
model_state_vector
[IN]- do_jacobian~pyarts3.arts.Index
A boolean calculations related to the
measurement_jacobian
should be ignored. Seedo_jacobian
[IN]- inversion_iterate_agenda_counter~pyarts3.arts.Index
A counter for the inversion iterate agenda. See
inversion_iterate_agenda_counter
[IN]
Default value
Ignore()
, using: input =inversion_iterate_agenda_counter
Touch()
, using: input =atmospheric_field
Touch()
, using: input =absorption_bands
Touch()
, using: input =measurement_sensor
Touch()
, using: input =surface_field
Touch()
, using: input =subsurface_field
Input to workspace methods
Output from workspace methods
Related workspace variable
- inversion_iterate_agenda_counter: Index
A counter for the inversion iterate agenda.
Default value
0
Input to workspace methods
Input to workspace agenda
- jacobian_targets: JacobianTargets
A list of targets for the Jacobian Matrix calculations.
Default value
"atm": "surf": "line": "sensor": "error":
Input to workspace methods
Modified by workspace methods
Output from workspace methods
Input to workspace agendas
Related workspace variables
- latitude: Numeric
A single latitude.
Units: degrees
Default value
0
Input to workspace methods
Output from workspace method
Related workspace variable
- latitude_grid: LatGrid
An ascending list of
latitude
. Often related to a field or a profile.Units: degrees
Note
There is no global grid system in ARTS, so beware of the local nature of all grids.
Input to workspace methods
Related workspace variables
- legendre_degree: Index
The degree of a Legendre polynimial.
Input to workspace methods
Output from workspace method
Input to workspace agenda
- longitude: Numeric
A single longitude.
Units: degrees
Default value
0
Input to workspace methods
Output from workspace method
Related workspace variable
- longitude_grid: LonGrid
An ascending list of
longitude
. Often related to a field or a profile.Units: degrees
Note
There is no global grid system in ARTS, so beware of the local nature of all grids.
Input to workspace methods
Related workspace variables
- measurement_averaging_kernel: Matrix
Averaging kernel matrix.
This matrix is the partial derivative of the retrieved state vector with respect to the
measurement_vector
.Usage: Used and set by inversion methods.
Input to workspace method
Output from workspace method
Related workspace variables
- measurement_gain_matrix: Matrix
Contribution function (or gain) matrix.
This matrix is the partial derivative of the retrieved state vector with respect to the
measurement_vector
.Usage: Used and set by inversion methods.
Input to workspace methods
Output from workspace method
Related workspace variables
- measurement_inversion_agenda: Agenda
This is a helper
Agenda
intended for use withininversion_iterate_agenda
.It outputs the
measurement_vector_fitted
andmeasurement_jacobian
for the current iteration of the inversion. Themeasurement_vector_fitted
is the fitted measurement vector, i.e., the measurement vector that is expected to be observed given the currentatmospheric_field
,absorption_bands
,measurement_sensor
, andsurface_field
. It does not take these as explicit input but via the Workspace mechanism. Within theinversion_iterate_agenda
, these will be the local variables.What is special about this Agenda is that it enforces that the
measurement_jacobian
is empty on output ifdo_jacobian
evaluates false. Do not use this Agenda if you do not mind having a non-emptymeasurement_jacobian
on output even ifdo_jacobian
evaluates false. Also do not use this Agenda if you wish to squeeze out performance, it does a lot of unnecessary checks and operations that are not always needed.It is possible to execute
measurement_inversion_agenda
directly from the workspace by callingmeasurement_inversion_agendaExecute()
.As all agendas in ARTS,
measurement_inversion_agenda
is also customizable via its operator helper class:measurement_inversion_agendaOperator
. See it,measurement_inversion_agendaSetOperator()
, andmeasurement_inversion_agendaExecuteOperator()
for more details.measurement_inversion_agenda
have these constraints ():When
do_jacobian
evaluates as true, themeasurement_jacobian
must be non-empty.
Parameters
- measurement_vector_fitted~pyarts3.arts.Vector
As
measurement_vector
, but fitted to the model. Seemeasurement_vector_fitted
[OUT]- measurement_jacobian~pyarts3.arts.Matrix
The first order partial derivatives of the
measurement_vector
. Seemeasurement_jacobian
[OUT]- jacobian_targets~pyarts3.arts.JacobianTargets
A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
[IN]- do_jacobian~pyarts3.arts.Index
A boolean calculations related to the
measurement_jacobian
should be ignored. Seedo_jacobian
[IN]
Default value
Input to workspace method
Output from workspace methods
Related workspace variables
- measurement_jacobian: Matrix
The first order partial derivatives of the
measurement_vector
.This variable represents the matrix
\[\mathbf{J} = \frac{\partial \vec{y}} {\partial \vec{x}},\]where \(\vec{y}\) is the
measurement_vector
and \(\vec{x}\) is themodel_state_vector
. The size of this variable should thus be the size ofmeasurement_vector
times the size ofmodel_state_vector
. Please refer to those variables for more information.Input to workspace method
Modified by workspace methods
Output from workspace methods
Output from workspace agendas
Related workspace variables
- measurement_jacobian_error: Matrix
The partial derivatives of the
measurement_vector_error
.This is otherwise the same as
measurement_jacobian
. See it for more details.Input to workspace method
Output from workspace method
Related workspace variables
- measurement_sensor: ArrayOfSensorObsel
A list of sensor elements.
Size is number of elements of the sensor.
Input to workspace methods
Modified by workspace methods
Output from workspace methods
Modified by workspace agenda
Related workspace variables
- measurement_vector: Vector
The measurment vector for, e.g., a sensor.
This must often be the same size as
measurement_sensor
.The notation in ARTS, for the purpose of
OEM()
, is that\[\vec{y} = \mathbf{F}\left(\vec{x}\right) + \vec{y}_\epsilon\left(\vec{x}\right) + \epsilon\]where \(\mathbf{F}\) is the forward model function of the physics of the simulation space, \(\vec{x}\) is the
model_state_vector
, \(\vec{y}_\epsilon\) is themeasurement_vector_error
, and \(\epsilon\) are any additional errors, such as random noise.Throughout ARTS,
measurement_vector
have different contextual meanings. These are:\(\vec{y}\) - i.e., measured data.
\(\vec{y} - \epsilon\) - e.g., the best fit to measured data,
measurement_vector_fitted
.\(\mathbf{F}\left(\vec{x}\right)\) - i.e., the physical model of the measurement.
Input to workspace methods
Modified by workspace method
Output from workspace methods
Related workspace variables
- measurement_vector_error: Vector
The model measurment vector error for, e.g., a sensor.
This must often be the same size as
measurement_sensor
.See
measurement_vector
for more details. In that notation, this is \(\vec{y}_\epsilon\).Input to workspace method
Output from workspace method
Related workspace variables
- measurement_vector_error_covariance_matrix: CovarianceMatrix
Covariance matrix for observation uncertainties.
Input to workspace methods
Output from workspace method
Related workspace variables
- measurement_vector_fitted: Vector
As
measurement_vector
, but fitted to the model.This must often be the same size as
measurement_sensor
.See
measurement_vector
for more details. In that notation, and in the notation ofOEM()
, \(\vec{y}_f \approx \vec{y} - \epsilon\). Or at least this should be the case depending on how good of a fit of \(\vec{x}\) has been produced and if the measurement can be understood properly.Tip
It is often useful to present \(\vec{y} - \vec{y}_\epsilon\) and \(\vec{y}_f - \vec{y}_\epsilon\) instead of \(\vec{y}_f\) and \(\vec{y}\) directly. This removes the known measurement error from both the data and the fit, showing the physical signal from the target rather than known sensor noise.
Default value
[]
Modified by workspace method
Output from workspace methods
Output from workspace agendas
Related workspace variables
- model_state_covariance_matrix: CovarianceMatrix
Covariance matrix of a priori distribution.
Input to workspace methods
Modified by workspace method
Output from workspace methods
Related workspace variables
- model_state_vector: Vector
A state vector of the model.
This represents the chosen state of the model. In the notation of
measurement_vector
andOEM()
, \(\vec{x}\) is themodel_state_vector
.To choose the state of the model, you must setup
jacobian_targets
to include the state parameters you want to be able to change.Default value
[]
Input to workspace methods
Modified by workspace methods
Output from workspace methods
Input to workspace agenda
Related workspace variables
- model_state_vector_apriori: Vector
An apriori state vector of the model.
See
model_state_vector
for more details. This is the state vector that is assumed to be the a priori state of the model. In normal circumstances, this is the state vector that is used to start the inversion process. InOEM()
, this is \(\vec{x}_a\).Input to workspace method
Output from workspace methods
Related workspace variables
- nlte_line_flux_profile: QuantumIdentifierVectorMap
A per-line flux profile.
Output from workspace method
Related workspace variables
- phase_matrix_scattering_spectral: SpecmatMatrix
The spectral phase matrix of totally random orientation particles at a single point along a path using spectral representation
Modified by workspace method
Output from workspace methods
Output from workspace agenda
Related workspace variables
- propagation_matrix: PropmatVector
This contains the fully polarized propagation matrix for the current path point.
The propagation matrix can be used to computed the transmission matrix as:
\[\mathbf{T} = \exp\left(-\mathbf{K} r\right),\]where \(\mathbf{K}\) is the propagation matrix, and \(r\) is some distance over which it is considered constant.
The unit is [1 / m].
Dimension:
frequency_grid
.Modified by workspace methods
Output from workspace methods
Output from workspace agenda
Related workspace variables
- propagation_matrix_agenda: Agenda
Compute the propagation matrix, the non-LTE source vector, and their derivatives.
The intent of this agenda is to be the workhorse for the propagation matrix calculations that are happening deep in your ARTS method calls.
Tip
Use
propagation_matrix_agendaAuto()
after having defined your absorption data to create this agenda. It covers most use-cases.It is possible to execute
propagation_matrix_agenda
directly from the workspace by callingpropagation_matrix_agendaExecute()
.As all agendas in ARTS,
propagation_matrix_agenda
is also customizable via its operator helper class:propagation_matrix_agendaOperator
. See it,propagation_matrix_agendaSetOperator()
, andpropagation_matrix_agendaExecuteOperator()
for more details.propagation_matrix_agenda
have these constraints ():On output,
propagation_matrix
has the size offrequency_grid
.On output,
propagation_matrix_source_vector_nonlte
has the size offrequency_grid
.On output,
propagation_matrix_jacobian
has the shape of the target-count ofjacobian_targets
times the size offrequency_grid
.On output,
propagation_matrix_source_vector_nonlte_jacobian
has the shape of the target-count ofjacobian_targets
times the size offrequency_grid
.
Parameters
- propagation_matrix~pyarts3.arts.PropmatVector
This contains the fully polarized propagation matrix for the current path point. See
propagation_matrix
[OUT]- propagation_matrix_source_vector_nonlte~pyarts3.arts.StokvecVector
The part of the source vector that is due to non-LTE. See
propagation_matrix_source_vector_nonlte
[OUT]- propagation_matrix_jacobian~pyarts3.arts.PropmatMatrix
Partial derivative of the
propagation_matrix
with regards tojacobian_targets
. Seepropagation_matrix_jacobian
[OUT]- propagation_matrix_source_vector_nonlte_jacobian~pyarts3.arts.StokvecMatrix
Partial derivative of the
propagation_matrix_source_vector_nonlte
with regards tojacobian_targets
. Seepropagation_matrix_source_vector_nonlte_jacobian
[OUT]- frequency_grid~pyarts3.arts.AscendingGrid
A single frequency grid. See
frequency_grid
[IN]- frequency_grid_wind_shift_jacobian~pyarts3.arts.Vector3
The frequency grid wind shift Jacobian. See
frequency_grid_wind_shift_jacobian
[IN]- jacobian_targets~pyarts3.arts.JacobianTargets
A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
[IN]- select_species~pyarts3.arts.SpeciesEnum
Species selection. See
select_species
[IN]- ray_path_point~pyarts3.arts.PropagationPathPoint
A single path point. See
ray_path_point
[IN]- atmospheric_point~pyarts3.arts.AtmPoint
An atmospheric point in ARTS. See
atmospheric_point
[IN]
Input to workspace methods
Output from workspace methods
Related workspace variables
- propagation_matrix_jacobian: PropmatMatrix
Partial derivative of the
propagation_matrix
with regards tojacobian_targets
.The units depend on what is set in
jacobian_targets
[1 / m / jacobian target’s unit].Modified by workspace methods
Output from workspace methods
Output from workspace agenda
Related workspace variables
- propagation_matrix_scattering: PropmatVector
The propgation matrix of totally random orientation particles at a single point along a path using spectral representation
Modified by workspace methods
Output from workspace methods
Output from workspace agendas
Related workspace variables
- propagation_matrix_scattering_agenda: Agenda
Compute the part of the propagation matrix that relates to scattering.
It is possible to execute
propagation_matrix_scattering_agenda
directly from the workspace by callingpropagation_matrix_scattering_agendaExecute()
.As all agendas in ARTS,
propagation_matrix_scattering_agenda
is also customizable via its operator helper class:propagation_matrix_scattering_agendaOperator
. See it,propagation_matrix_scattering_agendaSetOperator()
, andpropagation_matrix_scattering_agendaExecuteOperator()
for more details.propagation_matrix_scattering_agenda
have these constraints ():On output,
propagation_matrix_scattering
has the size offrequency_grid
.
Parameters
- propagation_matrix_scattering~pyarts3.arts.PropmatVector
The propgation matrix of totally random orientation particles at a single point along a path using spectral representation. See
propagation_matrix_scattering
[OUT]- frequency_grid~pyarts3.arts.AscendingGrid
A single frequency grid. See
frequency_grid
[IN]- atmospheric_point~pyarts3.arts.AtmPoint
An atmospheric point in ARTS. See
atmospheric_point
[IN]
Default value
Input to workspace methods
Output from workspace methods
Related workspace variables
- propagation_matrix_scattering_spectral_agenda: Agenda
Get the scattering propagation matrix, the scattering absorption vector, and the scattering spectral phase matrix.
It is possible to execute
propagation_matrix_scattering_spectral_agenda
directly from the workspace by callingpropagation_matrix_scattering_spectral_agendaExecute()
.As all agendas in ARTS,
propagation_matrix_scattering_spectral_agenda
is also customizable via its operator helper class:propagation_matrix_scattering_spectral_agendaOperator
. See it,propagation_matrix_scattering_spectral_agendaSetOperator()
, andpropagation_matrix_scattering_spectral_agendaExecuteOperator()
for more details.propagation_matrix_scattering_spectral_agenda
have these constraints ():On output,
propagation_matrix_scattering
has the size offrequency_grid
.On output,
absorption_vector_scattering
has the size offrequency_grid
.On output,
phase_matrix_scattering_spectral
has the shape of <legendre_degree
+ 1> times the size offrequency_grid
.
Parameters
- propagation_matrix_scattering~pyarts3.arts.PropmatVector
The propgation matrix of totally random orientation particles at a single point along a path using spectral representation. See
propagation_matrix_scattering
[OUT]- absorption_vector_scattering~pyarts3.arts.StokvecVector
The absorption vector of totally random orientation particles at a single point along a path using spectral representation. See
absorption_vector_scattering
[OUT]- phase_matrix_scattering_spectral~pyarts3.arts.SpecmatMatrix
The spectral phase matrix of totally random orientation particles at a single point along a path using spectral representation. See
phase_matrix_scattering_spectral
[OUT]- frequency_grid~pyarts3.arts.AscendingGrid
A single frequency grid. See
frequency_grid
[IN]- atmospheric_point~pyarts3.arts.AtmPoint
An atmospheric point in ARTS. See
atmospheric_point
[IN]- legendre_degree~pyarts3.arts.Index
The degree of a Legendre polynimial. See
legendre_degree
[IN]
Default value
Input to workspace methods
Output from workspace methods
Related workspace variables
- propagation_matrix_source_vector_nonlte: StokvecVector
The part of the source vector that is due to non-LTE.
This is closely related to
propagation_matrix
.Gven the level source term:
\[\vec{J} = \mathbf{K}^{-1} \left(\vec{\alpha}B + \vec{J}_n + \cdots\right),\]this variable holds \(\vec{J}_n\). Here, \(\vec{\alpha}\) is the first column of \(\mathbf{K}\), which is from the
propagation_matrix
variable. \(B\) is the Planck function. The ellipsis denotes other terms that can come from more sources, such as scattering and/or transmitting equipment.The unit is in
spectral_radiance
per meter.Modified by workspace method
Output from workspace methods
Output from workspace agenda
Related workspace variables
- propagation_matrix_source_vector_nonlte_jacobian: StokvecMatrix
Partial derivative of the
propagation_matrix_source_vector_nonlte
with regards tojacobian_targets
.The units are
spectral_radiance_jacobian
per meter.Modified by workspace methods
Output from workspace methods
Output from workspace agenda
Related workspace variables
- ray_path: ArrayOfPropagationPathPoint
A list path points making up a propagation path.
Input to workspace methods
Modified by workspace methods
Output from workspace methods
Input to workspace agenda
Output from workspace agendas
Related workspace variables
- ray_path_absorption_vector_scattering: ArrayOfStokvecVector
The absorption vector of totally random orientation particles along the propagation path using spectral representation
Input to workspace method
Output from workspace method
Related workspace variables
- ray_path_atmospheric_point: ArrayOfAtmPoint
Atmospheric points along the propagation path.
See
atmospheric_point
for information about atmospheric pointsDimension: [ ppath.np ]
Usage: Output of radiative transfer methods.
Input to workspace methods
Output from workspace methods
Related workspace variables
- ray_path_field: ArrayOfArrayOfPropagationPathPoint
A list of
ray_path
intended to build up a field of observations.Input to workspace method
Output from workspace methods
Related workspace variables
- ray_path_frequency_grid: ArrayOfAscendingGrid
All
frequency_grid
along the propagation path.Input to workspace methods
Output from workspace method
Related workspace variables
- ray_path_frequency_grid_wind_shift_jacobian: ArrayOfVector3
A list of
frequency_grid_wind_shift_jacobian
for a ray path.Input to workspace methods
Output from workspace method
Related workspace variables
- ray_path_observer_agenda: Agenda
Get the propagation path as it is obeserved.
The intent of this agenda is to provide a propagation path as seen from the observer position and line of sight.
Tip
The perhaps easiest way to set this agenda up is to use the
ray_path_observer_agendaSetGeometric()
method.It is possible to execute
ray_path_observer_agenda
directly from the workspace by callingray_path_observer_agendaExecute()
.As all agendas in ARTS,
ray_path_observer_agenda
is also customizable via its operator helper class:ray_path_observer_agendaOperator
. See it,ray_path_observer_agendaSetOperator()
, andray_path_observer_agendaExecuteOperator()
for more details.Parameters
- ray_path~pyarts3.arts.ArrayOfPropagationPathPoint
A list path points making up a propagation path. See
ray_path
[OUT]- spectral_radiance_observer_position~pyarts3.arts.Vector3
The position of an observer of spectral radiance. See
spectral_radiance_observer_position
[IN]- spectral_radiance_observer_line_of_sight~pyarts3.arts.Vector2
The line-of-sight of the observer of spectral radiance. See
spectral_radiance_observer_line_of_sight
[IN]
Input to workspace methods
Output from workspace methods
Related workspace variables
- ray_path_observers: ArrayOfPropagationPathPoint
A list path points making up the observers of a propagation path.
These can be used directly for
spectral_radiance_observer_position
andspectral_radiance_observer_line_of_sight
Input to workspace method
Output from workspace methods
Related workspace variables
- ray_path_phase_matrix_scattering_spectral: ArrayOfSpecmatMatrix
The spectral phase matrix of totally random orientation particles along the propagation path using spectral representation
Input to workspace method
Output from workspace method
Related workspace variables
- ray_path_point: PropagationPathPoint
A single path point.
Input to workspace methods
Output from workspace methods
Input to workspace agendas
Related workspace variables
- ray_path_propagation_matrix: ArrayOfPropmatVector
Propagation matrices along the propagation path
Input to workspace methods
Modified by workspace method
Output from workspace method
Related workspace variables
- ray_path_propagation_matrix_jacobian: ArrayOfPropmatMatrix
Propagation derivative matrices along the propagation path
Input to workspace methods
Output from workspace method
Related workspace variables
- ray_path_propagation_matrix_scattering: ArrayOfPropmatVector
Propagation matrices along the propagation path for scattering
Input to workspace methods
Output from workspace methods
Related workspace variables
- ray_path_propagation_matrix_source_vector_nonlte: ArrayOfStokvecVector
Additional non-LTE along the propagation path
Input to workspace methods
Output from workspace method
Related workspace variables
- ray_path_propagation_matrix_source_vector_nonlte_jacobian: ArrayOfStokvecMatrix
Additional non-LTE derivative along the propagation path
Input to workspace method
Output from workspace method
Related workspace variables
- ray_path_spectral_radiance_jacobian: ArrayOfStokvecMatrix
Spectral radiance derivative along the propagation path
Input to workspace method
Output from workspace methods
Related workspace variables
- ray_path_spectral_radiance_scattering: ArrayOfStokvecVector
Spectral radiance scattered into the propagation path
Input to workspace method
Output from workspace method
Related workspace variables
- ray_path_spectral_radiance_source: ArrayOfStokvecVector
Source vectors along the propagation path
Input to workspace method
Modified by workspace method
Output from workspace method
Related workspace variables
- ray_path_spectral_radiance_source_jacobian: ArrayOfStokvecMatrix
Source derivative vectors along the propagation path
Input to workspace method
Output from workspace method
Related workspace variables
- ray_path_suns_path: ArrayOfArrayOfArrayOfPropagationPathPoint
A list of paths to the suns from the ray path.
Dimensions:
ray_path
xsuns
xsun_path
Input to workspace methods
Output from workspace method
Related workspace variables
- ray_path_transmission_matrix: ArrayOfMuelmatVector
Transmission matrices along the propagation path.
The outer dimension is the number of layers.
The inner dimension is the number of frequency points.
The order of the elements is such that index zero is closest to the obeserver.
Input to workspace methods
Output from workspace method
Related workspace variables
- ray_path_transmission_matrix_cumulative: ArrayOfMuelmatVector
Cumulative transmission matrices along the propagation path
Input to workspace methods
Output from workspace method
Related workspace variables
- ray_path_transmission_matrix_jacobian: ArrayOfMuelmatTensor3
Transmission derivative matrices along the propagation path.
The outer dimension is the number of layers.
The inner dimensions are the number of level derivatives, the number of jacbian targets, and the number of frequency points. The required number of level derivatives is determined by the appropriate method (a common value is 2, for the 2 levels surrounding a layer).
The order of the elements is such that index zero is closest to the obeserver.
Input to workspace methods
Output from workspace method
Related workspace variables
- scattering_species: ArrayOfScatteringSpecies
The scattering species
Input to workspace method
Output from workspace method
Related workspace variables
- select_species: SpeciesEnum
Species selection.
When Bath is selected, all species are used. Otherwise, this variable should control so that only the selected species is used.
Default value
AIR
Input to workspace methods
Input to workspace agenda
Related workspace variable
- select_species_list: ArrayOfSpeciesEnum
Species selection.
Input to workspace method
Output from workspace method
- spectral_flux_profile: Matrix
An altitude profile of spectral flux.
Input to workspace methods
Output from workspace methods
Related workspace variables
- spectral_radiance: StokvecVector
A spectral radiance vector.
This is the representation of the spectral radiances at discrete frequencies for a discrete viewing direction.
The unit of spectral radiance is [W / m \(^2\) sr Hz].
Note that there are conversion routines that changes this unit, e.g.,
spectral_radianceApplyUnit()
. After conversion, the use ofspectral_radiance
in any method no marked as safe for different units, will lead to undefined behavior with possibly bad values being computed.The size of this variable should be the size of the local
frequency_grid
.Input to workspace method
Modified by workspace methods
Output from workspace methods
Output from workspace agendas
Related workspace variables
- spectral_radiance_background: StokvecVector
Spectral radiance from the background
Shape: NFREQ
Input to workspace methods
Output from workspace method
Related workspace variables
- spectral_radiance_background_jacobian: StokvecMatrix
Spectral radiance derivative from the background
Shape: NJAC x NFREQ
Input to workspace methods
Output from workspace method
Related workspace variables
- spectral_radiance_field: GriddedSpectralField6
The spectral radiance field.
spectral_radiance
but for a field.Dimensions are
altitude_grid
timeslatitude_grid
timeslongitude_grid
timeszenith_grid
timesazimuth_grid
timesfrequency_grid
.Input to workspace method
Output from workspace methods
Related workspace variables
- spectral_radiance_jacobian: StokvecMatrix
Jacobian of
spectral_radiance
with respect tojacobian_targets
.The size of this variable should be the local
jacobian_targets
as rows times the size of the localspectral_radiance
as columns.Modified by workspace methods
Output from workspace methods
Output from workspace agendas
Related workspace variables
- spectral_radiance_observer_agenda: Agenda
Spectral radiance as seen from the input position and environment
The intent of this agenda is to provide the spectral radiance as seen from the observer position and line of sight.
It also outputs the
ray_path
as seen from the observer position and line of sight. This is useful in-case a call to the destructivespectral_radianceApplyUnitFromSpectralRadiance()
is warrantedIt is possible to execute
spectral_radiance_observer_agenda
directly from the workspace by callingspectral_radiance_observer_agendaExecute()
.As all agendas in ARTS,
spectral_radiance_observer_agenda
is also customizable via its operator helper class:spectral_radiance_observer_agendaOperator
. See it,spectral_radiance_observer_agendaSetOperator()
, andspectral_radiance_observer_agendaExecuteOperator()
for more details.spectral_radiance_observer_agenda
have these constraints ():On output,
spectral_radiance
has the size offrequency_grid
.On output,
spectral_radiance_jacobian
has the shape of the expectedmodel_state_vector
(i.e., the x-size ofjacobian_targets
) times the size offrequency_grid
.
Parameters
- spectral_radiance~pyarts3.arts.StokvecVector
A spectral radiance vector. See
spectral_radiance
[OUT]- spectral_radiance_jacobian~pyarts3.arts.StokvecMatrix
Jacobian of
spectral_radiance
with respect tojacobian_targets
. Seespectral_radiance_jacobian
[OUT]- ray_path~pyarts3.arts.ArrayOfPropagationPathPoint
A list path points making up a propagation path. See
ray_path
[OUT]- frequency_grid~pyarts3.arts.AscendingGrid
A single frequency grid. See
frequency_grid
[IN]- jacobian_targets~pyarts3.arts.JacobianTargets
A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
[IN]- spectral_radiance_observer_position~pyarts3.arts.Vector3
The position of an observer of spectral radiance. See
spectral_radiance_observer_position
[IN]- spectral_radiance_observer_line_of_sight~pyarts3.arts.Vector2
The line-of-sight of the observer of spectral radiance. See
spectral_radiance_observer_line_of_sight
[IN]- atmospheric_field~pyarts3.arts.AtmField
An atmospheric field in ARTS. See
atmospheric_field
[IN]- surface_field~pyarts3.arts.SurfaceField
The surface field describes the surface properties. See
surface_field
[IN]- subsurface_field~pyarts3.arts.SubsurfaceField
The sub0surface field describes the sub-surface properties. See
subsurface_field
[IN]
Default value
hse_derivative = 0
Input to workspace methods
Output from workspace methods
Related workspace variables
- spectral_radiance_observer_line_of_sight: Vector2
The line-of-sight of the observer of spectral radiance.
Most likely only makes sense in combination with
spectral_radiance_observer_position
.Input to workspace methods
Input to workspace agendas
Related workspace variables
- spectral_radiance_observer_position: Vector3
The position of an observer of spectral radiance.
Most likely only makes sense in combination with
spectral_radiance_observer_line_of_sight
.Input to workspace methods
Input to workspace agendas
Related workspace variables
- spectral_radiance_operator: SpectralRadianceOperator
The spectral radiance operator.
This is a class that can compute the spectral radiance along a path for a single viewing direction and frequency.
It provides several methods to get the path of the spectral radiance.
Input to workspace methods
Output from workspace method
Related workspace variables
- spectral_radiance_space_agenda: Agenda
Spectral radiance as seen of space.
This agenda calculates the spectral radiance as seen of space. One common use-case is to provide a background spectral radiance.
The input path point should be as if it is looking at space.
It is possible to execute
spectral_radiance_space_agenda
directly from the workspace by callingspectral_radiance_space_agendaExecute()
.As all agendas in ARTS,
spectral_radiance_space_agenda
is also customizable via its operator helper class:spectral_radiance_space_agendaOperator
. See it,spectral_radiance_space_agendaSetOperator()
, andspectral_radiance_space_agendaExecuteOperator()
for more details.spectral_radiance_space_agenda
have these constraints ():On output,
spectral_radiance
has the size offrequency_grid
.On output,
spectral_radiance_jacobian
has the shape of the expectedmodel_state_vector
(i.e., the x-size ofjacobian_targets
) times the size offrequency_grid
.
Parameters
- spectral_radiance~pyarts3.arts.StokvecVector
A spectral radiance vector. See
spectral_radiance
[OUT]- spectral_radiance_jacobian~pyarts3.arts.StokvecMatrix
Jacobian of
spectral_radiance
with respect tojacobian_targets
. Seespectral_radiance_jacobian
[OUT]- frequency_grid~pyarts3.arts.AscendingGrid
A single frequency grid. See
frequency_grid
[IN]- jacobian_targets~pyarts3.arts.JacobianTargets
A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
[IN]- ray_path_point~pyarts3.arts.PropagationPathPoint
A single path point. See
ray_path_point
[IN]
Default value
Ignore()
, using: input =ray_path_point
Input to workspace methods
Output from workspace methods
Related workspace variables
- spectral_radiance_surface_agenda: Agenda
Spectral radiance as seen of the surface.
This agenda calculates the spectral radiance as seen of the surface. One common use-case us to provide a background spectral radiance.
The input path point should be as if it is looking at the surface.
Subsurface calculations are also supported through this agenda.
It is possible to execute
spectral_radiance_surface_agenda
directly from the workspace by callingspectral_radiance_surface_agendaExecute()
.As all agendas in ARTS,
spectral_radiance_surface_agenda
is also customizable via its operator helper class:spectral_radiance_surface_agendaOperator
. See it,spectral_radiance_surface_agendaSetOperator()
, andspectral_radiance_surface_agendaExecuteOperator()
for more details.spectral_radiance_surface_agenda
have these constraints ():On output,
spectral_radiance
has the size offrequency_grid
.On output,
spectral_radiance_jacobian
has the shape of the expectedmodel_state_vector
(i.e., the x-size ofjacobian_targets
) times the size offrequency_grid
.
Parameters
- spectral_radiance~pyarts3.arts.StokvecVector
A spectral radiance vector. See
spectral_radiance
[OUT]- spectral_radiance_jacobian~pyarts3.arts.StokvecMatrix
Jacobian of
spectral_radiance
with respect tojacobian_targets
. Seespectral_radiance_jacobian
[OUT]- frequency_grid~pyarts3.arts.AscendingGrid
A single frequency grid. See
frequency_grid
[IN]- jacobian_targets~pyarts3.arts.JacobianTargets
A list of targets for the Jacobian Matrix calculations. See
jacobian_targets
[IN]- ray_path_point~pyarts3.arts.PropagationPathPoint
A single path point. See
ray_path_point
[IN]- surface_field~pyarts3.arts.SurfaceField
The surface field describes the surface properties. See
surface_field
[IN]- subsurface_field~pyarts3.arts.SubsurfaceField
The sub0surface field describes the sub-surface properties. See
subsurface_field
[IN]
Default value
Ignore()
, using: input =subsurface_field
Input to workspace methods
Output from workspace methods
Related workspace variables
- spectral_radiance_transform_operator: SpectralRadianceTransformOperator
The spectral radiance transform operator
This is responsible for things like converting the spectral radiance into a different unit, e.g., from [W / m \(^2\) sr Hz] to Kelvin.
Default value
<SpectralRadianceTransformOperator::unit>
Input to workspace methods
Output from workspace method
Related workspace variables
- subsurface_field: SubsurfaceField
The sub0surface field describes the sub-surface properties.
Default value
"bottom_depth": 1.7976931348623157e+308 "Other":
Input to workspace methods
Modified by workspace methods
Input to workspace agendas
Modified by workspace agenda
- sun: Sun
A sun.
Input to workspace methods
Output from workspace methods
Related workspace variables
- sun_path: ArrayOfPropagationPathPoint
A path to a sun if it is visible.
A related variable is
ray_path
Size is number of path points for the sun.
Input to workspace method
Output from workspace method
- suns: ArrayOfSun
A list of
Sun
.Size is number of suns.
Input to workspace methods
Modified by workspace method
Related workspace variable
- surface_field: SurfaceField
The surface field describes the surface properties.
This describes the global surface values, such as elevation and temperature but also entirerly abstract properties and types.
Default value
"Ellipsoid": 0 0 "SurfaceKey": "SurfacePropertyTag":
Input to workspace methods
Modified by workspace methods
Output from workspace methods
Input to workspace agendas
Modified by workspace agenda
Related workspace variable
- transmission_matrix_background: MuelmatVector
Transmittance from the background
Input to workspace method
Output from workspace methods
- water_equivalent_pressure_operator: NumericUnaryOperator
The water equivalent pressure operator.
Usage: psat = water_equivalent_pressure_operator(temperature).
Parameters
- temperatureNumeric
Temperature in Kelvin.
Returns
- psatNumeric
The water equivalent pressure in Pascal.
Input to workspace method
Output from workspace method
- zenith_grid: ZenithGrid
A single zenith angle grid.
Units: degrees
Note
There is no global grid system in ARTS, so beware of the local nature of all grids.
Input to workspace methods
Output from workspace method
Related workspace variables
Operators
- __eq__(value, /)
Return self==value.
- __ge__(value, /)
Return self>=value.
- __getstate__()
Helper for pickle.
- __gt__(value, /)
Return self>value.
- __hash__()
Return hash(self).
- __iter__(self) collections.abc.Iterator[tuple[str, pyarts3.arts.Wsv]]
Allows iter(self)
- __le__(value, /)
Return self<=value.
- __lt__(value, /)
Return self<value.
- __ne__(value, /)
Return self!=value.